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6ver the past couple of decades, a large number of physicists have started exploring problems which fall in tha
domain of economic science. The common themes that are addressed by the research of most of these groups have
resulted in coining a new term “Econophysics” as a collective name for this venture. Bringing together the techniques
of statistical physics and nonlinear dynamics to study complex systems with the ability to analyze large volumes
of data using sophisticated statistical techniques, the discoveries made in this field have already attracted the
attention of mainstream physicists and economists. While still somewhat controversial, it provides a promising
alternative to (and a more empirically-based foundation for the study of economic phenomena than) the mainstream
@(iom-based mathematical economic theory.
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Introduction

Physicists have long had a tradition
of moving to other fields of scientific
enquiry and have helped bring about
paradigm shifts in the way research
is carried out in those areas. Possibly
the most well-known example in
recent times is that of the birth of
molecular biology in the 1950s and
60s, when pioneers such as
Schrodinger (through his book What
is Life?) inspired physicists such as
Max Delbruck and Francis Crick to
move into biology with spectacularly
successful results. However, one can
argue that physicists are often
successful in areas outside physics,
because of the broad-based general
nature of a physicist’s training rather
than the applicability of physical
principles as such in those areas. The
large influx of physicists since the late
1990s into topics which had
traditionally been the domain of
economists and sociologists have
raised the question: does physics
really have some significant insights
for these areas? Or, is it a mere fad,
driven by the availability of large
quantities of economic data which are
amenable to the kind of analytical

techniques that physicists are familiar
with? The coining of new terms such
as econophysics and sociophysics (along
the lines of biophysics and geophysics)
have hinted that many physicists do
believe that physics has a novel
perspective to contribute to the
traditional way of doing economics.
Others, including the majority of
mainstream economists have been
dismissive until very recently of the
claim that physics can have
something significant to contribute to
the field, which is seen by them to be
primarily a study of interactions
between rational agents able to
formulate complex strategies to
maximize their individual utilities (or
welfare).

However, even before the current
worldwide crisis revealed the
inadequacies of mainstream economic
theory, economists had realized that
this new approach of looking at
economics problems cannot be
simply ignored, as evidenced, e.g., by
the entry of the terms “econophysics”
and “economy as a complex system”
in the new Palgrave dictionary of
economics (Macmillan, 2008). The
failure of economists, by and large, to
anticipate the collapse of markets

worldwide in 2008 over such a short
space of time has now led to some
voices from within the field of
economics itself declaring that new
foundations for the discipline are
required. The economists Lux and
Westerhoff in an article published in
Nature Physics (Jan 2009) have
suggested that econophysics may
provide such an alternative
theoretical framework for rebuilding
economics. As Lux has pointed out
elsewhere, the systemic failure of the
standard model of economics arises
from its “implicit view ...that
markets and economies are inherently
stable”. However, worldwide
financial crises (and the
accompanying economic turmoil) are
neither new nor as infrequent as
economists would like to believe. It is
therefore surprising that mainstream
economics has ignored, and
sometimes actively suppressed, the
study of crisis situations. The famous
economist Kenneth Arrow even tried
to establish the stability of economic
equilibria as a mathematical theorem;
however, what is often forgotten is
that such conclusions are crucially
dependent on the wunderlying
simplifying assumptions, such as,
perfectly competitive markets and the
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absence of any delays in response. It
is obvious that the real world hardly
conforms to such ideal conditions.
Moreover, the study of a wide variety
of complex systems (e.g., from cellular
networks to the internet and
ecosystems) over the past few decades
using the tools of statistical physics
and nonlinear dynamics has led to the
understanding that inherent
instabilities in dynamics often
accompanies increasing complexity.

Figure 1: Th?
economy
machine.

A reconstruction
of the Moniac (at
the University of
Melbourne), a
hydraulic
simulator of a
national
economy built in
1949 by A. W. H.
Phillips of the

London School of Economics, that used
the flow of colored water to represent the
flow of money. It is currently again being
used at Cambridge University for
demonstrating the dynamic behavior of an
economic system in economics first-year

lectures. (Source: http://airminded. org,

\l’hoto: Brett Holman) Y,
The obsession of mainstream

economics with the ideal world of
hyper-rational agents and almost
perfect competitive markets has gone
hand in hand with a formal divorce
between theory and empirical
observations. Indeed, the analysis of
empirical data has ceased to be a part
of economics itself, and has become a
separate subject called econometrics.
Since the 1950s, economics has
modeled itself more on mathematics
than any of the natural sciences. It has
been reduced to the study of self-
consistent theorems arising out of a
set of axioms to such an extent that it
is probably more appropriate to term
mainstream economics as econo-
mathematics, i.e., mathematics inspired
by economics and that too having
little connection to reality. This is
strange for a subject that claims to
have insights and remedies for one of

the most important spheres of human
activity. It is a sobering thought that
decisions made by the IMF and World
Bank which affect millions of lives are
made on the basis of theoretical
models that have never been
subjected to empirical verification. In
view of this, some scientists
(including a few economists) have
begun to think that maybe economics
is too important to be left to
economists alone. While a few have
suggested that econophysics may
provide an alternative theoretical
framework for a new economic
science, we think that the field as it
stands is certainly an exciting
development in this direction, and
intend to give an introduction to it
here.

Before we go on to describe how
physicists have recently brought fresh
perspectives in understanding
economic phenomena, let us point out
that despite the present state of
economics, there has been a long and
fruitful association between physics
and economics. Philip Mirowski, in
his book, More Heat Than Light (1989)
has pointed out that the pioneers of
neoclassical economics had indeed
borrowed almost term by term the
physics of 1870s to set up their
theoretical framework. This legacy
can still be seen in the attention paid
by economists to maximization
principles (e.g., of utility) that mirrors
the framing of classical physics in
terms of minimization principles (e.g.,
the principle of least action). Later,
Paul Samuelson, the second Nobel
laureate in economics and the author
of possibly the most influential
textbook of economics, tried to
reformulate economics as an
empirically grounded science
modeled on physics in his book
Foundations of Economic Analysis (1947).
While the use of classical dynamical
concepts such as stability and
equilibrium has also been used in the
context of economics earlier (e.g., by
Vilfredo Pareto), Samuelson’s
approach was marked by the
assertion that economics should be
concerned with “the derivation of
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operationally meaningful theorems”, i.e.,
those which can be empirically tested.
Such a theorem is “simply a
hypothesis about empirical data
which could conceivably be refuted,
if only under ideal conditions”. Given
the spirit of those times, it is probably
unsurprising that this is also when
the engineer-turned-economist Bill
Philips (who later became famous for
the Philips curve, a relation between
inflation and employment)
constructed the Moniac, a hydraulic
simulator for the national economy
(Fig. 1), that modeled the flow of
money in society through the flow of
colored water. The mapping of
macroeconomic concepts to the
movement of fluids was a direct
demonstration that the economy was
as much a subject of physical inquiry
as other more traditional subjects in
physics.

This was however the last time that
physics would significantly affect
economics until very recently, as the
1950s saw a complete shift in the focus
of economists towards proving
existence and uniqueness of
equilibrium solutions in the spirit of
mathematics. A parallel development
was the rise of mathematical game
theory, pioneered by John von
Neumann. To mathematically
inclined economists, the language of
game theory seemed ideal for studying
how selfish individuals constantly
devise strategies to get the better of
other individuals in their continuing
endeavor to maximize individual
utilities. The fact that this ideal world
of paranoid, calculating hyper-
rational agents could never be
reproduced in actual experiments
carried out with human subjects
where “irrational” cooperative action
was seen to be the norm, could not
counter the enthusiasm with which
economists embraced the idea that
society converges to an equilibrium
where it is impossible to make
someone better off without making
someone else worse off. Further
developments of rational models for
interactions between economic
agents became so mathematically
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abstract, that an economist recently
commented that it seems (from an
economic theorist’s point of view)
even the most trivial economic
transaction is like a complicated chess
game between Kenneth Arrow and
Paul Samuelson (the two most famous
American economists of the post-war
period). The absurdity of such a
situation is clear when we realize that
people rarely solve complicated
maximization equations in their head
in order to buy groceries from the
corner store. The concept of bounded
rationality has recently been developed
to take into account practical
constraints (such as the
computational effort required) that
may prevent the system from
reaching the optimal equilibrium even
when it exists.

It is in the background of such
increasing divergence between
economic theory and reality that the
present resumption of the interrupted
dialogue between physics and
economics took place in the late 1980s.
The condensed matter physicist Philip
Anderson jointly organized with
Kenneth Arrow a meeting between
physicists and economists at the Santa
Fe Institute that resulted in several
early attempts by physicists to apply
the recently developed tools in non-
equilibrium statistical mechanics and
nonlinear dynamics to the economic
arena (some examples can be seen in
the proceedings of this meeting, The
Economy as an Evolving Complex System,
1988). It also stimulated the entry of
other physicists into this inter-
disciplinary research area, which,
along  with  slightly later
developments in the statistical
physics group of H. Eugene Stanley at
Boston University finally gave rise to
econophysics as a distinct field, the term
being coined by Stanley in 1995 at
Kolkata. Currently there are groups
in physics departments around the
world who are working on problems
related to economics, ranging from
Japan to Brazil, and from Ireland to
Israel. While the problems they work
on are diverse, ranging from questions
about the nature of the distribution

of price fluctuations in the stock
market to models for explaining the
observed economic inequality in
society to issues connected with
dynamical fluctuations of prices as a
consequence of delays in the
propagation of information, a
common theme has been the
observation and explanation for
scaling relations (or power laws).
Historically, scaling relations have
fascinated physicists because of their
connection to critical phenomena; but
more generally, they indicate the
presence of universal behavior.
Indeed, the quest for invariant
patterns that occur in many different
contexts may be said to be the novel
perspective that this recent incursion
of physicists have brought to the field
of economics, and that may well prove
to be the most enduring legacy of
econophysics (Fig. 2).

Given that the term econophysics was
coined in India, it is perhaps not
surprising that several Indian groups
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and the meeting on The Economy as a
Complex System (2005) at IMSc have
increased the visibility of this area to
physicists as well as economists in
India.

Why are so few rich and so
many poor?

We shall now focus on a few of the
problems that have fascinated
physicists entering economics. The
first one we shall deal with has to do
with the question: why is neither
wealth nor income uniformly
distributed throughout society? If we
perform a gedankensperiment where the
total wealth of a society was brought
together by the government and re-
distributed to every citizen evenly,
would the dynamics of exchange
subsequently result in the same
inequality (as before) being restored
rapidly? While such unequal
distributions may to an extent be
ascribed to the distribution of abilities

Figure 2: Are there universalities in economic phenomena? Whether it is
the interaction between buyers and sellers at a fish market in Kolkata (left)
or the frenzied trading among brokers in the Bombay Stock Exchange (right),
econophysics detects invariant patterns in strikingly different varieties of
Keconomic activity. (Photos: Sayan Mitra (Left), Husain Stephane(Right). )
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have been very active in this area.
Physicists at the Universities of Delhi
and Pune, Physical Research
Laboratory (PRL) at Ahmedabad,
Saha Institute of Nuclear Physics
(SINP) at Kolkata and the Institute of
Mathematical Sciences (IMSc) at
Chennai, to name a few, have made
pioneering contributions in the area,
e.g., modeling inequality distribution
in society and the analysis of financial
markets as complex networks of
stocks and agents. The annual series
of Econophys-Kolkata conferences
organized by SINP (2005 onward)

among individuals which is
biologically determined, this cannot
be a satisfying explanation as the
biological distribution is Gaussian
and therefore, has less variability
than either income or wealth, which
typically have extremely long tails
that follow a power law decay. Indeed,
econophysicists would like to find out
whether inequality can arise even
when individuals are indistingui-
shable in terms of their abilities.

Before turning to the physics-based
models that have been developed to
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address this question, let us consider
the empirical facts on the distribution
of inequality. Investigations over
more than a century and the recent
availability of electronic databases of
income and wealth distribution
(ranging from national sample survey
of household assets to the income tax
return data available from
government agencies) have revealed
some remarkable and universal
features. Irrespective of many
differences in culture, history, social
structure, indicators of relative
prosperity (such as gross domestic
product or infant mortality) and, to
some extent, the economic policies
followed in different countries, income
distribution seems to follow an
invariant pattern, as does wealth
distribution: After an initial increase,
the number density of people at a
particular income bracket rapidly
decays with their income. The bulk of
the income distribution is well-
described by a Gibbs or log-normal
distribution, but at the very high
income range (corresponding to the
top 5-10% of the population) it is fit
better by a power law with an
exponent, between 1 and 3 (Fig. 3).
This seems to be an universal feature:
from ancient Egyptian society
through 19" century Europe to
modern Japan. The same is true across
the globe today: from the advanced
capitalist economy of USA to the
developing economy of India.

The power-law tail, indicating a much
higher frequency of occurrence of very
rich individuals (or households) than
would be expected by extrapolating
the properties of the bulk of the
distribution, had been first observed
by the Italian economist-sociologist
Vilfredo Pareto in the 1890s (Fig. 4).
Pareto had analyzed the cumulative
income distribution of several
societies at very different stages of
economic development, and had
conjectured that in all societies the
distribution will follow a power law
decay with an exponent (later termed
the Pareto exponent) of 1.5. Later, the
distribution of wealth was also seen
to exhibit a similar form.

Subsequently, there have been several
attempts starting around the 1950s,
mostly by economists, to explain the
genesis of the power-law tail.
However, most of these models
involved a large number of factors
that made understanding the
essential reason behind the
occurrence of inequality difficult.
Following this period of activity, a
relative lull followed in the 1970s and
1980s when the field lay dormant,
although accurate and extensive data
were accumulated that would
eventually make possible precise
empirical determination of the
distribution  properties.  This
availability of large quantity of
electronic data and  their
computational analysis has led to a
recent resurgence of interest in the
problem, specifically over the last one
and half decades.

Although Pareto and Gini had
respectively, identified the power-law
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tail and the log-normal bulk of income
distribution, demonstration of both
features in the same distribution was
possibly done for the first time by
Montroll and Shlesinger, in an analysis
of fine-scale income data obtained
from the US Internal Revenue Service
(IRS) for the year 1935-36. They
observed that while the top 2-3% of
the population (in terms of income)
followed a power law with Pareto
exponent v~ 1.63, the rest followed a
log-normal distribution. Later work
on Japanese personal income data
based on detailed records obtained
from the Japanese National Tax
Administration indicated that the tail
of the distribution followed a power
law with a v value that fluctuated
from year to year around the mean
value of 2.

Further work showed that the power
law region described the top 10% or
less of the population (in terms of
income), while the remaining income
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Figure 3: Measures of inequality: Gini coefficient and Pareto exponent. (a) The Gini
coefficient, G, is proportional to the hatched area between the Lorenz curve (I),
which indicates the percentage of people in society earning a specific percent of
the total income, and the curve corresponding to a perfect egalitarian society
where everyone has the same income (E). G is defined to be the area between
the two curves divided by the total area below the perfect equality curve E, so
that when G=0 everybody has the same income while when only one person
receives the entire income, G=1. (b) The cumulative income distribution (the
population fraction having an income greater than a value x plotted against x)
shown on a double logarithmic scale. For about 90-95% of the population, the
distribution matches a Gibbs or Log-normal form (indicated by the shaded
region), while the income for the top 5-10% of the population decays much more
slowly, following a power law as originally suggested by Pareto. The exponent of
the Pareto tail is given by the slope of the line in the double-log scale, and was
conjectured to be 1.5 for all societies by Pareto. If the entire distribution followed
a power law with exponent 1.5, then the corresponding Lorenz curve will have a
Gini coefficient of 0.5, which is empirically observed for most developed European
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distribution was well described by
the log-normal form. While the value
of v fluctuated significantly from year
to year, it was observed that the
parameter describing the log-normal
bulk, the Gibrat index, remained
relatively unchanged. The change of
income from year to year, i.e. the
growth rate as measured by the log
ratio of the income tax paid in
successive years, was observed to be
also a heavy-tailed distribution,
although skewed, and centered about
Zero.

Later work on the US income
distribution based on data from IRS
for the period 1997-98, while still

indicating a power-law tail (with v~
1.7), has suggested that the lower 95%
of the population has income whose
distribution may be better described
by an exponential form. Similar
observation has been made for the
income distribution in UK for the
period 1994-99. It is interesting to
note that when one shifts attention
from the income of individuals to the
income of companies, one still
observes the power-law tail. A study
of the income distribution of Japanese
firms concluded that it follows a
power law with v~1 (often referred to
as Zipf’s law). Similar observation has
been reported for the income
distribution of US companies.

Course of Political Economy

he gave a rigorous
mathematical foundation to
economic theory. This was
part of a wider program to
make the laws of society as
close as possible to the laws
of physics, in terms of general

Figure 4: Vilfredo Pareto and the power-law description of income
distribution. Pareto had graduated in mathematics and physics from the
Polytechnic Institute in Turin and became Professor of Political Economy
at the University of Lausanne in 1893. His main work in economics is the

(1896-7, trans. 1906) in which e rme

applicability and predictive |

~\

power. Most importantly, the
Course incorporates the

its original (Paretian) form.

Source.

results of Pareto’s detailed research into the distribution of income. He
had found that the relationship between an income level x and the number
of taxpayers (N) with income greater than or equal to x can be reasonably
well-represented by the equation N(x) = A/x* , where A, v > 1 (usually
referred to as the Pareto curve or distribution). On examining income
data for a range of countries and cities (England, Prussia, Saxony, Peru,
Italy, and some European cities, e.g., Paris, Florence and Perugia) using
the double log transformation of the Pareto curve, i.e., log N (x) =log A +
v log x,Pareto reported that the exponent v tends to a constant value of
about 1.5. This constancy is also sometimes referred to as Pareto Law.
Pareto believed this to be an universal feature of economics and stated
that if a society is left to its own devices, the distribution curve will take

Vilfredo Pareto (1848-1923)

come Logarshm of Income
1011896 [1963). p. 2
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Figure 5: Cumulative probability
distributions of income showing the
Pareto tail. (A) Annual personal
income in USA from 2001 IRS data
with Pareto exponent
v ~1.5, (B) Annual personal income in
India during 1929-30 calculated from
income tax and super tax data  with
v~ 1.15 (the inset shows the
employment income for the top 422
salaried Indians from the 2006
Business Standard Survey with
v ~1.75), (C) Annual personal income
in Japan for 2000 with v ~ 1.96 (D)
Firm size in terms of total assets in
France for 2001 with v ~0.84 .[Source:
A. Chatterjee, S. Sinha and B.K.
Chakrabarty, Current Science 92(May

J

2007) 1383-1389]
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Compared to the empirical work done
on income distribution, relatively few
studies have looked at the distribution
of wealth, which consists of the net
value of assets (financial holdings and/
or tangible items) owned at a given
point in time. Lack of an easily
available data source for measuring
wealth, analogous to income tax
returns for measuring income, means
that one has to resort to indirect
methods. Levy & Solomon used a
published list of wealthiest people to
infer the Pareto exponent for wealth
distribution in USA. An alternative
technique was used based on adjusted
data reported for the purpose of
inheritance tax to obtain the Pareto
exponent for the UK. Another study
used tangible asset (namely house
area) as a measure of wealth to obtain
the wealth distribution exponent in
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ancient Egyptian society during the
reign of Akhenaten (14th century BC).

More recently, wealth distribution in
India at present has also been
observed to follow a power-law tail
with the exponent varying around 0.9.
The general feature observed in the
limited empirical study of wealth
distribution is that wealthiest 5-10%
of the population follows a power law
while an exponential or log-normal
distribution describes the rest of the
population. The Pareto exponent as
measured from the wealth
distribution is found to be always
lower than the exponent for income
distribution, which is consistent with
the general observation that, in
market economies, wealth is much
more unequally distributed than
income.

The striking regularities (Fig. 5)
observed in income distribution for
different countries, have led to several
new attempts at explaining them on
theoretical grounds. Much of the
current impetus is from physicists’
modeling of economic behavior in
analogy with large systems of
interacting particles, as treated, e.g.,
in the kinetic theory of gases (Fig. 6).
According to physicists working on
this problem, the regular patterns
observed in the income (and wealth)
distribution may be indicative of a
natural law for the statistical
properties of a many-body dynamical
system representing the entire set of
economic interactions in a society,
analogous to those previously
derived for gases and liquids.

By viewing the economy as a
thermodynamic system, one can
identify income distribution with the
distribution of energy among
particles in a gas. In particular, a class
of kinetic exchange models have
provided a simple mechanism for
understanding  the  unequal
accumulation of assets. Many of these
models, while simple from the
perspective of economics, have the
benefit of coming to grips with the key
factor in socio-economic interactions
that results in different societies
converging to similar forms of unequal
distribution of resources.

by
e

Meghna& Saha

B. N. Srivastava

Simple ideal gas-like models
of asset distribution

To introduce the simplest class of
physics models that reproduce the
distribution of assets as seen in reality
let us think of economic activity to be
composed of a large number of pair-
wise exchanges between agents.
Unlike in the real economy, we do not
consider actual commodities, but
rather their value in terms of a
uniform asset (e.g., money). In an asset
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exchange game, there are N players,
each of whom has an initial capital of
1 unit. N is considered to be very large,
and the total asset M = N remains fixed
over the duration of the game as is the
number of players.

In the simplest version,called the
Random Exchange (RE) model, the
only allowed move at any time is that
two of these players are randomly
chosen who then divide their pooled
resources randomly amongst
themselves (Fig. 7, RE). As no debt is
allowed, none of the players can end
up with a negative amount of assets.
As one can easily guess, the initial
delta function distribution of money
(with every player having the same
amount) gets destabilized with such
moves and the state of perfect equality,
where every player has the same
amount, disappears quickly. The
eventual steady-state distribution of

7

Suppose in a country the assessing department is required to find

.

out the average income per head of the population. They will proceed
somewhat in the following way. They will find out the number of persons
whose income lies within different small ranges. For example, they will
find out the number of persons whose income lies between 10s. and 1ls.,
between 11s. and 12s. and so on. Instead of a shilling, they may choose a
smaller interval, say 6d. Then it can be easily seen that the number of per-
sons whose income lies between 10s. and 10s.6d.will be approximately half
the number found previously for the range 10s. to 1ls. We can generalize
by saying that the number whose income lies between x and x--dx is ngdx.
It should be noted that the number is proportional to the interval chosen
(dx). To get the average income they should choose the interval to be as
small as possible, say a penny. When this is not possible they will choose a
bigger interval but their results will be proportionately inaccurate.

To represent graphically! the income of the population they will plot
A curve with #, as ordinate and x as abscissa. The curve will be similar to
that given in Fig. 6. This will begin with a
minimum at 0, rise to a maximum at some
point, and thereafter approach the axis of x,
meeting it at a great distance. The curve will
have this shape because the number of absolute
beggars is very small, and the number of million-
aires is also small, while the majority of popula-
tion have average income.

Nuniber of
Persons =3*

Income —

Fig. 6.—Distribution of
income among persons.

Figure 6: Saha, Srivastava and the income distribution analogy in kinetic
theory of gases. In their textbook A Treatise on Heat (1931) Meghnad Saha and
B. N. Srivastava used the example of reconstructing a distribution curve for
incomes to illustrate the problem of determining the distribution of molecular
velocities in kinetic theory. The relevant extract from page 105 of their book
(given above) prefigures developments in the first decade of this century
showing this indeed the bulk of the income distribution follows a Gibbs-like
distribution.

J
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Exchange

3, (v ag(t+At)

a,(t+At) = ay(t) + Aa(t)
a (t+At) = a (t) — Aa(t)
ME: Aa(t) = £ min[a,(t),a,(t)]
RE: Aa(t) = & [a(t)+ag(v)]

this distribution will eventually
become Pareto-like for m —> oo with
v =1 (Fig. 9; left). Analytical
understanding is now available and
a somewhat rigorous analytical
treatment of this problem has been

e €[0,1] given recently.

Figure 7: Schematic diagram of the two-body scattering process underlying
the kinetic asset exchange models. The asset owned by agent a_ at time t
changes due to an exchange (e.g., through trade) with a randomly chosen
agent a_. The scattering process conserves the total amount of assets for the
. 9 . ..
pair but can be of different types, e.g., random exchange (RE) or minimal

exchange (ME).

It may be mentioned that there are a
large  number of random
multiplicative asset exchange models
to explain the Pareto (power-law) tail
of wealth or income distribution. The
advantage of the kind of model
discussed above is that it can

assets among the players after many
such moves is well known from the
molecular physics of ideal gases
develped more than a cetury ago - itis
the Gibbs distribution: P(m)~exp[-m/T],
where the parameter T = M/N
corresponds to the average asset
owned by an agent (see Fig. 8).

We now consider a modified move in
this game: each player ‘saves’ a
fraction A of his/her total assets
during every step of the game, from
being pooled, and randomly divides
the rest with the other (randomly
chosen) player. If everybody saves the
same fraction A, what is the steady-
state distribution of assets after a
large number of such moves? It is
Gamma-function like, whose
parameters depend on A:

P(m) ~nf* expl-m/ T(A)); ae=3(1-1)

Although qualitative explanation and
limiting results for 1 0 or A —1are
easy to obtain, no exact treatment of
this problem is available so far.

What happens to the steady-state
asset distribution among these players
if A is not the same for all players, but
is different for different players? Let
the distribution p(A) of saving
propensity A among the agents be such
that p (A) is non-vanishing when
A —1. The actual asset distribution in
such a model will depend on the saving
propensity distribution p (A), but the
asymptotic form of distribution will
become Pareto-like:

P(m) ~ m™ ™) 0 1 for m— oo

(Figure 8: Gibbs and Maxwell-Boltzmann distributions. In a classical idealN

gas in thermodynamic equilibrium, the state variables like pressure ( P),
volume ( V) and the absolute temperature ( T) maintain a very simple
A relationship PV = NKT. Here N is
the number of basic constituents

(atoms or molecules; N ~ Avogadro

fE) number ~ 10%®) and k is the
Boltzmann constant. Statistical

mechanics of ideal gas, also called

the kinetic theory of gas, intends to

explain the above gas law in terms

of the constituents” mechanics or

kinetics. According to this picture,

D(E) for a classical ideal gas, each
constituent is a Newtonian particle

and they undergo random elastic

0 E’ collisions (which conserve kinetic
energy E) among themselves and

the walls of the container. These collisions eventually set up a non-uniform
(kinetic) energy distribution D( E) among the constituents, called the
Maxwell-Boltzmann distribution: D( E) = f ( E) g( E), where g( E) is the
density of states and comes from mechanics (of free or noninteracting
particles of the ideal gas), and f ( E) (~exp(- E/ kT)) is called the Gibbs
distribution and comes from statistical mechanics (result of averages over
random scattering events). Identifying the pressure P as the average (over
the distribution D( E)) rate of change of momentum of the gas particles on
unit area of the container (where the energy E is proportional to the square
of the momentum), and the temperature T as the average (over the
distribution D( E)) energy, one immediately gets the above mentioned gas
law (relating P, V and T). )

This is valid for all such distributions
(unless p(M)ec(1-1)° , when

P(m) ~ m~(2*0) .

accommodate all the essential
features of P(m) for the entire range of

m, not only the Pareto tail.
However, for

One can of course argue that the

variation of P (Msuch that P (A) — 0 for
A <A, ,one will get an initial Gamma
function form for P(m) for small and
intermediate values of m, with
parameters determined by A,#0), and

random division of pooled assets
among players is not a realistic
approximation of actual trading
carried out in society. E.g.in
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Figure 9: Kinetic asset exchange models
can reproduce the observed power law
tails in inequality distribution with almost
quantitatively accurate exponents. By
randomly distributing a “savings”
parameter among the population of
agents playing a Random Exchange
version of the model, a power law with
Pareto exponent — 1 is obtained (Left)
[Note that, the figure shows the
probability distribution function (pdf),
while the Pareto exponent is defined
for the corresponding complementary
cumulative distribution function,
whose exponent value is obtained by
adding 1 to the pdf exponent.](Right)
The Pareto exponent of 1.5 (as
originally conjectured by Pareto) can
be obtained from an asymmetric asset
exchange model where players are
randomly  assigned strategies
interpolated between the two
extremes of Random Exchange and

Minimal Exchange.
\_ & W,

exchanges between an individual and
a large company; it is unlikely that the
individual will end up with a
significant fraction of the latter’s
assets. Strict enforcement of this
condition leads to a new type of game,
the Minimum Exchange (ME) model,
where the maximum amount that can
change hands over amove, is a fraction
of the poorer player’s assets. Although
the change in the rules from the RE
game does not seem significant, the
outcome is astonishingly different: in
the steady state, one player ends up
with all the assets. In the language of
physics, the system has converged to
a condensate corresponding to an
asset distribution having two delta-
function-like peaks, one at zero and
the other at M. If we now relax the
condition that the richer player does
not completely dictate the terms of
exchange, so that the amount
exchanged need not be limited by the
total asset owned by the poorer player,
we arrive at a game which is
asymmetric in the sense of generally
favoring the player who is richer than
the other, but not so much that the
richer player dominates totally. Just
like the previously defined savings

ability of a player to exploit its
advantage over a poorer player. For
the two extreme cases of minimum
(t=0) and maximum (7t =1) thrift, one
gets back the random exchange (RE)
and minimum exchange (ME) models
respectively. However, close to the
maximum limit, at the transition
between the two very different
steady-state distributions given by
the two models,(i.e.,the Gibbs
distribution and a condensate,
respectively) we see a power-law
distribution! As in the case of A, we
can now consider the case when
instead of having the same 7 , different
players are endowed with different
thrift abilities. For such heterogeneous
thrift assignment in the population,
where 1 for each player is chosen from
a random distribution, the steady-
state distribution reproduces the
entire range of observed distributions
of income (as well as wealth) in the
society: the tail follows a power law,
while the bulk is described by an
exponential distribution. The tail
exponent depends on the distribution
of t, with the value of v =1.5 suggested
originally by Pareto, obtained for the
simplest case of uniform distribution
of T between [0, 1] (Fig. 9, right).
However, even extremely different
distributions of t (e.g. U-shaped)
always produce a power-law tailed
distribution that is exponentially
decaying in the bulk, underlining the
robustness of the model in explaining
inequality.

All the gas-like models of trading
markets discussed above are based on
the assumptions of (a) asset
conservation (globally in the market;
as well as locally in any trading) and
(b) stochasticity. Questions on the
validity of these points are natural
and have been raised. We now
forward some arguments in their
favor.

If we view trading as a scattering
process, one can see the relevance of
conservation principles. Of course, in
any such ‘asset exchange’ process, one
receives some goods or service from
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the models. However, if we
concentrate only on the ‘cash’
exchanged, every trade is an asset
conserving one (like the elastic
scattering process in physics!) In more
recent models, conservation of asset
has been extended to that of total
wealth (including money and
commodities) and the introduction of
the notion of price which fluctuates
in time has effectively allowed slight
relaxation of this conservation, but
the overall distribution has still
remain the same. It is also important
to note that the frequency of asset
exchange in such models defines a
timescale in which total asset in the
market does not change. In real
economies, total asset changes
relatively slowly, so that in the
timescale of exchanges, it is quite
reasonable to assume the total asset
to be conserved in these exchange
models.

Is the trading random? Surely not,
when looked upon from an
individual’s point of view. When one
maximizes his/her utility by money
exchange for the pth commodity, he/
she may choose to go to the gth agent
and for the rth commodity he/she may
go to the sth agent. But since

pP#q#r#s in general, when viewed

from a global level, these trading/
scattering events will all look random
(although for individuals this is a
defined  choice  or  utility
maximization). It may be noted in this
context that in the stochastically
formulated ideal gas models in
physics (developed in late 19* and
early 20" centuries), physicists
already knew for more than a century
that each of the constituent particles
(molecules) follows a precise equation
of motion, namely that due to Newton.
The assumption of stochasticity in
asset-exchange models, even though
each agent might follow a utility
maximizing strategy (like Newton'’s
equation of motion for molecules), is
therefore not unusual in the context.
Further, analysis of high-quality
income data from the UK and USA
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shows Gamma distributions for the
low- and middle-income ranges,
which is strong evidence in favor of
models discussed here.

Are Market Movements
Universal?

Given that the wealth and income of
the highest bracket in the population
(which exhibits the Paretian power-
law tail) can be attributed mostly to
their investment in financial
instruments, it is probably expected
that scientists would look for power
laws in such market movements.
Financial markets can be considered
as complex systems (Fig. 10) that have
many interacting elements and
exhibit large fluctuations in their
associated observable properties,
such as stock price or market index.
The state of the market is governed
by interactions among its
components, which can be either
traders or stocks. In addition, market
activity is also influenced
significantly by the arrival of external
information. The importance of
interactions among stocks, relative to
external information, in governing
market behavior has emerged only in
recent times. The earliest theories of
market activity, e.g., Bachelier’s (Fig.
11) random walk model, assumed that
price changes are the result of several
independent external shocks, and
therefore, predicted the resulting
distribution to be Gaussian. As an
additive random walk may lead to
negative stock prices, a better model
would be a multiplicative random
walk, where the price changes are
measured by logarithmic returns.
While the log-return distribution
calculated from empirical data is
indeed seen to be Gaussian at long
time scales, at shorter times the data
show much larger fluctuations than
what we would expect from this
distribution. Such deviations were
also observed in commodity price
returns, e.g., in Mandelbrot’s (Fig. 11)
analysis of cotton price variation,
which was found to follow a Levy-
stable distribution. However, it

contradicted the observation that the
distribution converged to a Gaussian
at longer time scales. Later, it was
discovered that while the bulk of the
return distribution for a market index
(the S&P 500) appears to be fit well by
a Levy distribution, the asymptotic
behavior shows a much faster decay
than expected. Hence, a truncated
Levy distribution, which has
exponentially decaying tails, was
proposed as a model for the
distribution of returns. Subsequently,
it was shown that the tails of the
cumulative return distribution for
this index actually follow a power law,
with an exponent of -3. This is the so-
called inverse cubic law, where the
exponent lies well outside the stable-
Levy regime (of exponent value
between 0 and 2).

This is consistent with the fact that at
longer time scales the distribution
converges to a Gaussian. Similar
behavior has been reported for the
DAX, Nikkei and Hang Seng indices.
These observations are somewhat
surprising, although not at odds with
the “efficient market hypothesis” in
economics, which assumes that the
movements of financial prices are an
immediate and unbiased reflection of
incoming news and future earning
prospects. To explain these
observations various multi-agent
models of financial markets have been
proposed, where the scaling laws seen
in empirical data arise from
interactions between agents. Other
microscopic models, where the agents
(i.e., the traders comprising the
market) are represented by mutually
interacting spins and the arrival of
information by external fields, have
also been used to simulate the
financial market. Among non-
microscopic approaches, multi-
fractal processes have been used
extensively for modeling such scale-
invariant properties. The multi-
fractal random walk model has
generalized the usual random walk
model of financial price changes and
accounts for many of the observed
empirical properties.
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Recently, there had been a debate in
the literature concerning the range of
applicability of the inverse cubic law
for price fluctuation distribution. As
most previous reported observations
were from developed markets, a
question of obvious interest was
whether the same distribution holds
for developing or emerging financial
markets. If the inverse cubic law is a
true indicator of self-organization in
markets, then observing the price
fluctuation distribution as the market
evolves gradually over the years will
inform us about the process by which
this complex system converges to the
non-equilibrium steady state
characterizing developed markets.
Recent analysis of high-frequency
trading data from the National Stock
Exchange (NSE) of India shows that
this emerging market exhibits the
same inverse cubic law as all other
developed markets (Fig. 12), despite
commencing operations only in 1994.
In fact, as the data stretches to the
present (when it is the third largest
financial market in the world in
terms of transactions) from its
inception, it is possible to study the
nature of the return distribution as a
function of time. Thus, if markets do
show discernible transition in return
distribution during their evolution,
the Indian market data is best placed
to spot evidence for it, not least
because of the rapid transformation
of the Indian economy in the
liberalized environment since the
1990s. However, the results show that
the power law nature of the return
distribution can be seen even in the
earliest days of the market, from
which time it has remained essentially
unchanged. The convergence of the
return distribution to a power law
functional form is thus extremely
rapid, so that a market is effectively
always at the non-equilibrium steady
state characterized by the inverse
cubic law regardless of its stage of
development.

So, if emerging markets do not differ
from developed ones in terms of the
properties of price fluctuations, are
there still other observables which
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will allow us to distinguish between
them? It now appears that the cross-
correlation behavior between stock
price fluctuations in a market may
have very different nature depending
on the state of evolution of the market.
The observation of correlated
movement in stock prices gives us a
proxy variable for studying
interactions between stocks mediated
through the action of agents who are
buying/selling different stocks. As the
dynamics of individual investors is
being only indirectly inferred based
on the dynamics of price for the
different stocks, this is somewhat akin
to a “Brownian motion” picture of the
market (Fig. 13), analogous to the
process of inferring the dynamics of
air molecules by observing the
movement of pollen grains with
which the molecules are colliding. The
existence of collective modes in the
movement of stock prices had been
earlier inferred from the study of
market dynamics, although such
studies had almost exclusively
focused on developed markets, in
particular, the New York Stock
Exchange (NYSE). A recent detailed
analysis of the cross-correlation
between stocks in the Indian market,
has demonstrated that an emerging
market differs from more developed
markets in that, the former lacks
clusters of co-moving stocks having
distinct sector identities.

To wuncover the structure of
interactions among the elements in a
financial market, physicists primarily
focus on the spectral properties of the
correlation matrix of stock price
movements. Pioneering studies have
investigated whether the properties
of the empirical correlation matrix
differ from those of a random matrix
that would have been obtained had
the price movements been
uncorrelated. Such deviations from
the predictions of random matrix
theory (RMT) can provide clues about
the underlying interactions between
various stocks. It was observed that,
while the bulk of the eigenvalue
distribution for the correlation matrix
of NYSE and Tokyo Stock Exchange

follow the spectrum predicted by
RMT, the few largest eigenvalues
deviate significantly from this. The
largest eigenvalue has been identified
as representing the influence of the
entire market, common for all stocks,
whereas, the remaining large
eigenvalues are associated with the
different business sectors, as
indicated by the composition of their
corresponding eigenvectors. The
interaction structure of stocks in a
market can be reconstructed by using
filtering techniques implementing
matrix decomposition or maximum
likelihood clustering. Correlation
matrix analysis has applications in
the area of financial risk management,
as mutually correlated price
movements may indicate the
presence of strong interactions
between stocks. Such analyses have
been performed using asset trees and
asset graphs to obtain the taxonomy
of an optimal portfolio of stocks.

While it is generally believed that
stock prices in emerging markets tend
to be relatively more correlated than
the developed ones, there have been
very few studies of the former in
terms of analyzing the spectral
properties of correlation matrices.
Most studies of correlated price
movements in emerging markets
have looked at the synchronicity which
measures the incidence of similar (i.e.,
up or down) price movements across
stocks. Although related to
correlation the two measures are not
same, as correlation also gives the
relative magnitude of similarity. By
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analyzing the cross-correlations
among stocks in the Indian financial
market, over the period 1996-2006, it
has been found that, in terms of the
properties of its collective modes, the
Indian market shows significant
deviations from developed markets.
As the fluctuation distribution of
stocks in the Indian market follows
the same “inverse cubic law” seen in
developed markets like NYSE, the
deviations observed in the correlation
properties should be almost entirely
due to differences in the nature of
interaction structure in the two
markets. The higher degree of
correlation in the Indian market
compared to developed markets is
found to be the result of a dominant
market mode affecting all the stocks,

\

- gents

Figure 10: Schematic view of the
financial market as a complex
system. Agents (indicated by

circles) buy and sell stock
(indicated by diamonds), based on
their perception of the market
conditions through interaction with
other agents and from external
information (news breaks such as
announcement of the central
government budget, tax rebates,
banking collapse etc) and from
market indicators such as the

\Sensex. Yy,

\with a power law tail.

(Figure 11: Do markets follow Bachelier
or Mandelbrot ? Louis Bachelier
(1870-1946) in his 1900 thesis The
Theory of Speculation suggested that
stock prices follow a random walk. He
derived a rigorous mathematical
theory about five years before

Einstein’s work on the theory of Brownian motion. Bachelier’s theory
implies that changes in market prices follow a Gaussian distribution.
However, Benoit Mandelbrot (1924- ) working at IBM in 1961 made a
detailed analysis of the movements of cotton prices and realized that
market movements do not necessarily follow the Gaussian model. The
much higher frequency of bubbles and crashes than what would have
been expected from a random walk theory fits, in fact, a distribution

J
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Figure 12: The “inverse-cubic law” for distribution of market fluctuations. A power
law tail is observed for the distributions of logarithmic returns calculated for
both the NSE India market index (left) as well as individual stock prices (right).
[Source: R. K. Pan and S. Sinha, Europhys. Lett. 77 (2007) 58004; Physica A 387

(

Figure 13: A Brownian motion view of
the market. A simplified view of Fig.
10 with the agents not being
considered explicitly but rather their
collective effects are assumed to
result in effective direct interactions

between stocks.

<l
€

Figure 14: Structure of the
interaction network of stocks in the
Indian financial market. The left
cluster comprises of mostly
technology stocks, while the middle
cluster is composed almost entirely
of healthcare and pharmaceutical
stocks. By contrast, the cluster on the
right is not dominated by any
particular sector. The node labels
indicate the business sector to which
a stock belongs. In contrast to
developed markets such as NYSE,
the Indian market does not show
significant cross-correlations
between stocks within most
business sectors, indicating that
except for the IT  and
pharamaceutical sectors, businesses
are more affected by general market-
wide (i.e., mnon-sector-specific)
information resulting in an overall
synchronization of their price
movements so that the market
responds as a single homogeneous
entity to various pieces of
information. [Source: R.K.Pan and
S.Sinha, Physical Review E 76 (2007)

046116.
\ J

which is further accentuated by the
relatively very few number of clusters
of mutually interacting stocks as
compared to, say, NYSE (Fig. 14). These
results imply that one of the key
features signifying the transition of a
market from emerging to developed
status is the appearance and
consolidation of distinct sector or
group identities.

Why Markets Fail: The Genie
of Nonlinearity

So far we had been discussing mostly
the statistical properties of
distributions  for meaningful
quantities in economics (such as
income or price fluctuations).
However, the dynamics of economic
systems also provides opportunities
to physicists in applying their tools
of trade to uncover unexpected
features. An oft mentioned example
showing the importance of nonlinear
dynamics in economics is the case of
the beer game devised by Jay Forrester
at MIT which shows how fluctuations
can arise in the system purely as a
result of delay in the information flow
between its components. In this game,
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various people take on the role of the
retail seller, the wholesaler, the
supplier and the factory, while an
external observer plays the role of the
customer, who places an order for a
certain number of cases of beer with
the retail seller at each turn of the
game.The retail seller in turn sends
orders to the wholesaler, who places
an order with the supplier, and so on
in this way, all the way upto the
factory. As each order can be filled
only once the information reaches the
factory and the supply is relayed back
to the retail seller, there is an inherent
delay in the system between the
customer placing an order and that
order being filled. The game
introduces penalty terms for
overstocking (i.e., having inventory
larger than demand) and back-orders
(i.e.,, when the inventory is too small
compared to the demand). Every
person along the chain tries to
minimize the penalty by trying to
correctly predict the demand
downstream. However, Forrester
found that even if the customer makes
a very small change in his/her pattern
of demand (e.g., after ordering 2 cases
of beer for the first 10 weeks, the
customer orders 4 cases of beer every
week from the 11th week on until the
end of the game), it sets off a series of
perturbations up the chain which
never settle down, the system
exhibiting periodic or chaotic
behavior. Although the change in
demand took place only once, the
inherent instability of the system,
once triggered by a small stimulus,
ensures that an equilibrium will never
be reached. Based on this study,
several scientists have suggested that
the puzzle of trade cycles (where an
economy goes through successive
booms and busts, without any
apparently significant external causes
for either) may possibly be explained
by appreciating that markets may
possess similar delay-induced
instabilities.

If the extrapolation from the beer game
to real economics seems forced,
consider this: every day the markets
in major cities around the world,
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WEALTH OF NATIONS,
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it.” (Book IV Chapter II)
\

domestic to that of foreign industry he intends only his own security; and
by directing that industry in such a manner as its produce may be of the
greatest value, he intends only his own gain, and he is in this, as in many
other cases, led by an invisible hand to promote an end which was no part
of his intention ... By pursuing his own interest he frequently promotes
that of the society more effectually than when he really intends to promote

\

Figure 15: Adam Smith (1723-
90) anticipated the principle of
self-organization in economic
systems when he stated in The
Wealth of Nations that “Every
individual...generally, indeed,
neither intends to promote the
public interest, nor knows how
much he is promoting it. By
preferring the support of

_/

including those of Kolkata and
Chennai, cater to the demands of
millions of their inhabitants. But how
do the merchants know how much of
goods to order so that they neither end
up with a lot of unsold stock nor do
they have to turn back shoppers for
lack of availability of goods ? How are
the demands of the buyers
communicated to the producers of
goods without there being any direct
dialogue between them? In this sense,
markets are daily performing
amazing feats of information
processing, allowing complex
coordination, that in a completely
planned system would have
required gigantic investment in
setting up communication between
enormous numbers of agents (both
manufacturers and consumers).
Adam Smith (Fig. 15) had, in fact, in
terming it the invisible hand of the
market, first pointed out one of the
standard features of a complex
system: the “emergence” of
properties at the systems-level that
are absent in any of its components.

Economists often cite the correcting
power of the market as the ideal
negative feedback for allowing an
equilibrium state to be stable. It is a
very convincing argument that

price acts as an efficient signaling
system, whereby producers and
consumers without actually
communicating with each other can
nevertheless satisfy each other’s
requirements. If the demand goes
up, the price increases thereby
driving supply to increase; however
if supply keeps increasing, the
demand falls driving the price down
thereby signaling a cut-back in
production. In principle, such
corrections should quickly stabilize
the equilibrium at which demand
exactly equals supply. Any change
in demand results in price
corrections and the system quickly
settles down to a new equilibrium
where the supply is changed to
meet the new level of demand (Fig.
16). This is a classical example of
self-organization, where a complex
system settles down to an
equilibrium state without direct
interaction between all of its
individual components.

Unfortunately, this is only true if the
system is correctly described by
linear time-evolution equations. As
the field of nonlinear dynamics has
taught us, if there is delay in the
system (as is true for most real-
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world situations) the assumptions
underlying the situation described
above break down, making the
equilibrium situation unstable, so
that oscillations appear (Fig. 17). The
classic analogy for the impact that
delay can have in a dynamical
system is that of taking a shower
on a cold day, where the boiler is
located sufficiently far away so that
it takes a long time (say, a minute)
to respond to changes in the turning
of the hot and cold taps. The delay
in the arrival of information
regarding the response makes it
very difficult to achieve the
optimum temperature. A similar
problem arises with timely
information arrival but delayed
response, as in the building of
power plants to meet changing
needs for electrical power. As plants
take a long time to build and have a
finite lifetime, it is rarely possible
to have exactly the number of plants
needed to meet a changing demand
for power. These two examples
illustrate that a system cannot
respond to changes that occur at a
time-scale shorter than that of the
delays in the flow of information in
it or its response. Thus, oscillations
or what is worse, unpredictable
chaotic behavior, is the norm in
most socio-economic complex
systems that we see around us.
Planning by forecasting possible
future events is one way in which
this is sought to be put within
bounds, but that cannot eliminate
the possibility of a rare large
deviation that completely disrupts
the system. As delays are often
inherent to the system, the only
solution to tackle such instabilities
may be to deliberately slow down
the dynamics of the system. In terms
of the overall economy, it suggests
suggest that slowing the rate of
economic growth can bring more
stability, but this is a cost that many
mainstream economists are not
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Gigure 16: Stable equilibrium
between supply and demand Frice
achieved by the price
mechanism in traditional
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At any given time, if the quantity available in the market (supply) is less than the
demand, the shortage causes the price to go up. This stimulates increased
production, resulting in larger supply. However, if the supply continues to increase,
eventually it will outstrip demand and there will be unsold stock in the market.
This will bring down the prices, ultimately resulting in decreasing production. The
negative feedback mechanism for price will thus move the system along the
supply and demand curves to their point of intersection, where supply exactly
equals demand (Q,) at the equilibrium price P,. (Right) Over time, as the demand
and supply of a product changes due to various factors, the corresponding curves
can shift. Thus, the equilibrium can shift to a different price value and quantity,

\but it is still stable with respect to perturbations. Y,
(Figure 17. Price oscillations as a result R

of delay in responding to market
movements. In real markets, there is
a delay between increasing and
reducing production as a result of
rising and falling prices, respectively.
While the information that the
demand for a good is falling may take
some time to propagate to the producer, a rise in demand may require some
time to be satisfied by inherent delays in the production system. Thus, if the
demand fluctuates at a time-scale shorter than the delay involved in adjusting
the production to respond to those changes, it will result in oscillations or even

\Chaotic movements in the price. )

desirable under all circumstances
(Fig. 18). This will be of immense
consequence in view of the current
search for sustainable development,
i.e., “development that meets the
needs of the present without
compromising the ability of future
generations to meet their own needs”
(Brundtland Report, 1987). While
there have been fringe voices such as
that of E. F. Schumachar (author of
Small Is Beautiful), calling for smaller
economies (and in India, by Gandhian
Marxists such as Pannalal Dasgupta),
the mainstream economist
community considers these views to
be heretical. The anarchist utopia of
society as a system of self-sufficient
villages, where affluence is given up

even willing to consider. While a
freer market or rapid technological
development can increase the rate of
response, there are still delays in the
system (as in gradual accumulation
of capital stock) that are difficult to
change. Thus, instead of solving the
problem, these changes can actually
end up making the system even
more unstable.

The Promise and Perils of
Economic Growth

Possibly the biggest impact that
econophysics can have on the way
traditional economics is done is by
making it possible to perform a a stven.
scientifically rigorous reappraisal of in favor of stability an-d social justice,
the consequences of economic growth, Nas never been considered to be a
and even whether growth is practical alternative. Indeed the
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“development at all costs” mindset
has permeated to society at large, as
reflected by the obsession of the mass
media with economic growth and
gross domestic product (GDP).
Newspapers and television are
always worried about whether the
rate of growth is slowing down (“an
economic downturn”) and headlines
announce by what percentage the
economy has grown in a quarter.
However, whether economic growth
is a panacea for all social ills, or
whether growth itself is the cause for

Figure 18: Is growth sustainable ?
(Top) The ecological footprint of
humanity measured in terms of the
area of biologically productive land
and water needed for providing the
resources and services to maintain

HUMANITY'S ECOLOGICAL FOOTPRINT, 1861-2005
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the human population at the present
standard of living, has overshot the
biocapacity of the planet (i.e., the
amount of biologically productive
area available). [Source: WWE, http:/
/www.panda.org].

(Bottom) The ecologically catastrophic
consequence of economic growth is
underlined by the increase in waste
generated by the OECD countries (a
group of 30 economically developed
nations) along with their GDP, even
though the population has not
increased significantly. In 1997, OECD
countries produced waste
corresponding to 500 kg per person in
a year and it is estimated that by 2020
this will increase to 640 kg per capita
[Source: E. Geyer-Allely, Towards
Sustainable Household Consumption,

OECD 2002].
O : Y,
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most problems is not as settled a
question as it may seem, in view of its
social and ecological consequences. As
the linear models of mainstream
economics are inadequate for tackling
such questions, the systems dynamics
approach developed by Jay Forrester
at MIT and his students in the 1960s
was one of the first scientifically
rigorous approaches towards this
complex problem.

Jay Forrester’s world model

The Club of Rome in the late 1960s had
wanted to know how major global
problems such as poverty and hunger,
unemployment, depletion of natural
resources, environmental degradation,
etc. are related and if there are ways to
solve them. Forrester’s computer
model suggested that the leverage point
(i.e., the factor in a complex system
where a small change eventually
results in a large overall change in the
entire system) was economic growth.
The problem was that growth has
negative consequences, although
traditionally economic development is
seen as an unalloyed boon. From a
modeling exercise it becomes clear that
many problems that are sought to be
solved by growth, such as poverty and
hunger, can in fact be exacerbated by
it. Sometimes the solution might be to
slow the growth of the economy, or
even to turn it back.

The model developed by Forrester’s
students, Meadows et al (in The Limits to
Growth) has taken this original work
forward by looking at several resource
stocks and their flows, and trying to
predict resource availability at future
times. One of the striking observations
of this model was that it is not so much
the depletion of resources that is the
key problem but the increasing cost of
capital (e.g., as a result of
environmental pollution, among
several reasons). Thus, according to
Meadows et al, the solution lies not in
unconditional economic growth, but in
the efficient use of resources. However,
the lessons coming out of this study has
clearly not permeated beyond a few.
From 1985 onwards, we are in fact
using more resources than our planet
can renewably produce (Fig. 18). In our
quest for higher GDP, we have ignored
other equally important factors, as
reflected in the Genuine Progress

Indicator (GPI) which is measured from
the GDP by subtracting costs of air and
water pollution, loss of farm and
wetlands, etc. (Fig. 19)

Thus, sustainable development, if it is
to be achieved, has to couple the quest
for growth with conservation of nature
and the achievement of acceptable
social conditions. Sustainability will be
achieved when we stop depleting not
only economic capital, but also the
social and environmental capital
bequeathed to us so that they can be
carried over to future generations.
Econophysics, by being able to view
the problem in the light of insights
gleaned from looking at other
sustainable systems, such as in the
biological world, is in an unique
position to develop simple models that
can suggest possible solutions. If in
place of the traditional throughput
economy (wasteful of resources) we
want a sustainable model that re-uses
products in a closed-loop cycle (Fig. 20),
would using the concepts learnt from
the study of ecological food webs help
us ? Can a network economy give a
more sustainable alternative to
development ? These questions are
hard to answer, but possibly the most
important that the econophysics
community will have to tackle in the
near future.

( )

1950 1960 1970 1980 1990 2000

=== USA GOP [Gross Domestic Product)
= USA GPI (Genuine Progress Indicator)

Figure 19: Economic Growth or Decay ?
The fall by a factor of half in the
Genuine Progress Indicator (GPI), an
alternative measure of economic
growth suggested by Cobb, Halstead
and Rowe in 1995 that takes into
account the cost of environmental
degradation accom-panying economic
activity, even as the Gross Domestic
Product of USA has increased three-
fold over the latter half of the 20t
century. (image source: http://

www.sustainabilitydictionary.com) )
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Figure 20: Two models for growth.
The traditional non-sustainable
economic growth model is
contrasted with a closed feedback
loop model of sustainable growth
that is closer to the way
biologically vital resources are
maintained in nature (e.g., the
carbon-oxygen cycle). The future
challenge to econophysics is to
come up with details of how such
a growth model can be

&constructed. )

Sustainable
Closed-Loop
Economy
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