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Contemporary mainstream economics has become 

concerned less with describing reality than with an 

idealised version of the world. However, reality refuses to 

bend to the desire for theoretical elegance that an 

economist demands from his model. Modelling itself on 

mathematics, mainstream economics is primarily 

deductive and based on axiomatic foundations. 

Econophysics seeks to be inductive, to be an empirically 

founded science based on observations, with the tools 

of mathematics and logic used to identify and establish 

relations among these observations. Econophysics does 

not strive to reinterpret empirical data to conform to a 

theorist’s expectations, but describes the mechanisms 

by which economic systems actually evolve over time.
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[Economics should be] concerned with the derivation of operationally 
meaningful theorems … [Such a theorem is] simply a hypothesis 
about empirical data which could conceivably be refuted, if only under 
ideal conditions. 

– Paul A Samuelson (1947)

I suspect that the attempt to construct economics as an axiomatically 
based hard science is doomed to fail. 

– Robert Solow (1985)

It had long been thought that the cyclical sequence of infl ations 
and recessions that have buffeted most national economies 
throughout the 19th and 20th centuries are an inevitable 

accompaniment to modern capitalism. However, starting in the 
1970s, economists allied with the infl uential Chicago school of 
economics started to promote the belief that the panacea to all 
economic ills of the world lay in completely and unconditionally 
subscribing to their particular brand of free-market policies. 
Their hubris reached its apogee at the beginning of the previous 
decade, as summed up by the statement of Nobel Laureate 
Robert Lucas (2003) at the annual meeting of the American 
Economic Association that “the central problem of depression 
prevention has been solved, for all practical purposes”. This 
complacency about the robustness of the free-market economic 
system to all possible disturbances led not only most professional 
economists, but also, more importantly, government bureaucrats 
and ministers to ignore or downplay the seriousness of the 
present economic crisis in its initial stages – recall, for instance, 
the now infamous claim of British prime minister Gordon 
Brown (2007) that economic booms and busts were a thing of 
the past (“And we will never return to the old boom and bust”) 
just a few months ahead of the global fi nancial meltdown. As 
many of the recent books published in the wake of the fi nancial 
systemic collapse point out, the mainstream economists and 
those whom they advised were blinded by their unquestioning 
acceptance of the assumptions of neoclassical economic theory 
(for example, Posner 2009). On hindsight, the following lines 
written by Canadian anthropologist Bruce Trigger (1998) a 
decade before the present crisis seem eerily prophetic.

In the 1960s I never imagined that the 1990s would be a time when 
highly productive western economies would be accompanied by grow-
ing unemployment, lengthening breadlines, atrophying educational 
systems, lessening public care for the sick, and the aged, and the hand-
icapped, and growing despondency and disorientation – all of which 
would be accepted in the name of a 19th century approach to economics 
that had been demonstrated to be dysfunctional already by the 1920s.

The late 2000s crisis (variously described as probably equal 
to or worse than the Great Depression of the 1930s in terms of 
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severity) has by now led to a widespread discontent with main-
stream economics. Several scientists, including physicists work-
ing on theories of economic phenomena (for example, Bouchaud 
2008) and non-traditional economists who have collaborated 
with physicists (for example, Lux and Westerhoff 2009), have 
written articles in widely circulated journals arguing that a 
“revolution” is needed in the way economic phenomena are 
investigated. They have pointed out that academic economics, 
which could neither anticipate the current worldwide crisis nor 
gauge its seriousness once it started, is in need of a complete 
overhaul as this is a systemic failure of the discipline. The roots of 
this failure have been traced to the dogmatic adherence to deriv-
ing elegant theorems from “reasonable” axioms, with complete 
disregard to empirical data. While it is perhaps not surprising 
for physicists working on social and economic phenomena to 
be critical of mainstream economics and suggest the emerging 
discipline of econophysics as a possible alternative theoretical 
framework, even traditional economists have acknowledged 
that not everything is well with their discipline (Sen 2009).

In response to the rising criticism of traditional economic 
theory, some mainstream economists have put up the defence 
that the sudden collapse of markets and banks is not something 
that can be predicted by economic theory as this contradicts 
their basic foundational principles of rational expectations and 
effi cient markets. Thus, according to the conventional economic 
school of thought, bubbles cannot exist because any rise in price 
must refl ect all information available about the underlying asset 
(Fama 1970). Although detailed analysis of data from markets 
clearly reveals that much of the observed price fl uctuation 
cannot be explained in terms of changes in economic funda-
mentals, especially during periods of “irrational exuberance” 
(Shiller 2005), the unquestioning belief in the perfection of 
markets has prompted several economists in past decades to 
assert that the famous historical bubbles, such as Tulipomania 
in 17th century Holland or the South Sea Affair in 18th century 
England, were not episodes of price rise driven by irrational 
speculation as is generally believed, but rather were based on 
sound economic reasons (see, for example, Garber 1990)! This 
complete divorce of theory from observations 
points to the basic malaise of mainstream 
economics. What makes it all the more wor-
rying is that despite the lack of any empirical 
verifi cation, such economic theories have 
been used to guide the policies of national 
and international agencies affecting the 
well-being of billions of human beings. 

In its desperate effort to become a rigor-
ous science by adopting, among other things, 
the formal mathematical framework of game 
theory, mainstream economics has become 
concerned less with describing reality than 
with an idealised version of the world. How-
ever, reality refuses to bend to the desire 
for theoretical elegance that an economist 
demands from his/her model. Unlike the 
utility maximising agents so beloved of 

economists, in our day-to-day life we rarely go through very 
complicated optimisation processes in an effort to calculate 
the best course of action. Even if we had access to complete in-
formation about all the options available (which is seldom the 
case), the complexity of the computational problem would over-
whelm our decision-making capabilities. Thus, most often we 
are satisfi ed with choices that seem “good enough” to us, 
rather than the best one under all possible circumstances. 
Moreover, our choices may also refl ect non-economic factors 
such as moral values that are usually not taken into considera-
tion in mainstream economics.

Econophysics: A New Approach 
to Understand Socio-economic Phenomena

Given that the hypotheses of effi cient markets and rational 
agents cherished by mainstream economists stand on very 
shaky ground, the question obviously arises as to whether 
there are any alternative foundations that can replace the neo-
classical framework. Behavioural economics, which tries to 
integrate the areas of psychology, sociology and economics, has 
recently been forwarded as one possible candidate (Sen 2009). 
Another challenger from outside the traditional boundaries of 
economics is a discipline that has been dubbed econophysics 
(Yakovenko and Rosser 2009; Sinha et al 2011). Although it is 
diffi cult to arrive at a universally accepted defi nition of the 
discipline, a provisional one given in Wikipedia is that it is “an 
interdisciplinary research fi eld, applying theories and methods 
originally developed by physicists in order to solve problems in 
economics, usually those including uncertainty or stochastic 
processes and non-linear dynamics” (see http://en.wikipedia.
org/wiki/Econophysics). This fl ourishing area of research that 
started in the early 1990s has already gone through an early 
phase of rapid growth and is now poised to become a major 
intellectual force in the world of academic economics. This is 
indicated by the gradual rise in appearance of the terms “physics” 
and “econophysics” in major journals in economics; as is also seen 
in the frequency with which the keyword “market” appeared in 
papers published in important physics journals (Figure 1). In fact, 
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Figure 1: Advent of the Discipline of Econophysics over the Last Decade and a Half

The number of papers appearing in Physical Review E (published by the American Physical Society) with the word 
“market” in the title published in each year since 1995 (when the term “econophysics” was coined) and those appearing in 
Econometrica (published by the Econometric Society) with the words “physics” and “econophysics” anywhere in the text 
published each year since 1999. Data obtained from respective journal websites. 
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even before the current economic crisis, the economics com-
munity had been grudgingly coming to recognise that econo-
physics can no longer be ignored as a passing fad, and the New 
Palgrave Dictionary of Economics published in 2008 has entries 
on “Econophysics” (which it defi nes as “…refers to physicists 
studying economics problems using conceptual approaches from 
physics” (Rosser 2008) as well as on “Economy as a Complex 
System”. Unlike contemporary mainstream economics, which 
models itself on mathematics and is primarily deductive and 
based on axiomatic foundations, econophysics seeks to be in-
ductive, that is, an empirically founded science based on ob-
servations, with the tools of mathematics and logic being used 
to identify and establish relations among these observations.

The Origins of Econophysics

Although physicists had earlier worked on economic problems 
occasionally, it is only since the 1990s that a systematic, concerted 
movement has begun which has seen more and more physicists 
using the tools of their trade to analyse phenomena occurring 
in a socio-economic context (Farmer et al 2005). This has been 
driven partly by the availability of large quantities of high-quality 
data and the means to analyse it using computationally inten-
sive algorithms. In the late 1980s, condensed matter physicist 
Philip Anderson jointly organised with Kenneth Arrow a meet-
ing between physicists and economists at the Santa Fe Institute 
that resulted in several early attempts by physicists to apply 
the then recently developed tools in non-equilibrium statisti-
cal mechanics and non-linear dynamics to the economic arena 
(some examples can be seen in the proceedings of this meeting, 
The Economy as an Evolving Complex System, 1988). It also 
stimulated the entry of other physicists into this interdiscipli-
nary research area, which, along with slightly later develop-
ments in the statistical physics group of H Eugene Stanley at 
Boston University, fi nally gave rise to econophysics as a dis-
tinct fi eld, the term being coined by Stanley in 1995 at Kolkata. 
Currently there are groups in physics departments around the 
world who are working on problems relating to economics, 
ranging from Japan to Brazil, and from Ireland to Israel. 

While the problems they work on are diverse, ranging from 
questions about the nature of the distribution of price fl uctua-
tions in the stock market to models for explaining the observed 
economic inequality in society to issues connected with how 
certain products become extremely popular while almost 
equivalent competing products do not acquire signifi cant market 
share, a common theme has been the observation and expla-
nation of scaling relations (that is, the power-law relationship 
between variables x, y having the form y ~ xa, that, when plot-
ted on a doubly-logarithmic graph paper, appears as a straight-
line with slope a, which is termed the exponent). Historically, 
scaling relations have fascinated physicists because of their 
connection to critical phenomena and phase transitions, for 
example, the phenomenon through which matter undergoes a 
change of state, say, from solid to liquid, or when a piece of 
magnetised metal loses its magnetic property when heated 
above a specifi c temperature. More generally, they indicate 
the absence of any characteristic scale for the variable being 

measured, and therefore the presence of universal behaviour, 
as the relationship is not dependent on the details of the nature 
or properties of the specifi c system in which it is being observed. 
Indeed, the quest for invariant patterns that occur in many dif-
ferent contexts may be said to be the novel perspective that 
this recent incursion of physicists have brought to the fi eld of 
economics (for examples of unusual scaling relations observed 
in social and economic phenomena, see Sinha and Raghaven-
dra 2004; Sinha and Pan 2007; Pan and Sinha 2010). This may 
well prove to be the most enduring legacy of econophysics.

Economics and Physics: The Past …

Of course, the association between physics and economics is 
itself hardly new. As pointed out by Mirowski (1989), the 
pioneers of neoclassical economics had borrowed almost term by 
term the theoretical framework of classical physics in the 
1870s to build the foundation of their discipline. One can see 
traces of this origin in the fi xation that economic theory has 
with describing equilibrium situations, as is clear from the fol-
lowing statement of Pareto (1906) in his textbook on economics.

The principal subject of our study is economic equilibrium. … this 
equilibrium results from the opposition between men’s tastes and the ob-
stacles to satisfying them. Our study includes, then, three distinct parts: 
(1) the study of tastes; (2) the study of obstacles; (3) the study of the 
way in which these two elements combine to reach equilibrium.

Another outcome of this historical contingency of neoclassical 
economics being infl uenced by late 19th century physics is the 
obsession of economics with the concept of maximisation of 
individual utilities. This is easy to understand once we remember 
that classical physics of that time was principally based on energy 
minimisation principles, such as the Principle of Least Action 
(Feynman 1964). We now know that even systems whose energy 
function cannot be properly defi ned can nevertheless be rigor-
ously analysed, for example, by using the techniques of non-linear 
dynamics. However, academic disciplines are often driven into 
certain paths constrained by the availability of investigative 
techniques, and economics has not been an exception.

There are also several instances where investigations into 
economic phenomena have led to developments that have been 
followed up in physics only much later. For example, Bachelier 
developed the mathematical theory of random walks in his 
1900 thesis on the analysis of stock price movements and this 
was independently discovered fi ve years later by Einstein to 
explain Brownian motion (Bernstein 2005). The pioneering 
work of Bachelier had been challenged by several noted math-
ematicians on the grounds that the Gaussian distribution for 
stock price returns as predicted by his theory is not the only 
possible stable distribution that is consistent with the assump-
tions of the model (a distribution is said to be stable when 
linear combinations of random variables independently chosen 
from it have the same functional form for their distribution). 

This survey has been prepared under the University Grants 
Commission-sponsored project on promoting the social sciences. 
EPW is grateful to the authors for preparing the survey.
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This foreshadowed the work on Mandelbrot in the 1960s on 
using Levy-stable distributions to explain commodity price 
movements (Mandelbrot and Hudson 2004). However, recent 
work by H E Stanley and others have shown that Bachelier was 
right after all – stock price returns over very short times do fol-
low a distribution with a long tail, the so-called “inverse cubic 
law”, but being unstable, it converges to a Gaussian distribution at 
longer timescales (for example, for returns calculated over a day 
or longer) (Mantegna and Stanley 1999). Another example of 
how economists have anticipated developments in physics is 
the discovery of power laws of income distribution by Pareto 
in the 1890s, long before such long-tailed distributions became 
interesting to physicists in the 1960s and 1970s in the context 
of critical phenomena.

With such a rich history of exchange of ideas between the 
two disciplines, it is probably not surprising that Samuelson 
(1947) tried to turn economics into a natural science in the 
1940s, in particular, to base it on “operationally meaningful 
theorems” subject to empirical verifi cation (see the opening 
quotation of this article). But in the 1950s, economics took a 
very different turn. Modelling itself more on mathematics, it 
put stress on axiomatic foundations, rather than on how well 
the resulting theorems matched reality. The focus shifted com-
pletely towards derivation of elegant propositions untroubled 
by empirical observations. The divorce between theory and 
reality became complete soon after the analysis of economic 
data became a separate subject called econometrics. The sepa-
ration is now so complete that even attempts from within 
mainstream economics to turn the focus back to explaining 
real phenomena (as for example the work of Steven Levitt, 
which has received wide general acclaim through its populari-
sation in Levitt and Dubner 2005) has met with tremendous 
resistance from within the discipline.

On hindsight, the seismic shift in the nature of economics in 
the 1950s was probably not an accident. Physics of the fi rst half 
of the 20th century had moved so faraway from explaining the 
observable world that by this time it did not really have any-
thing signifi cant to contribute in terms of techniques to the 
fi eld of economics. The quantum mechanics-dominated physics 
of those times would have seemed completely alien to anyone 
interested in explaining economic phenomena. All the develop-
ments in physics that have contributed to the birth of econo-
physics, such as non-linear dynamics or non-equilibrium statistical 
mechanics, would fl ower much later, in the 1970s and the 1980s.

Some economists have said that the turn towards game 
theory in the 1950s and 1960s allowed their fi eld to describe 
human motivations and strategies in terms of mathematical 
models. This was truly something new, as the traditional 
physicist’s view of economic agents was completely mechanical – 
almost like the particles described by classical physics whose 
motions are determined by external forces. However, this 
movement soon came to make a fetish of “individual rationality” 
by overestimating the role of the “free will” of agents in making 
economic choices, something that ultraconservative econo-
mists with a right-wing political agenda probably deliberately 
promoted. In fact, it can be argued that the game-theoretic 

turn of economics led to an equally mechanical description of 
human beings as selfi sh, paranoid agents whose only purpose 
in life is to devise strategies to maximise their utilities. An 
economist has said that (quoted in Sinha 2010b) this approach 
views all economic transactions, including the act of buying a 
newspaper from the street corner vendor, to be as complicated 
as a chess game between Arrow and Samuelson, the two most 
notable American economists of the post-second world war 
period. Surely, we do not solve complicated optimisation prob-
lems in our head when we shop at our local grocery store. The 
rise of bounded rationality and computable economics refl ects 
the emerging understanding that human beings behave quite 
differently from the hyper-rational agents of classical game 
theory, in that they are bound by constraints in terms of space, 
time and the availability of computational resources.

Economics and Physics: … and the Future

Maybe it is time again for economics to look at physics, as the 
developments in physics during the intervening period such as 
non-equilibrium statistical mechanics, theory of collective 
phenomena, non-linear dynamics and complex systems theory, 
along with the theories developed for describing biological 
phenomena, do provide an alternative set of tools to analyse, as 
well as a new language for describing, economic phenomena. 
The advent of the discipline of econophysics has shown how a 
balanced marriage of economics and physics can work suc-
cessfully in discovering new insights. An example of how it can 

go beyond the limitations of the two disciplines out of which it 
is created is provided by the recent spurt of work on using 
game theory in complex networks (see Szabo and Fath (2007)
for a review). While economists had been concerned exclu-
sively with the rationality of individual agents (see the horizontal 
or agent complexity axis in Figure 2), physicists have been 
more concerned with the spatial or interaction complexity of 
agents (see the vertical axis in Figure 2) having limited or zero 
intelligence. Such emphasis on only interaction-level complexity 
has been the motivating force of the fi eld of complex networks 

Figure 2: Agent Complexity and Spatial Complexity

Zero-intelligence Agent complexity hyper-rationality

Spatial or interaction complexity

agent-agent interactions 
on complex networks

games on complex 
networks

coordination behaviour
on regular grids

input-output systems 2-person game theory

The wide spectrum of theories proposed for explaining the behaviour of economic agents, 
arranged according to agent complexity (abscissa) and interaction or spatial complexity 
(ordinate). Traditional physics-based approaches stress interaction complexity, while 
conventional game theory focuses on describing agent complexity.
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that has developed over the last decade (Newman 2010). How-
ever, in the past few years, there has been a sequence of well-
received papers on games on complex networks that explore 
both types of complexities – in terms of interactions between 
agents, as well as, decision-making by individual agents. 
There is hope that by emphasising the interplay between these 
two types of complexities, rather than focusing on any one of 
them (as had been done previously by economists using classi-
cal game theory or by physicists studying networks), we will 
get an understanding of how social networks develop, how 
hierarchies form and how interpersonal trust, which makes 
possible complex social structures and trade, can emerge.

The Indian Scene

Given that the term econophysics was coined in India, it is 
perhaps unsurprising that several Indian groups have been 
very active in this area. In 1994, at a conference organised in 
Kolkata several Indian economists (mainly from the Indian 
Statistical Institute; ISI) and physicists (including the authors) 
discussed possible formulations of certain economic problems 
and their solutions using techniques from physics. In one of the 
papers included in the proceedings of the meeting, possibly 
the fi rst published joint paper written by an Indian physicist 
and an Indian economist, the possibility of ideal gas like models 
(discussed later) for a market was discussed (Chakrabarti and 
Marjit 1995). In recent times, physicists at Ahmedabad (Physical 
Research Laboratory; PRL), Chennai (Institute of Mathematical 
Sciences; IMSc), Delhi (University of Delhi), Kolkata (Indian 
Institute of Science Education and Research; IISER, ISI, Saha 
Institute of Nuclear Physics; SINP and Satyendra Nath Bose 
National Centre for Basic Sciences; SNBNCBS), Nagpur (University 
of Nagpur) and Pune (Indian Institute of Science Education 
and Research; IISER), to name a few, and economists collabo-
rating with them (for example, from ISI Kolkata and Madras 
School of Economics, Chennai), have made pioneering contri-
butions in the area, for example, modelling inequality distri-
bution in society and the analysis of fi nancial markets as com-
plex networks of stocks and agents. The annual series of 
“Econophys-Kolkata” conferences organised by SINP (2005 on-
wards) and the meetings on “The Economy as a Complex System” 
(2005 and 2010) at IMSc Chennai have increased the visibility 
of this area to physicists as well as economists in India.

We shall now focus on a few of the problems that have fasci-
nated physicists exploring economic phenomena.

Instability of Complex Economic Systems

Much of classical economic theory rests on the assumption 
that the economy is in a state of stable equilibrium, although it 
rarely appears to be so in reality. In fact, real economic sys-
tems appear to be far from equilibrium and share many of the 
dynamical features of other non-equilibrium complex systems, 
such as ecological food webs. Recently, econophysicists have 
focused on understanding a possible relation between the in-
creasing complexity of the global economic network and its 
stability with respect to small variations in any of the large 
number of dynamical variables associated with its constituent 

elements (that includes fi rms, banks, government agencies, 
and the like). The intrinsic delays in communication of infor-
mation through the network and the existence of phenomena 
that happen at multiple timescales suggest that economic sys-
tems are more likely to exhibit instabilities as their complexity 
is increased. Although the speed at which economic transac-
tions are conducted has increased manifold through techno-
logical developments, arguments borrowed from the theory of 
complex networks show that the system has actually become 
more fragile, a conclusion that appears to have been borne out 
by the recent worldwide fi nancial crisis during 2007-09. Anal-
ogous to the birth of non-linear dynamics from the work of 
Henri Poincare on the question of whether the solar system is 
stable, similar theoretical developments may arise from efforts 
by econophysicists to understand the mechanisms by which 
instabilities arise in the economy (Sinha 2010a).

Box 1: Dynamical Systems and Non-linear Behaviour
The time-evolution of economic variables, such as the price of a commodity, 
may, in principle, be expressed in terms of ordinary differential equations 
(ODEs). If we denote the price at any given time t as p(t), then its 
instantaneous rate of change can be described by the ODE: dp/dt = f(p(t)), 
where f is a function that presumably contains information about how the 
supply and/or demand for the product changes given its price at that instant. 
In general, f can be quite complicated and it may be impossible to solve this 
equation. Moreover, one may be interested in the prices of more than one 
commodity at a given time, so that the system has multiple variables that 
are described by a set of coupled ODEs: dpi/dt = fi (p1, p2, …, pi, … pN) with 
i = 1, 2, …, N. Any such description for the time-evolution of (in general) 
many interacting variables we refer to as a dynamical system. While an exact 
solution of a many – variable dynamical system with complicated functions 
can be obtained only under special circumstances, techniques from the 
field of non-linear dynamics nevertheless allow one to obtain important 
information about how the system will behave qualitatively.
It is possible to define an equilibrium state for a dynamical system with price p* 
such that f(p*) = 0, so that it does not change with time – for instance, when 
demand exactly equals supply. While for a given function f, an equilibrium 
can exist, we still need to know whether the system is likely to stay in that 
equilibrium even if somehow it is reached. This is related to the stability of 
the equilibrium p* which is measured by linearising the function f about p* 
and calculating the slope or derivative of the function at that point, that is, 
f’(p*). The equilibrium is stable if the slope is negative, with any change to 
the price decaying exponentially with a characteristic time τ = 1/|f’(p*)| 
that is a measure of the rapidity of the price adjustment process in a market. 
On the other hand, if the slope is positive, the equilibrium is unstable – 
an initially small change to the equilibrium price grows exponentially 
with time so that the price does not come back to its equilibrium value. 
Unfortunately, linear analysis does not tell us about the eventual behaviour 
of the price variable as it is only valid close to the equilibrium; however, for a 
single variable ODE, only time-invariant equilibria are allowed (if one rules 
out unrealistic scenario of the variable diverging to infinity). 
If we go over to the case of multiple variables, then other qualitatively different 
dynamical phenomena become possible, such as oscillations or even aperiodic 
chaotic activity. The state of the system is now expressed as a vector of the 
variables, for example, p = {p1, p2, …, pi, … pN}, the equilibria values for 
which can be denoted as p*. The stability of equilibria is now dictated by 
the Jacobian matrix J evaluated at the equilibrium p*, whose components, 
Jij =  fi / pj, are a generalisation of the slope of the function f that we 
considered for the single variable case. The largest eigenvalue or characteristic 
value of the matrix J governs the stability of the equilibrium, with a negative 
value indicating stability and a positive value indicating instability. Going 
beyond time-invariant equilibria (also referred to as fixed points), one can 
investigate the stability of periodic oscillations by using Floquet matrices. 
Even more complicated dynamical attractors (stable dynamical configurations 
to which the system can converge to starting from certain sets of initial 
conditions) are possible, for example, exhibiting chaos when the system 
moves aperiodically between different values while remaining confined 
within a specific volume of the space of all possible values of p.
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Stability of Economic Equilibria
A widely cited example that shows the 
importance of non-linear dynamics (Box 1, 
p 48) in economics is the beer game devised 
by Jay Forrester at the Massachusetts In-
stitute of Technology (MIT), which shows 
how fl uctuations can arise in the system 
purely as a result of delay in the information 
fl ow between its components (Forrester 
1961; also see Sterman 1989). In this 
game, various people take on the role of 
the retail seller, the wholesaler, the sup-
plier and the factory, while an external 
observer plays the role of the customer, 
who places an order for a certain number 
of cases of beer with the retail seller at 
each turn of the game. The retailer in 
turn sends orders to the wholesaler, who 
places an order with the supplier, and so 
on in this way, all the way to the factory. 
As each order can be fi lled only once the 
information reaches the factory and the 
supply is relayed back to the retail seller, there is an inherent 
delay in the system between the customer placing an order and 
that order being fi lled. The game introduces penalty terms for 
overstocking (for example, having inventory larger than de-
mand) and back-orders (for example, when the inventory is too 
small compared to the demand). Every person along the chain 
tries to minimise the penalty by trying to correctly predict the 
demand downstream. However, Forrester found that even if 
the customer makes a very small change in his/her pattern of 
demand (for example, after ordering two cases of beer for the 
fi rst 10 weeks, the customer orders four cases of beer every 
week from the 11th week on until the end of the game), it sets 
off a series of perturbations up the chain which never settle 
down, the system exhibiting periodic or chaotic behaviour. Al-
though the change in demand took place only once, the inher-
ent instability of the system, once triggered by a small stimu-
lus, ensures that equilibrium will never be reached. Based on 
this study, several scientists have suggested that the puzzle of 
trade cycles (where an economy goes through successive 
booms and busts, without any apparently signifi cant external 
causes for either) may possibly be explained by appreciating 
that markets may possess similar delay-induced instabilities.

If the extrapolation from the beer game to real economics 
seems forced, consider this. Everyday the markets in major cit-
ies around the world, including those of Kolkata and Chennai, 
cater to the demands of millions of their inhabitants. But how 
do the merchants know how much goods to order so that they 
neither end up with a lot of unsold stock nor do they have to 
turn back shoppers for lack of availability of goods? How are 
the demands of the buyers communicated to the producers of 
goods without there being any direct dialogue between them? 
In this sense, markets are daily performing amazing feats of 
information processing, allowing complex coordination that 
in a completely planned system would have required gigantic 

investment in setting up communication between a very large 
number of agents (manufacturers and consumers). Adam 
Smith had, in terming it the “invisible hand” of the market, 
fi rst pointed out one of the standard features of a complex 
system – the “emergence” of properties at the systems level 
that are absent in any of its components.

Economists often cite the correcting power of the market as 
the ideal negative feedback for allowing an equilibrium state 
to be stable. It is a very convincing argument that price acts as 
an effi cient signalling system, whereby producers and con-
sumers, without actually communicating with each other, can 
nevertheless satisfy each other’s requirements. If the demand 
goes up, the price increases, thereby driving supply to increase. 
However, if supply keeps increasing, the demand falls. This 
drives the price down thereby signalling a cut-back in produc-
tion. In principle, such corrections should quickly stabilise the 
equilibrium at which demand exactly equals supply. Any 
change in demand results in price corrections and the system 
quickly settles down to a new equilibrium where the supply is 
changed to meet the new level of demand (Figure 3). This is a 
classical example of self-organisation, where a complex sys-
tem settles down to an equilibrium state without direct inter-
action between its individual components.

Unfortunately, this is only true if the system is correctly de-
scribed by linear time-evolution equations. As the fi eld of non-
linear dynamics has taught us, if there is delay in the system 
(as is true for most real-world situations), the assumptions 
underlying the situation described above break down, making 
the equilibrium situation unstable, so that oscillations appear. 
The classic analogy for the impact that delay can have in a 
dynamical system is that of taking a shower on a cold day, 
where the boiler is located suffi ciently faraway that it takes a 
long time (say, a minute) to respond to changes in the turning 
of the hot and cold taps. The delay in the arrival of information 
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Figure 3: Price Mechanism Leading to Stable Equilibrium between Supply and Demand according to 
Traditional Economic Thinking

Left: The supply and demand curves indicate how increasing supply or decreasing demand can result in falling price or 
vice versa. If the available supply of a certain good in the market at any given time is less than its demand for it among 
consumers, its price will go up. The perceived shortage will stimulate an increase in production that will result in an 
enhanced supply. However, if supply increases beyond the point where it just balances the demand at that time, there will 
be unsold stock remaining which will eventually push the price down. This in turn will result in a decrease in production. 
Thus, a negative feedback control mechanism governed by price will move demand and supply along their respective 
curves to the mutual point of intersection, where the quantity available Q0 at the equilibrium price P0 is such that supply 
exactly equals demand. 
Right: As the demand and supply of a product changes over time due to various different factors, the supply and demand 
curves may shift on the quantity-price space. As a result, the new equilibrium will be at a different price (P0’) and quantity 
(Q0’). Until the curves shift again, this equilibrium will be stable, that is, any perturbation in demand or supply will quickly 
decay and the system will return to the equilibrium.
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regarding the response makes it very diffi cult to achieve the 
optimum temperature. A similar problem arises with timely 
information arrival but delayed response, as in the building of 
power plants to meet the changing needs for electrical power. 
As plants take a long time to build and have a fi nite lifetime, it 
is rarely possible to have exactly the number of plants needed 
to meet a changing demand for power. These two examples 
illustrates that a system cannot respond to changes that occur 
at a timescale shorter than that of the delays in the fl ow of 
information in it or its response. Thus, oscillations or what is 
worse, unpredictable chaotic behaviour, is the norm in most 
socio-economic complex systems that we see around us. Plan-
ning by forecasting possible future events is one way in which 
this is sought to be put within bounds, but that cannot eliminate 
the possibility of a rare large deviation that completely disrupts 
the system. As delays are often inherent to the system, the 
only solution to tackle such instabilities maybe to deliberately 
slowdown the dynamics of the system. In terms of the overall 
economy, it suggests that slowing the rate of economic growth 
can bring more stability, but this is a cost that many main-
stream economists are not even willing to consider. While a 
freer market or rapid technological development can increase 
the rate of response, there are still delays in the system (as in 
gradual accumulation of capital stock) that are diffi cult to 
change. Thus, instead of solving the problem, these changes 
can actually end up making the system even more unstable. 

Stability vs Complexity in Complex Systems

As already mentioned, traditionally, economics has been con-
cerned primarily with equilibria. Figure 3 shows that the price 
mechanism was perceived by economists to introduce a negative 
feedback between perturbations in demand and supply, so that 
the system quickly settles to the equilibrium where supply exactly 
equals demand. Much of the pioneering work of Samuelson 
(1947), Arrow and Harwicz (1958); Arrow et al (1959) and 
others (for a review, see Negishi 1962) had been involved with 
demonstrating that such equilibria can be stable, subject to 
several restrictive conditions. However, the occurrence of 
complex networks (Box 2) of interactions in real life brings 
new dynamical issues to fore. Most notably, we are faced with 
the question: do complex economic networks give rise to insta-
bilities? Given that most economic systems at present are com-
posed of numerous strongly connected components, will periodic 
and chaotic behaviour be the norm for such systems rather 
than static equilibrium solutions?

This question has, of course, been asked earlier in different 
contexts. In ecology, it has given rise to the long-standing 
stability-diversity debate (see, for example, May 1973). In the 
network framework, the ecosystem can be thought of as a 
network of species, each of the nodes being associated with a 
variable that corresponds to the population of the species it 
represents. The stability of the ecosystem is then defi ned by 
the rate at which small perturbations to the populations of 
various species decay with time. If the disturbance instead 
grows and gradually propagates through the system affecting 
other nodes, the equilibrium is clearly unstable. Prior to the 

pioneering work of May in the 1970s, it was thought that 
increasing complexity of an ecosystem, either in terms of a rise 
in the total number of species or the density and strength of 
their connections, results in enhanced stability of the ecosystem. 
This belief was based on empirical observations that more 
diverse food webs (for example, in the wild) showed less violent 
fl uctuations in population density than simpler communities 
(such as in fi elds under monoculture) and were less likely to 
suffer species extinctions. It has also been reported by Elton (1958) 
that tropical forests, which generally tend to be more diverse 

Box 2: Complex Networks
Economic interactions in real life – be it in the nature of a trade, a credit-
debit relation or formation of a strategic alliance – are not equally likely 
to occur between any and every possible pair of agents. Rather, such 
interactions occur along a network of relationships between agents that has 
a non-trivial structure, with only a few of all possible pair-wise interactions 
that are possible being actually realised. 
Some agents can have many more interactions compared to others, a 
property that is measured by their degree (k), that is, the total number of 
other agents that the agent of interest has interactions with (its neighbours 
in the network). If the degree of an agent is much higher than the average 
degree for all agents in the network, it is called a hub. Hubs are commonly 
observed in networks with degree distribution having an extended tail, 
especially those referred to as scale-free networks that have a power-law 
form for the degree distribution P(k) ~ k-γ. Other networks are distinguished 
by the existence of correlations between the degree of an agent and that of 
the other agents it interacts with. When agents having many interactions 
prefer to associate with other agents having many interactions, such a 
network is called positively degree assortative (that is, like connects with like); 
while in situations where agents with many interactions prefer to interact 
with other agents having few interactions, the network is referred to as 
negatively degree assortative (that is, like connects with unlike). 
If the neighbours of an agent have many interactions between themselves, 
its neighbourhood is said to be cliquish (measured by the fraction of 
one’s neighbours who are also mutual neighbours). The intensity of such 
cliquishness throughout the network is measured by the average clustering. 
The speed with which information can travel through the network is 
measured by the average path length, where the path length between any 
pair of agents is the shortest number of intermediate agents required to 
send a signal from one to the other. Many networks seen in real life have 
high clustering as well as short average path length and are often referred to 
as small-world networks, as any information can typically spread very fast in 
such systems, even though they have clearly defined local neighbourhoods. 
The properties so far described refer to either the network as a whole 
(global or macroscopic property) or an individual node or agent (local or 
microscopic property). Even if two networks share the same local as well as 
global properties, they can have remarkably distinct behaviour if they have 
different intermediate-level (mesoscopic) properties. One such property is 
the occurrence of modularity or community structure, where a module (or 
community) is defined as a subgroup of agents who have more interactions 
with each other than with agents outside the module. Hierarchy or the 
occurrence of distinct levels that constrain the types of interactions that 
agents can have with each other is another mesoscopic property seen in 
some social and economic networks. 
If the distinction of different networks using the above-mentioned 
properties seems complicated, one should keep in mind that network 
structures may not be invariant in time. The topological arrangement of 
connections between agents can evolve, with the number of connections 
increasing or decreasing as new agents enter and old agents leave the 
system, as well as through rearrangements of links between existing agents. 
The past decade has seen an explosion of new models and results that go 
much beyond the classical results of graph theory (that had traditionally 
focused on random networks, where connections are formed with equal 
probability between any randomly chosen pair of nodes) or physics (which 
had been primarily interested in interactions arranged in periodic, ordered 
lattices that, while appropriate for many physical systems, are not suitable 
for describing socio-economic relations). Collectively, the newly proposed 
descriptions of networks are referred to as complex networks to distinguish 
them from both the random graphs and periodic lattices. 
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than subtropical ones, are more resistant to in-
vasion by foreign species. It was therefore 
nothing short of a shock to the fi eld when May 
(1972) showed that as complexity increases, 
linear stability arguments indicate that a ran-
domly connected network would tend to be-
come more and more unstable. 

The surprising demonstration that a system 
which has many elements and/or dense con-
nections between its elements is actually more 
likely to suffer potentially damaging large 
fl uctuations initiated by small perturbations 
immediately led to a large body of work on 
this problem (see McCann 2000 for a review). 
The two major objections to May’s results were 
(a) it uses linear stability analysis and that 
(b) it assumed random organisation of the 
interaction structure. However, more recent 
work which consider systems with different 
types of population dynamics in the nodes, in-
cluding periodic limit-cycles and chaotic at-
tractors (Sinha and Sinha 2005, 2006), as well as networks 
having realistic features such as clustered small-world prop-
erty (Sinha 2005a) and scale-free degree distribution (Brede and 
Sinha 2005), have shown the results of increasing instability of 
complex networks to be extremely robust. While large complex 
networks can still arise as a result of gradual evolution, as has 
been shown by Wilmers et al (2002), it is almost inevitable that 
such systems will be frequently subject to large fl uctuations 
and extinctions.

Instability in Complex Economic Networks

The relevance of this body of work to understanding the 
dynamics of economic systems has been highlighted in the 
wake of the recent banking crisis when a series of defaults, fol-
lowing each other in a cascading process, led to the collapse of 
several major fi nancial institutions. May and two other theo-
retical ecologists (2008) have written an article entitled “Ecology 
for Bankers” to point out the strong parallels between under-
standing collapse in economic and ecological networks. Recent 
empirical determination of networks occurring in the fi nancial 
context, such as that of interbank payment fl ows between 
banks through the Fedwire real time settlement service run by 
the US Federal Reserve, has now made it possible to analyse 
the process by which cascades of failure events can occur in 
such systems. Soramaki et al (2007) have analysed such net-
works in detail and shown how their global properties change 
in response to disturbances such as the events of 11 September 
2001. The dynamics of fl ows in these systems under different 
types of liquidity regimes have been explored by Beyeler et al 
(2007). Analogous to ecological systems, where population 
fl uctuations of a single species can trigger diverging deviations 
from the equilibrium in the populations of other species, con-
gestion in settling the payment of one bank can cause other 
pending settlements to accumulate rapidly, setting up the 
stage for a potential major failure event. It is intriguing that it 

is the very complexity of the network that has made it susceptible 
to such network propagated effects of local deviations making 
global or network-wide failure even more likely. As the world 
banking system becomes more and more connected (Figure 4), 
it may be very valuable to understand how the topology of 
interactions can affect the robustness of the network.

The economic relevance of the network stability arguments 
used in the ecological context can be illustrated from the fol-
lowing toy example (Sinha 2010a). Consider a model fi nancial 
market comprising N agents where each agent can either buy 
or sell at a given time instant. This tendency can be quantita-
tively measured by the probability to buy, p, and its comple-
ment, the probability to sell, 1-p. For the market to be in equi-
librium, the demand should equal supply, so that as many 
agents are likely to buy as to sell, that is, p = 0.5. Let us in 
addition consider that agents are infl uenced in their decision 
to buy or sell by the actions of other agents with whom they 
have interactions. In general, we can consider that out of all 
possible pairwise interactions between agents, only a fraction 
C is actually realised. In other words, the inter-agent connec-
tions are characterised by the matrix of link strengths J={Jij}
(where i,j=1, ..., N label the agents) with a fraction C of 
non-zero entries. If Jij >0, it implies that an action of agent j 
(buying or selling) is likely to infl uence agent i to act in the 
same manner, whereas Jij <0 suggests that the action of i will 
be contrary to that of j. Thus, the time-evolution of the proba-
bility for agent i to buy can be described by the following line-
arised equation close to the equilibrium pi = 0.5 (i=1,…,N):

dpi /dt=εi (0.5 – pi) + Σj Jij (0.5 – pj),

where εi is the rate of converge of an isolated node to its equi-
librium state of equal probability for buying or selling. Without 
much loss of generality we can consider εi = 1 by appropriate 
choice of time units for the dynamics. If, in addition, we con-
sider that for simplicity the interactions are assigned randomly 

Figure 4: Network of Mutual Bilateral Exposures between Banks Having the Largest Core Capital 
in the OTC Financial Derivatives Market during the Last Quarter of 2009
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of a default, the resulting disturbance will propagate through the network along the direction of the arrows 
(Sinha et al 2012).
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from a Gaussian distribution with mean 0 and variance σ2, 
then the largest eigenvalue of the corresponding Jacobian 
matrix J evaluated around the equilibrium is λmax = √(NCσ2-1). 
For system parameters such that NCσ2 > 1, an initially small 
perturbation will gradually grow with time and drive the 
system away from its equilibrium state. Thus, even though the 
equilibrium p=0.5 is stable for individual nodes in isolation, it 
may become unstable under certain conditions when interac-
tions between the agents are introduced. Note that the argu-
ment can be easily generalised to the case where the distribu-
tion from which Jij is chosen has a non-zero mean.

Another problem associated with the classical concept of 
economic equilibrium is the process by which the system 
approaches it. Walras, in his original formulation of how prices 
achieve their equilibrium value had envisioned the tatonnement 
process by which a market-maker takes in buy/sell bids from all 
agents in the market and gradually adjusts price until demand 
equals supply. Formally, it resembles an iterative convergence 
procedure for determining the fi xed-point solution of a set of 
dynamical equations. However, as we know from the develop-
ments in non-linear dynamics over the past few decades, such 
operations on even simple non-linear systems (for example, the 
logistic equation; see May 1976) can result in periodic cycles or 
even chaos. It is therefore not surprising to consider a situation 
in which the price mechanism can actually result in supply and 
demand to be forever out of step with each other even though 
each is trying to respond to changes in the other. A simple situ-
ation in which such a scenario can occur is shown in Figure 5, 
where a delay in the response of the supply to the changes in price 
through variations in demand can cause persistent oscillations.

Of course, the insight that delays in the propagation of in-
formation can result in oscillations is not new and can be 
traced back to the work of Kalecki (1935) on macroeconomic 
theory of business cycles. However, recent work on the role of 
network structure on the dynamics of its constituent nodes has 
produced a new perspective on this problem. If the principal 
reason for the instability is the intrinsic delay associated with 
responding to a time-evolving situation, one can argue that by 
increasing the speed of information propagation it should be 
possible to stabilise the equilibrium. However, we seem to have 
witnessed exactly the reverse with markets becoming more 
volatile as improvements in communication enable economic 
transactions to be conducted faster and faster. 

As Chancellor (1999) has pointed out in his history of fi nancial 
manias and panics, “there is little historical evidence to suggest 
that improvements in communications create docile fi nancial 
markets…”. A possible answer to this apparent paradox lies in 
the fact that in any realistic economic situation, information 
about fl uctuations in the demand may require to be relayed 
through several intermediaries before it reaches the supplier. 
In particular, the market may have a modular organisation, 
that is, segmented into several communities of agents, with 
interactions occurring signifi cantly more frequently between 
agents belonging to the same community as opposed to those 
in different communities. This feature of modular networks 
can introduce several levels of delays in the system, giving rise 

to a multiple timescale problem – as has been demonstrated 
for a number of dynamical processes such as synchronisation 
of oscillators, coordination of binary decisions among agents 
and diffusion of contagion (see, for example, Pan and Sinha 
2009; Sinha and Poria 2011). 

In general, we observe that coordination or information 
propagation occurs very fast within a module (or community), 
but it takes extremely long to coordinate or propagate to different 
modules. For large complex systems, the different rates at which 
convergence to a local equilibrium (within a module) takes place 
relative to the time required to achieve global equilibrium 
(over the entire network) often allows the system to fi nd the 
optimal equilibrium state (Pradhan et al 2011). Thus, increas-
ing the speed of transactions, while ostensibly allowing faster 
communication at the global scale, can disrupt the dynamical 
separation between processes operating at different time-scales. 
This can prevent subsystems from converging to their respective 
equilibria before subjecting them to new perturbations, thereby 
always keeping the system out of the desired equilibrium 
state. As many socio-economically relevant networks exhibit 
the existence of many modules, often arranged into several 
hierarchical levels, this implies that convergence dynamics 
at several timescales may be competing with each other in 
suffi ciently complex systems. This possibly results in persistent, 
large-scale fl uctuations in the constituent variables that can 
occasionally drive the system to undesirable regimes.

Therefore, we see that far from conforming to the neoclassical 
ideal of a stable equilibrium, the dynamics of the economic 
system is likely to be always far from equilibrium (just as nat-
ural systems are always “out-of-equilibrium” (Prigogine and 
Stengers 1984)). In analogy with the question asked about 
ecological and other systems with many diverse interacting 
components, we can ask whether a suffi ciently complex economy 
is bound to exhibit instabilities. After all, just like the neoclassical 
economists, natural scientists also at one time believed in the 
clockwork nature of the physical world, which in turn infl uenced 

Figure 5: Persistent Price Oscillations Can Result from Delays 
in Market Response
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Ideally the price mechanism should result in a transient increase (decrease) in demand to be 
immediately matched by a corresponding increase (decrease) in supply. However, in reality 
there is delay in the information about the rise or fall in demand reaching the producer; 
moreover, at the production end it may take time to respond to the increasing demand 
owing to inherent delays in the production system. Thus, the supply may always lag behind 
the price in a manner that produces oscillations – as price rises, supply initially remains low 
before finally increasing, by which time demand has fallen due to the high price which (in 
association with the increased supply) brings the price down. Supply continues to rise for 
some more time before starting to decrease. When it falls much lower than the demand, the 
price starts rising again, which starts the whole cycle anew. Thus, if the demand fluctuates 
at a timescale that is shorter than the delay involved in adjusting the production process to 
respond to variations in demand, the price may evolve in a periodic or even a chaotic manner.
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English philosopher Thomas Hobbes to seek laws for 
social organisation akin to Issac Newton’s laws in 
classical mechanics. However, Poincare’s work on 
the question of whether the solar system is stable 
showed the inherent problems with such a viewpoint 
and eventually paved the way for the later develop-
ments of chaos theory. Possibly we are at the brink 
of a similar theoretical breakthrough in econophys-
ics, one that does not strive to reinterpret (or even 
ignore) empirical data to conform to a theorist’s ex-
pectations but one which describes the mechanisms 
by which economic systems actually evolve over time. 
It may turn out that, far from failures of the market 
that need to be avoided, crashes and depressions 
may be the necessary ingredients of future develop-
ments, as has been suggested by Schumpeter (1975) 
in his theory of creative destruction. 

Explaining Inequality

The fundamental question concerning equality (or 
lack of it) among individuals in society is why neither 
wealth nor income is uniformly distributed? If we perform a 
thought experiment (in the best traditions of physics) where 
the total wealth of a society is brought together by the govern-
ment and redistri buted to every citizen evenly, would the dy-
namics of exchange subsequently result in the same inequality 
as before being restored rapidly? While such unequal distribu-
tions may to an extent be ascribed to the distribution of abili-
ties among individuals, which is biologically determined, this 
cannot be a satisfying explanation. Distributions of biological 
attributes mostly have a Gaussian nature and, therefore, ex-
hibit less variability than that seen for income and wealth. The 
distributions for the latter typically have extremely long tails 
described by a power law decay, that is, distributions that have 
the form P(x) ~ x–α at the highest range of x where α is referred 
to as the scaling exponent. Indeed, econophysicists would like 
to fi nd out whether inequality can arise even when individuals 
are indistinguishable in terms of their abilities (see Chatterjee 
et al 2007 for a review). It is of interest to note at this point that 
the functional form that characterises the bulk of the distribu-
tion of resources among individuals within a society appears 
to be similar to that which describes the distribution of energy 
consumption per capita by different countries around the world 
(Banerjee and Yakovenko 2010). As energy consumption provides 
a physical measure for economic prosperity and has been seen 
to correlate well with gross domestic product (GDP) per capita 
(Brown et al 2011), this suggests that there may be a universal 
form for the distribution of inequality, which applies to individuals 
as well as nations (“universal”, in the sense used by physicists, 
indicate that the feature does not depend sensitively on system-
specifi c details that vary from one instance to another). 

Nature of Empirical Distribution of Income

Before turning to the physics-based models that have been 
developed to address the question of emergence of inequality 
distributions, let us consider the nature of the empirical 

distribution of inequality. Investigations over more than a 
century and the recent availability of electronic databases of 
income and wealth distribution (ranging from national sample 
survey of household assets to the income tax return data avail-
able from government agencies) have revealed some remarkable 
– and universal – features. Irrespective of many differences in 
culture, history, social structure, indicators of relative prosperity 
(such as GDP or infant mortality) and, to some extent, the eco-
nomic policies followed in different countries, income distribu-
tions seem to follow an invariant pattern, as does wealth dis-
tribution. After an initial increase, the number density of people 
in a particular income bracket rapidly decays with their income. 
The bulk of the income distribution is well described by a Gibbs 
distribution or a lognormal distribution, but at the very high 
income range (corresponding to the top 5-10% of the popula-
tion) it is fi t better by a power law with a scaling exponent, be-
tween 1 and 3 (Figure 6). This seems to be a universal feature 
– from ancient Egyptian society through 19th century Europe 
to modern Japan. The same is true across the globe today: from 
the advanced capitalist economy of the US to the developing 
economy of India (Chatterjee et al 2007). Recently, the income 
distribution of Mughal mansabdars, the military administrative 
elite that controlled the empire of Akbar and his successors, has 
also been shown to follow a power-law form – a feature which 
has been sought to be explained through a model of resource 
fl ow in hierarchical organisations (Sinha and Srivastava 2007).

The power-law tail, indicating a much higher frequency of 
occurrence of very rich individuals (or households) than would 
be expected by extrapolating the properties of the bulk of the 
distribution, had been fi rst observed by the Italian economist-
sociologist Pareto in the 1890s. Pareto had analysed the cumu-
lative income distribution of several societies at very different 
stages of economic development, and had conjectured that in 
all societies the distribution will follow a power-law decay with 
an exponent (later termed the Pareto exponent) of 1.5. Later, the 

Figure 6: Measures of Inequality: Gini Coefficient and Pareto Exponent
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(a) The Gini coefficient, G, is proportional to the hatched area between the Lorenz curve (I), which indicates the 
percentage of people in society earning a specific per cent of the total income, and the curve corresponding to 
a perfect egalitarian society where everyone has the same income (E). G is defined to be the area between the 
two curves, divided by the total area below the perfect equality curve E, so that when G=0 everybody has the 
same income while when only one person receives the entire income, G=1. 
(b) The cumulative income distribution (the population fraction having an income greater than a value x plotted 
against x) shown on a double logarithmic scale. For about 90-95% of the population, the distribution matches a 
Gibbs or Log-normal form (indicated by the shaded region), while the income for the top 5-10% of the population 
decays much more slowly, following a power-law as originally suggested by Pareto. The exponent of the Pareto 
tail is given by the slope of the line in the double-logarithmic scale, and was conjectured to be 1.5 for all societies 
by Pareto. If the entire distribution followed a power-law with exponent 1.5, then the corresponding Lorenz 
curve will have a Gini coefficient of 0.5, which is empirically observed for most developed European nations.
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distribution of wealth was also seen to exhibit a similar form. 
Subsequently, there have been several attempts, mostly by 
economists, starting around the 1950s to explain the genesis of 
the power-law tail. However, most of these models involved a 
large number of factors that made the essential reason behind 
the genesis of inequality diffi cult to understand. Following this 
period of activity, a relative lull followed in the 1970s and 1980s 
when the fi eld lay dormant, although accurate and extensive data 
were accumulated that would eventually make possible precise 
empirical determination of the distribution properties. This 
availability of a large quantity of electronic data and their 
computational analysis has led to a recent resurgence of interest 
in the problem, specifi cally over the last one and half decades. 

Although Pareto and Gini had respectively identifi ed the 
power-law tail and the log-normal bulk of income distribution, 
demonstration of both features in the same distribution was 
possibly done for the fi rst time by Montroll and Shlesinger 
(1982), in an analysis of fi ne-scale income data obtained from 
the US Internal Revenue Service (IRS) for the year 1935-36. 
They observed that while the top 2-3% of the population 
(in terms of income) followed a power law with Pareto exponent 
ν ~ 1.63, the rest followed a lognormal distribution. Later 
work on Japanese personal income data based on detailed 
records obtained from the Japanese National Tax Administra-
tion indicated that the tail of the distribution followed a power 
law with a ν value that fl uctuated from year to year around the 
mean value of 2 (Aoyama et al 2000).

Subsequent work by Souma (2000) showed that the power 
law region described the top 10% or less of the population (in 
terms of income), while the remaining income distribution 
was well described by the log-normal form. While the value of 
ν fl uctuated signifi cantly from year to year, it was observed 
that the parameter describing the log-normal bulk, the Gibrat 
index, remained relatively unchanged. The change of income 
from year to year, that is the growth rate as measured by the log 
ratio of the income tax paid in successive years, was observed 
by Fujiwara et al (2003) to be also a heavy-tailed distribution, 
although skewed, and centred about zero. Analysis of the US 
income distribution by Dragulescu and Yakovenko (2000) 
based on data from the IRS for the period 1997-98, while still 
indicating a power-law tail (with ν ~ 1.7), has suggested that 
the lower 95% of the population has income whose distribution 
may be better described by an exponential form. A similar 
observation has been made for the income distribution in the 
UK for the period 1994-99. It is interesting to note that when one 
shifts attention from the income of individuals to the income 
of companies, one still observes the power-law tail. A study of the 
income distribution of Japanese fi rms by Okuyama et al (1999) 
concluded that it follows a power law with ν ~ 1 (often referred 
to as Zipf’s law). A similar observation has been reported by 
Axtell (2001) for the income distribution of US companies.

The Distribution of Wealth

Compared to the empirical work done on income distribution, 
relatively few studies have looked at the distribution of wealth, 
which consists of the net value of assets (fi nancial holdings 

and/or tangible items) owned by an individual at a given point 
in time. Lack of an easily available data source for measuring 
wealth, analogous to income tax returns for measuring income, 
means that one has to resort to indirect methods. Levy and 
Solomon (1997) used a published list of wealthiest people to 
infer the Pareto exponent for wealth distribution in the US. An 
alternative technique was used based on adjusted data re-
ported for the purpose of inheritance tax to obtain the Pareto 
exponent for the UK (Dragulescu and Yakovenko 2001). Another 
study by Abul-Magd (2002) used tangible asset (namely house 
area) as a measure of wealth to obtain the wealth distribution 
exponent in ancient Egyptian society during the reign of 
Akhenaten (14th century BC).

More recently, wealth distribution in India at present has 
also been observed to follow a power-law tail with the expo-
nent varying around 0.9 (Sinha 2006). The general feature 
observed in the limited empirical study of wealth distribution 
is that wealthiest 5-10% of the population follows a power-law 

Box 3: Kinetic Theory of Gases and Kinetic Exchange Models

According to the kinetic theory of gas, formulated more than 100 years 
ago, a gas of N atoms or molecules at temperature T, confined in a volume 
V and pressure P, satisfying the equation of state PV=NkBT (where kB is a 
proportionality constant referred to as Boltzmann constant) can be 
microscopically viewed as follows. At any given time, each atom or molecule 
of the gas is moving in a random direction with a speed that changes when 
it collides with another particle. In each such collision, the total momentum 
(given for each particle by the product of its mass and velocity and having 
the direction of the velocity) and total kinetic energy (given for each particle 
by half of the product of its mass and the square of its velocity) for the two 
colliding particles is conserved, that is, their values before and after the 
collision are identical. These collisions between pairs of particles, often 
referred to as scattering, keep occurring randomly.
According to this picture, the gas particles are constantly in motion, colliding 
randomly with each other. Because of the random nature of the motion of its 
constituent elements, the gas as a whole does not have any overall motion 
in any direction, and its internal kinetic energy is randomly distributed 
among the particles according to a given steady-state distribution. Even if 
one starts with each atom in the gas having the same initial kinetic energy, 
this initial equitable energy distribution rapidly gets destabilised following 
the random collisions of particles. Applying the entropy maximisation 
principle, one of the fundamental results of kinetic theory is that a single-
humped Gamma distribution of energy among the particles is established, 
which is referred to as the Maxwell-Boltzmann distribution. In the steady-
state (that is, when the distribution does not change with time), the average 
kinetic energy of any particle is decided by the temperature of the gas, 
while the pressure exerted by the gas on the walls of the container can be 
calculated from the rate of momentum transferred by the particles on a unit 
area of the wall. Using these, one can calculate the relation between P, V and 
T and confirm the above-mentioned equation of state that was originally 
obtained phenomenologically.
According to the kinetic exchange model of markets (discussed in this 
review), the traders are like gas atoms or molecules and the assets they hold 
are like the kinetic energy of the particles. Each trade between two traders 
is then identified as a collision (scattering) between particles, with each 
collision keeping the total asset before and after the trade unchanged (like 
energy for the gas) as none of the individual agents create or destroy these 
assets. In the market, such trades (collisions) between randomly chosen 
pair of traders keep occurring. As in the case of gas, even if all the traders 
are initially endowed with equal amount of assets, the random exchanges 
between traders will soon destabilise this initial equitable distribution. A 
single-humped Maxwell-Boltzmann like distribution of assets will soon 
get stabilised due to utility maximisation by the traders (demonstrated 
to be equivalent to entropy maximisation), for instance, when the traders 
each save a finite fraction of their assets at each trade. When the savings 
propensity of each trader differs, a Pareto tail of the asset distribution is 
observed (see, for example, Chakrabarti et al 2012).
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while an exponential or log-normal distribution describes the 
rest of the population. The Pareto exponent as measured from 
the wealth distribution is found to be always lower than the 
exponent for income distribution, which is consistent with the 
general observation that, in market economies, wealth is much 
more unequally distributed than income.

Theoretical Models for Explaining Inequality

The striking regularities observed in income distribution for 
different countries have led to several new attempts at ex-
plaining them on theoretical grounds. Much of the current 
impetus is from physicists’ modelling of economic behaviour 
in analogy with large systems of interacting particles, as 
treated, for example, in the kinetic theory of gases (see Box 3, 
p 54; also Sinha et al 2011). According to physicists working on 
this problem, the regular patterns observed in the income (and 
wealth) distribution may be indicative of a natural law for the 
statistical properties of a large complex system representing 
the entire set of economic interactions in a society, analogous 
to those previously derived for gases and liquids. It is interesting 
to note here that one of the earliest comprehensive textbooks 
on the kinetic theory of heat written by Indian physicists, 

Meghnad Saha and B N Srivastava (1931), had used the example 
of reconstructing a distribution curve for incomes of individuals 
in a country to illustrate the problem of determining the distri-
bution of molecular velocities in kinetic theory. Although the 
analogy was not meant to be taken very seriously, one can 
probably consider this to be the fi rst Indian contribution to 
econophysics; indeed, it anticipates by about seven decades 
the result that the bulk of the income distribution follows a 
Gibbs-like distribution.

By viewing the economy as a thermodynamic system (Box 4), 
one can identify income distribution with the distribution of 
energy among particles in a gas. In particular, a class of kinetic 
exchange models has provided a simple mechanism for under-
standing the unequal accumulation of assets (for a non-techni-
cal introduction, see Hayes 2002). Many of these models, while 
simple from the perspective of economics, have the benefi t of 
coming to grips with the key factor in socio-economic interac-
tions that results in different societies converging to similar 
forms of unequal distribution of resources.

Simple Physics-Inspired Models of Asset Distribution

To introduce the simplest class of physics models that repro-
duces the distribution of assets as seen in reality let us think of 
economic activity to be composed of a large number of pair-
wise exchanges between agents (Dragulescu and Yakovenko 
2000). Note that instead of actual commodities, only their 
values in terms of a uniform asset (for example, money) are 
being considered here. In an asset exchange “game”, there are 
N agents or players, each of whom has an initial capital of 
1 unit. N is considered to be very large, and the total asset 
M = N remains fi xed over the duration of the game as is the 
number of players.

In the simplest version, called the Random Exchange (RE) 
model, the only allowed move at any time is that two of these 
players are randomly chosen who then divide their pooled re-
sources randomly among themselves (Figure 7, RE). As no debt 
is allowed, none of the players can end up with a negative 
amount of assets. As one can easily guess, the initial distribu-
tion of assets (with every player having the same amount) gets 
destabilised with such moves and the state of perfect equality, 
where every player has the same amount, disappears quickly. 
The eventual steady-state distribution of assets among the 

Box 4: Thermodynamic System

A thermodynamic system is a macroscopic physical system (for example, a 
gas occupying a container of volume V), made up of a large number N (of 
the order of Avogadro number, for example, 1023) of smaller constituents 
(for example, atoms or molecules) in contact with a heat bath at absolute 
temperature T (measured in degree centigrade + 273). By definition, the 
heat bath is of infinite capacity so that a small amount of heat added to or 
subtracted from it does not change the temperature of the bath. However, 
the thermodynamic system is of finite capacity, so that its temperature can 
change when heat is added to or subtracted from it. The thermodynamic 
state of such a system is often expressed by an equation of state. For 
example, the equation of state of an ideal gas is PV = NkBT, where kB is a 
proportionality constant referred to as the Boltzmann constant. The 
equation describes how, for example, the pressure of the gas increases with 
temperature if the volume is kept fixed.
One can use such a thermodynamic system to convert heat energy (random 
kinetic energy of the gas atoms) to useful mechanical energy, for example, 
by using the work done by the expanding or contracting gas in pushing up 
or down a piston attached to the container of the gas to drive a motor. Such 
systems for transforming heat to work are called heat engines. For this, the 
thermodynamic system (for example, the gas in the container of volume V) 
has to be alternately brought in contact with a heat bath (called the source) 
at high temperature Tsource (higher) and another heat bath (called the sink) 
at low temperature Tsink periodically so as to transfer heat energy from one 
to the other and in the process convert heat energy into mechanical energy. 
The maximum efficiency of any possible heat engine is the fraction of heat 
that can be converted to work by it and is measured by η = 1-(Tsink/Tsource). 
Thus, complete conversion (that is, perfect efficiency corresponding to η = 
1) of heat energy to useful mechanical energy is ruled out unless the heat 
sink is at a temperature of absolute zero (that is, –273 degree centigrade).
According to some models of econophysics (see, for example, “A 
Thermodynamic Formulation of Economics” by J Mimkes, in Econophysics 
& Sociophysics, B K Chakrabarti, A Chakraborti and A Chatterjee (ed.), Wiley-
VCH, 2006, pp 1-33), the temperature of an economy can be identified 
with the average money in circulation. In such models, the production of 
goods in the economy is analogous to the functioning of a heat engine. 
This “economic engine” converts available raw commodities into the 
desired product. In line with the discussion above of source and sink heat 
baths, such an engine will work most efficiently between a country with 
cheaper labour (say, India or China) and a country with richer consumers 
(say, the US). According to such models, the greater the income difference 
among the “source” and “sink” economies, the higher the efficiency of such 
economic engines. Figure 7: Schematic Diagram of the Two-Body Scattering Process 

Underlying the Kinetic Asset Exchange Models

 ap(t+Δt) = ap(t) + Δa(t)

 aq(t+Δt) = aq(t) – Δa(t)

ME: Δa(t) = ε min [aP(t),aq(t)]

RE: Δa(t) = ε [aP(t)+aq(t)]

  ε [0,1] 
aq(t+Δt)aq(t)

aP(t) aP(t+Δt)

The asset owned by agent ap at time t changes due to an exchange (for example, through 
trade) with a randomly chosen agent aq. The scattering process conserves the total amount 
of assets for the pair but can be of different types, for example, random exchange (RE) or 
minimal exchange (ME).
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players after many such moves is well known from the molecular 
physics of gases developed more than a century ago – it is the 
Gibbs distribution: P(m) ~exp[–m/T], where the parameter 
T = M/N corresponds to the average asset owned by an agent.

We now consider a modifi ed move in this game (Chakraborti 
and Chakrabarti 2000). Each player “saves” a fraction λ of 
his/her total assets during every step of the game, from being 
pooled, and randomly divides the rest with the other (randomly 
chosen) player. If everybody saves the same fraction λ, what 
is the steady-state distribution of assets after a large number 
of such moves? It is Gamma-function like, whose parameters 
depend on λ: P(m) ~ mα exp[–m/T(λ)]; α = 3 λ/(1 – λ). 
Although qualitative explanation and limiting results for λ → 0 
or λ → 1 are easy to obtain, no exact treatment of this problem 
is available so far.

What happens to the steady-state asset distribution among 
these players if λ is not the same for all players, but is different 
for different players? Let the distribution ρ(λ) of saving pro-
pensity λ among the agents be such that ρ(λ) is non-vanishing 
when λ → 1. The actual asset distribution in such a model 
will depend on the saving propensity distribution ρ(λ), but 
the asymptotic form of distribution will become Pareto-like: 
P(m) ~ m–(1 + ν); with ν = 1 for m →  (Chatterjee et al 2004; 
Chatterjee and Chakrabarti 2007; Chakrabarti and Chakrabarti 
2010). This is valid for all such distributions (unless ρ(λ)  (1 – λ)δ, 
when P(m) ~ m–(2 + δ)). However, for variation of ρ(λ) such that 
ρ(λ) → 0 for λ < λ0, one will get an initial Gamma function 
form for P(m) for small and intermediate values of m, with 
parameters determined by λ0 (≠ 0), and this distribution will 
eventually become Pareto-like for m → ∞ with ν = 1. Analyti-
cal understanding is now available and a somewhat rigorous 
analytical treatment of this problem has been given recently 
(Mohanty 2006). It may be mentioned that there are a large 
number of random multiplicative asset exchange models to 
explain the Pareto (power-law) tail of wealth or income distri-
bution. The advantage of the kind of model discussed above is 
that it can accommodate all the essential features of P(m) for 
the entire range of m, not only the Pareto tail. 

One can of course argue that the random division of pooled 
assets among players is not a realistic approximation of actual 
trading carried out in society. For example, in exchanges 
between an individual and a large company, it is unlikely that 
the individual will end up with a signifi cant fraction of the 
latter’s assets (Hayes 2002). Strict enforcement of this condi-
tion leads to a new type of game, the Minimum Exchange (ME) 
model, where the maximum amount that can change hands 
over a move is a fraction of the poorer player’s assets (Figure 7, 
ME). Although the change in the rules from the RE game does 
not seem signifi cant, the outcome is astonishingly different – 
in the steady state, one player ends up with all the assets (see, 
for example, Sinha 2003). In the language of physics, the sys-
tem has converged to a condensate corresponding to an asset 
distribution having two sharp peaks, one at zero and the other 
at M. If we now relax the condition that the richer player does 
not completely dictate the terms of exchange, so that the 
amount exchanged need not be limited by the total asset 

owned by the poorer player, we arrive at a game which is 
asymmetric in the sense of generally favouring the player who 
is richer than the other, but not so much that the richer player 
dominates totally (Sinha 2005b). Just like the previously de-
fi ned savings propensity for a player, one can now defi ne 
“thrift” τ, which measures the ability of a player to exploit its 
advantage over a poorer player. For the two extreme cases of 
minimum (τ = 0) and maximum (τ = 1) thrift, one gets back 
the RE and ME models respectively. However, close to the max-
imum limit, at the transition between the two very different 
steady-state distributions given by the two models (that is, the 
Gibbs distribution and a condensate, respectively), we see a 
power-law distribution. As in the case of the model with saving 
propensity λ, we can now consider the case when instead of 
having the same τ, different players are endowed with different 
thrift abilities. For such heterogeneous thrift assignment in 
the population, where τ for each player is chosen from a ran-
dom distribution, the steady-state distribution reproduces the 
entire range of observed distributions of income (as well as 
wealth) in the society – the tail follows a power-law, while the 
bulk is described by an exponential distribution. The tail expo-
nent depends on the distribution of τ, with the value of ν = 1.5 
suggested originally by Pareto, obtained for the simplest case 
of uniform distribution of τ between [0, 1]. However, even ex-
tremely different distributions of τ (for example, U-shaped) 
always produce a power-law tailed distribution that is expo-
nentially decaying in the bulk, underlining the robustness of 
the model in explaining inequality (Sinha 2005b).

All the gas-like models of trading markets discussed above 
are based on the assumptions of (a) conservation of total assets 
(both globally in the market; as well as locally in any trading) 
and (b) the interactions between agents being at random and 
independent of each other. One can naturally question the 
validity of these assumptions. It is of course true that in any 
asset exchange process, one agent receives some good or service 
from another and this does not appear to be completely random, 
as assumed in the models. However, if we concentrate only on 
the “cash” exchanged, every trade is an asset-conserving one. In 
more recent models, conservation of asset has been extended 
to that of total wealth (including money and commodities) 
and the introduction of the notion of price that fl uctuates in 
time has effectively allowed a slight relaxation of this conser-
vation, but the overall distribution has still remained the same. It 
is also important to note that the frequency of asset exchange 
in such models defi nes a timescale in which total asset in the 
market does not change. In real economies, total asset changes 
relatively slowly, so that at the timescale in which exchanges 
between agents take place, it is quite reasonable to assume the 
total resource to be conserved in these exchange models.

Assumption of Random Trading

How justifi ed is the assumption of random trading among 
agents? Looked at from the point of view of an individual, this 
assumption may appear incorrect. When one maximises his/
her utility by exchanging money for the p-th commodity, he/she 
may choose to go to the q-th agent and for the r-th commodity 
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he/she will go to the s-th agent. But since p ≠ q ≠ r ≠ s in general, 
when viewed from a global level these trading events will look 
random (although for individuals this is a defi ned choice or 
utility maximisation). It may be noted in this context that in 
the stochastically formulated ideal gas models in physics 
(developed in the late 19th and early 20th centuries), physicists 
already knew for more than a century that each of the constituent 
particles (molecules) follows a precise equation of motion, 
namely that due to Newton. However, when one is considering 
a collection of an enormously large number of particles, using 
deterministic equations for each of the individual particles is 
no longer a practical approach and calculations based on the 
assumption of random interactions between the particles give 
a very accurate description of the state of the system. The 
assumption of stochasticity in asset-exchange models, even 
though each agent might follow a utility maximising strategy 
(just as molecules follow the deterministic Newton’s equation of 
motion), is therefore not unusual in the context. Further, analysis 
of high-quality income data from the UK and the US shows 
Gamma distributions for the low- and middle-income ranges, 
which is strong evidence in favour of models discussed above.

The ‘Universal’ Nature of Market Movements 

Given that the wealth and income of the highest bracket in the 
population (which exhibits the Paretian power-law tail) can be 
attributed mostly to their investment in fi nancial instruments, 
it is probably expected that scientists would look for power 
laws in such market movements. Indeed, one of the most ac-
tive sub-fi elds within econophysics is the empirical characteri-
sation of statistical properties of fi nancial markets. Starting 
from the work of Mantegna and Stanley (1999), several impor-
tant results are now known about such markets which appear 
to be universal, in the sense that they are invariant with re-
spect to the systems being considered, the time-period under 
consideration and the type of data being analysed. One of the 
best examples of such universal features of fi nancial markets 
is the inverse cubic law (discussed below) for the distribution of 
fl uctuations in price as well as in the index (Jansen and de 
Vries 1991; Gopikrishnan et al 1998; Plerou et al 1999a). Not 
only has it been observed to hold across several different 
time-scales and across different types of stocks (and market 
indices), but more surprisingly, it appears to be valid irrespec-
tive of the stage of development of the market (Pan and Sinha 
2007a, 2008). Similar universal power-law functional forms 
have been claimed for the distributions of trading volume and 
the number of trades within a given interval of time, but they are 
still somewhat controversial (see, for example, Vijayraghavan 
and Sinha 2011). Financial markets have also proved a fertile 
ground for uncovering the structure of interactions between 
the different components of an economic system. In particular, 
the transactions between agents buying and selling different 
stocks in the market are refl ected in the correlated movements 
of the prices of different stocks. 

Analogous to the process of inferring the movement of air 
molecules by watching the Brownian motion of suspended 
particles, we can have a coarse-grained view of the interaction 

dynamics between individuals in the market by reconstructing 
the network of signifi cantly correlated stocks (that is, corre-
lated in terms of their price fl uctuations). Comparison of such 
stock interaction networks for different markets has hinted that 
a fi nancial market at a later stage of development possesses many 
more strongly bound clusters of co-moving stocks that are often 
from the same business sector (Pan and Sinha 2007b). Such 
markets tend to have identical statistical properties in terms of 
the distributions of price or index fl uctuations, but differ sig-
nifi cantly in the topological structure of the interactions be-
tween their components. Thus, network analysis can provide 
us with a window into the process of economic development.

The ‘Inverse Cubic Law’ for Price Fluctuations

Financial markets can be considered as complex systems that 
have many interacting elements and exhibit large fl uctuations 
in their associated observable properties, such as stock price or 
market index. The state of the market is governed by interac-
tions among its components, which can be either traders or 
stocks. In addition, market activity is also infl uenced signifi -
cantly by the arrival of external information. The importance 
of interactions among stocks, relative to external information, 
in governing market behaviour has emerged only in recent 
times. The earliest theories of market activity, for example, 
Bachelier’s random walk model, assumed that price changes 
are the result of several independent external shocks, and 
therefore, predicted the resulting distribution to be Gaussian. 
As an additive random walk may lead to negative stock prices, 
a better model would be a multiplicative random walk, where 
the price changes are measured by logarithmic returns. While 
the log-return distribution calculated from empirical data is 
indeed seen to be Gaussian at long time scales, at shorter times 
the data show much larger fl uctuations than what we would 
expect from this distribution. Such deviations were also ob-
served in commodity price returns, for example, in Mandel-
brot’s analysis of cotton price variation, which was found to 
follow a Levy-stable distribution. However, it contradicted the 
observation that the distribution converged to a Gaussian at 
longer time scales. Later, it was discovered that while the bulk 
of the return distribution for a market index (the S&P 500) 
appears to be fi t well by a Levy-stable distribution, the asymp-
totic behaviour shows a much faster decay than expected. 
Hence, a truncated Levy distribution, which has exponentially 
decaying tails, was proposed as a model for the distribution of 
returns (Mantegna and Stanley 1995). Subsequently, it was 
shown that the tails of the cumulative return distribution for 
this index actually follow a power-law, with an exponent of -3 
(Gopikrishnan et al 1998). This is the so-called inverse cubic 
law where the exponent lies well outside the stable-Levy 
regime (of exponent value between 0 and 2).

This is consistent with the fact that at longer timescales the 
distribution converges to a Gaussian. Similar behaviour has been 
reported for the DAX, Nikkei and Hang Seng indices (see, for 
example, Lux 1996). These observations are somewhat surprising, 
although not at odds with the “effi cient market hypothesis” in 
economics, which assumes that the movements of fi nancial 
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prices are an immediate and unbiased refl ection of incoming 
news and future earning prospects. To explain these observations, 
various multi-agent models of fi nancial markets have been 
proposed, where the scaling laws seen in empirical data arise 
from interactions between agents (see, for example, Lux and 
Marchesi 1999). Other microscopic models, where the agents 
(that is, the traders comprising the market) are represented by 
mutually interacting elements that can be in any one of several 
discrete states (referred to as “spins” in the language of statistical 
physics) and the arrival of information by external fi elds which 
affect the orientation of the spins, have also been used to simu-
late the fi nancial market. Among non-microscopic approaches, 
multi-fractal processes have been used extensively for modelling 
such scale-invariant properties (Bacry et al 2001a). The multi-
fractal random walk model (Bacry et al 2001b) has generalised 
the usual random walk model of fi nancial price changes and 
accounts for many of the observed empirical properties.

Universal Distributions

Recently, there has been a debate in the literature concerning 
the range of applicability of the inverse cubic law for price fl uc-
tuation distribution. As most previous reported observations 
were from developed markets, a question of obvious interest 
was whether the same distribution holds for developing or 
emerging fi nancial markets. If the inverse cubic law is a true 
indicator of self-organisation in markets, then observing the 
price fl uctuation distribution as the market evolves gradually 
over the years will inform us about the process by which this 
complex system converges to the non-equilibrium steady state 
characterising developed markets. Recent analysis of high-
frequency trading data from the National Stock Exchange 
(NSE) of India shows that this emerging market exhibits the 
same inverse cubic law as all other developed markets, despite 
commencing operations only in 1994. In fact, by analysing the 
data from the inception of the NSE to the present (in 2005 it 
became the third largest fi nancial market in the world in terms 
of transactions) it is possible to study the nature of the return 
distribution as a function of time. Thus, if markets do show 
discernible transition in return distribution during their time-
evolution, the Indian market data is best placed to spot evi-
dence for it, not least because of the rapid transformation of 
the Indian economy in the liberalised environment since the 
1990s. However, the results show that the power-law nature of 
the return distribution can be seen even in the earliest days of 
the market, from which time it has remained essentially 
unchanged (Pan and Sinha 2007a). The convergence of the 
return distribution to a power-law functional form is thus 
extremely rapid, so that a market is effectively always at the 
non-equilibrium steady state characterised by the inverse cubic 
law regardless of its stage of development.

Inferring the Structure of Markets 
from Cross-Correlation between Stocks

So, if emerging markets do not differ from developed ones in 
terms of the properties of price fl uctuations, are there still 
other observables that will allow us to distinguish between 

them? It now appears that the cross-correlation behaviour 
between the price fl uctuations of the stocks in a market may 
have a very different nature depending on the state of develop-
ment of the market. The observation of correlated movement in 
stock prices gives us a proxy variable for studying the interac-
tions between stocks mediated through the action of agents 
who are buying/selling different stocks. As the dynamics of 
individual investors are being only indirectly inferred based 
on the dynamics of price for the different stocks, this is some-
what akin to a “Brownian motion” picture of the market, anal-
ogous to the process of inferring the dynamics of air molecules 
by observing the movement of suspended pollen grains with 
which the molecules are colliding. 

The existence of collective modes in the movement of stock 
prices had been earlier inferred from the study of market 
dynamics, although such studies had almost exclusively 
focused on developed markets, in particular, the New York 
Stock Exchange (NYSE). A recent detailed analysis of the cross-
correlation between stocks in the Indian market has demon-
strated that an emerging market differs from more developed 
markets in that the former lacks clusters of co-moving stocks 
having distinct sector identities. 

How do Price Movements of Different Stocks 
Affect Each Other?

To uncover the structure of interactions among the elements 
in a fi nancial market, physicists primarily focus on the spectral 
properties of the correlation matrix of stock price movements. 
Pioneering studies by Laloux et al (1999) and Plerou et al (1999b) 
have investigated whether the properties of the empirical cor-
relation matrix differ from those of a random matrix that 
would have been obtained had the price movements been 
uncorrelated. Such deviations from the predictions of random 
matrix theory (RMT) can provide clues about the underlying 
interactions between various stocks. It was observed that 
while the bulk of the eigenvalue (or characteristic value) dis-
tribution for the correlation matrix of the NYSE and Tokyo 
Stock Exchange follow the spectrum predicted by RMT, the 
few largest eigenvalues deviate signifi cantly from this. The 
largest eigenvalue has been identifi ed as representing the 
infl uence of the entire market, common for all stocks, whereas 
the remaining large eigenvalues are associated with the differ-
ent business sectors, as indicated by the composition of their 
corresponding eigenvectors. The interaction structure of 
stocks in a market can be reconstructed by using fi ltering tech-
niques implementing matrix decomposition or maximum like-
lihood clustering. Apart from its use for understanding the 
fundamental structure of fi nancial markets, correlation ma-
trix analysis has applications in the area of fi nancial risk man-
agement, as mutually correlated price movements may indi-
cate the presence of strong interactions between stocks. Such 
analyses have been performed using asset trees and asset 
graphs to obtain the taxonomy of an optimal portfolio of 
stocks (Mantegna 1999; Onnela et al 2002).

While it is generally believed that stock prices in emerging 
markets tend to be relatively more correlated than the developed 
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ones, there have been very few studies of the former in terms 
of analysing the spectral properties of correlation matrices. 
Most studies of correlated price movements in emerging 
markets have looked at the synchronicity, which measures the 
incidence of similar (that is, up or down) price movements 
across stocks. Although related to correlation, the two meas-
ures are not same, as correlation also gives the relative 
magnitude of similarity. By analysing the cross-correlations 
among stocks in the Indian fi nancial market over the period 
1996-2006, it has been found that, in terms of the properties 
of its collective modes, the Indian market shows signifi cant 
deviations from developed markets. As the fl uctuation distri-
bution of stocks in the Indian market follows the same 
“inverse cubic law” seen in developed markets like the NYSE, 
the deviations observed in the correlation properties should be 
almost entirely due to differences in the nature of inter action 
structure in the two markets. The higher degree of correla-
tion in the Indian market compared to developed markets is 
found to be the result of a dominant market mode affecting 
all the stocks, which is further accentuated by the relatively 
very few number of clusters of mutually interacting stocks 
as compared to, say, the NYSE (Pan and Sinha 2007b). These 
results imply that one of the key features signifying the 
transition of a market from emerging to developed status 
is the appearance and consolidation of distinct sector or 
group identities.

The Dynamics of Interacting Economic Agents

One of the principal features distinguishing the individual 
agents operating in economic systems from the inanimate 
particles that were traditionally studied by physics is that the 
former are capable of making informed choices from among 
a set of possible actions. In the following subsections, we 
provide a glimpse of the range of different problems involving 
the dynamics of such interacting agents that have been treated 
using physics-based approaches.

Reproducing the Stylised Facts of Financial Markets

There have been several attempts at reproducing the universal 
features in the dynamics of markets mentioned above (often 
referred to as “stylised facts” in the economics literature), 
including the inverse cubic law for the distribution of price or 
index fl uctuations (as measured by the logarithmic return) and 
volatility clustering. Many of these models stress endogenous 
interactions between the market players as the underlying 
cause for the generation of such patterns rather than exogenous 
factors such as news breaks and variations in macroeconomic 
indicators. While most such attempts have assumed explicit 
interaction between agents who are involved in buying and 
selling assets from each other and/or make a priori assump-
tions about individual trading strategies (for example, chartists 
vs fundamentalists), one could also view the exchanges 
between agents to be indirect, mediated by the market through 
the price mechanism. The coordination of agent behaviour 
through a global signal such as asset price allows the theory of 
mean-fi eld coupling (that replaces all individual agent-agent 

interactions with the interaction between a single agent and 
an effective fi eld representing all other agents) that is regu-
larly used in physics to be used for explaining the statistical 
features of fi nancial markets. A recently proposed model 
(Vikram and Sinha 2011) where the agents do not interact 
directly but respond to fl uctuations in the asset price by decid-
ing to buy, sell or hold on to an asset reproduces all the known 
stylised facts of fi nancial market dynamics. In this model, the 
trading occurs in a two-step process, with each agent fi rst 
deciding whether to trade or not at that given instant based 
on the deviation of the current price from an agent’s notion of 
the “true” or fundamental price of the asset (estimated from 
the long-time moving average of the observed price). Next, the 
agents who have decided to trade make the choice of either to 
buy or sell. It turns out that the exact details of this process do 
not affect the results of the model and could be chosen either 
to be decided at random or based on information about the 
prevalent demand-supply ratio as measured by the log 
return of the price.

The Model

A simplifi ed view of a fi nancial market is that it consists of 
a large number of agents (say, N) trading in a single asset. 
Considering time to evolve in discrete units, the state of each 
trader i can be represented by the variable Si(t) (i = 1, …,N) at 
a given time instant t. It can take values +1, –1 or 0 depending 
on whether an agent buys or sells (a unit quantity of asset) or 
decides not to trade (that is, hold) at time t, respectively. It is 
assumed here that the evolution of price in a free market is 
governed only by the relation between supply and demand for 
the asset. Thus, the price of the asset at any time t, pt, will rise 
if the number of agents wishing to buy it (that is, the demand) 
exceeds the number wishing to sell it (that is, supply). Con-
versely, it will fall when supply outstrips demand. A possible 
relation between prices at two successive time instants that 
satisfi es the above criterion is:

pt+1 = pt (1 + Mt)/(1 – Mt),

where, Mt = Σi Si(t)/N is the net demand for the asset, as the 
state of agents who do not trade is represented by 0 and 
do not contribute to the sum. This functional form has the 
desirable feature that when everyone wants to sell the asset 
(Mt = – 1), its price goes to zero, whereas if everyone wants to 
buy it (Mt = 1), the price diverges. When the demand equals 
supply, the price remains unchanged from its preceding 
value, indicating an equilibrium situation. The multiplicative 
form of the function not only ensures that price can never be 
negative, but also captures the empirical feature of the mag-
nitude of stock price fl uctuations in actual markets being pro-
portional to the price. If the ratio of demand to supply is 
equivalent to an uncorrelated stochastic process, the price 
will follow a geometric random walk, as originally suggested 
by Bachelier (1900). However, other functions for the price 
evolution that have the same properties can also be written 
and the exact form does not critically affect the results 
obtained from the model.
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Trading in the Model Market
Once the price of the asset is determined based on the activity 
of traders, the process by which individual agents decide to 
buy, sell or hold has to be specifi ed. As direct interactions 
between agents have not been assumed, nor is information 
external to the market included in the basic version of the 
model, the only factor governing such decisions is the asset 
price (the current value at a given time as well as the record of 
all previous values up to that time). First, one decides whether 
an agent will trade at a particular time (that is, Si = ± 1) rather 
than hold (Si = 0). This decision is based on the deviation of 
the current price at which the asset is being traded from an 
individual agent’s perception of the “fundamental value” of 
the asset. Potters and Bouchaud (2003) have reported, based 
on observations of market order book dynamics, that the life-
time of a limit order is longer the further it is from the current 
bid-ask. In analogy to this, the probability of an agent to 
trade at a particular price is taken to be a decreasing function 
of the difference between that price and the “fundamental” 
value of the asset. The fundamental or “true” asset price is 
estimated from the price history (as the agents do not have 
access to any other knowledge) and thus can vary with time. 
The simplest proxy for this estimate is a long-time moving 
average of the price time-series, < pt>, with the averaging 
window size, τ, being a parameter of the model. The use of 
moving average is validated by a study of Alfi  et al (2006) 
that the long-time moving average of prices defi nes an effec-
tive potential which is a determining factor for empirical 
market dynamics. In light of the above information, one 
possible formulation for the probability of an agent i to trade 
at time t is simply:

P(|Si(t)| = 1) = 1 – P(Si(t) = 0) = exp (– µ |{p t – < pt >}/< pt >|),

where µ is a parameter that controls the sensitivity of the agent 
to the magnitude of the deviation from the fundamental value. 
This deviation is expressed in terms of a ratio so that there is 
no dependence on the scale of measurement. For the limiting 
case of µ=0, a binary-state model is obtained where each 
agent trades at every instant of time. Again, the exact form 
for determining the probability is not critical for the results 
obtained from the model.

To Buy or To Sell

Once an agent decides to trade based on the above dynamics, 
it has to choose between buying and selling a unit quantity of 
the asset. If we assume that the decision is made at random 
(for example, by tossing a coin), the theoretical treatment of 
the model is considerably simplifi ed. However, in reality this 
choice will be based on information about the price variation 
in the recent past. So, for example, one can assume that agents 
sell (buy) if there is an excess of demand (supply) resulting in 
an increase (decrease) of the price in the previous instant. Using 
the logarithmic return as the measure for price movement, the 
following simple form can be used for calculating the probability 
that an agent will sell at a given time t:
P(Si(t)= – 1 ) = 1/[1 + exp(– β log { pt/ pt-1 })].

The form of this probability function is similar to the well-
known Fermi function used in statistical physics, where it 
describes the transition probability between states in a system 
at thermal equilibrium. The parameter β, that corresponds to 
inverse “temperature” in the context of the Fermi function, is a 
measure of how strongly the information about price variation 
infl uences the decision of a trader to sell. Operationally speak-
ing, it controls the slope of the function at the transition region 
where the probability increases from 0 to 1, with the transition 
getting sharper as β increases. In the limit β → ∞, the probability 
function becomes step-like, with every agent who has decided 
to trade selling (buying) if the price has risen (fallen) in the 
previous instant. In the other limiting case of β = 0, a trader 
buys or sells with equal probability regardless of whether 
the price rises or falls, indicating an insensitivity to the 
price movement. 

The Inverse Cubic Law and Other Stylised Facts

The variation of the asset price generated by the model dynamics 
is found to be qualitatively similar to price (or index) time-
series obtained from real markets. The moving average of 
the price, that is considered to be the notional fundamental 
price for agents in the model, is seen to track a smoothed 
pattern of price variations, coarse-grained at the time-scale of 
the averaging window, τ. The price fl uctuations, as measured 
by the normalised log returns show large deviations that are 
signifi cantly greater than that expected from a Gaussian dis-
tribution. They also exhibit volatility clustering, with periods 
marked by large fl uctuations following each other in rapid 
succession. The probability distribution of returns is seen to 
follow a power-law having exponent –3 over an intermediate 
range with an exponential cut-off at the tail (as is expected 
for a simulation with a small fi nite number of agents). The 
quantitative value of the exponent is seen to be unchanged 
over a large range of variation in the parameter µ and does 
not appear to depend sensitively on β. For very low values of 
µ (for example, µ < 10) the return distribution is seen to 
become exponential.

The dynamics leading to an agent choosing whether to trade 
or not is the crucial component of the model that is necessary 
for generating the non-Gaussian fl uctuation distribution. This 
is explicitly shown by observing the absence of power-law in 
the return distribution for the special case when µ = 0, where, 
as already mentioned, every agent trades (that is, either buys 
or sells) at all times. Thus, the overall dynamics of the model 
can be described by a difference equation in a single variable, 
the net demand (Mt). Analysis of the map reveals that the 
system has two classes of equilibria, with the transition occur-
ring at the critical value of β = 1. For β < 1, the mean value of 
M is 0, and the price fl uctuations calculated over long time 
intervals follow a Gaussian distribution. When β exceeds 1, the 
net demand goes to 1, implying that price diverges. This 
prompts every agent to sell at the next instant, pushing the 
price to zero, analogous to a market crash (see Sinha and 
Raghavendra 2006). It is a stable equilibrium of the system, 
corresponding to market failure. 
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As each trader can buy/sell only a unit quantity of asset at 
a time in the model, the number of trading agents at time 
t, Vt = Σi |Si (t)|, is equivalent to the trading volume at that 
instant. The cumulative distribution of this variable has a 
power-law decay characterised by an exponent ζV  1, indicat-
ing a Zipf’s law distribution for the trading volume at a given 
instant. As in the case of the return distribution exponent, the 
quantitative value of the exponent is unchanged over a large 
range of values for the parameter µ. In fact, the power-law 
nature of this distribution is seen to be more robust than that 
for the return distribution.

In real markets the parameter values for different agents 
need not be identical, as they can have different responses to 
the same market signal, for example, in terms of their deci-
sions to trade in a high-risk situation. This heterogeneity in 
agent behaviour can be captured by using a random distribu-
tion of parameter values. For example, a low value of the 
parameter µ represents an agent who is relatively indifferent to 
the deviation between current price and “fundamental value”. 
On the other hand, an agent who is extremely sensitive to this 
difference and refuses to trade when the price goes outside a 
certain range around the “fundamental value” is a relatively 
conservative (or risk-averse) market player having a higher 
value of µ. In the model, when µ for the agents is distributed 
uniformly over a large interval (for example, between [10,200]), 
the power-law nature of the return and volume distributions is 
similar to that for the case with constant parameters. How-
ever, the exponent values characterising these power-laws 
now appear to be quantitatively identical to those seen in real 
markets. In particular, the return distribution is seen to accu-
rately reproduce the inverse cubic law of price fl uctuations. 
Thus, the model suggests that heterogeneity in agent behaviour 
is the key factor behind the distributions observed in real 
markets. It predicts that when the behaviour of market players 
become more homogeneous, as, for example, during a market 
crash event, the return distribution exponent will tend to 
decrease. Indeed, earlier work by Kaizoji (2006) has found 
that during crashes, the exponent for the power-law tail of the 
distribution of relative prices has a signifi cantly different 
value from that seen at other times. From the results of the 
model simulations, it has been predicted that for real markets 
the return distribution exponent during a crash will be close 
to 2, the value obtained in the model when every agent 
behaves identically.

It may be pertinent here to discuss the relevance of the 
observation of an exponential return distribution in the model 
at lower values of the parameter µ. Although the inverse cubic 
law is seen to be valid for most markets, it turns out that there 
are a few cases, such as the Korean market index KOSPI, for 
which the return distribution is reported to have an exponen-
tial form (Yang et al 2006). Analysis of the model suggests that 
these deviations from the universal behaviour can be due to 
the existence of a high proportion of traders in these markets 
who are relatively indifferent to large deviations of the price of 
stocks from their “fundamental values”. In other words, the 
presence of a large number of risk takers in the market can 

cause the return distribution to have exponentially decaying 
tails. The fact that for the same set of parameter values, the 
cumulative distribution of number of traders still shows a 
power-law decay with exponent – 1, leads to the prediction 
that, despite deviating from the universal form of the return 
distribution, the trading volume distribution of these markets 
will follow a power-law form with exponent close to – 1. 

The Kolkata Paise Restaurant Problem

Introduction

The Kolkata Paise Restaurant (KPR) problem (Chakrabarti et al 
2009: Ghosh and Chakrabarti 2009; Ghosh et al 2010) is a 
repeated game, played between a large number N of agents 
having no interaction or discussion among themselves. In the 
KPR problem, prospective customers (agents) choose from n (≤ N) 
restaurants each evening simultaneously (in parallel decision 
mode); N and n are both large and fi xed (typically n = N). 
Each restaurant has the same price for a meal (hence no 
budget constraint for the agents). We assume that each can 
serve only one customer any evening (generalisation to a 
larger value is trivial). Information regarding the customer 
distributions for earlier evenings is available to everyone. If 
more than one customer arrives at any restaurant on any 
evening, one of them is randomly chosen (each of them are 
anonymously treated) and is served. The rest do not get dinner 
that evening. Each agent develops his own (parallel) algo-
rithm to choose the restaurant every evening such that he is 
alone there. Also, the times required to settle to such a solution 
(if it exists) should be low (less than, say, log N). Additional 
complications arise when the restaurants have different ranks 
which are agreed upon by all the agents.

In Kolkata, there were very cheap and fi xed rate “Paise 
Restaurants” that were popular among the daily labourers in 
the city. During lunch hours, the labourers used to walk (to 
save the transport costs) to one of these restaurants and would 
miss lunch if they arrived at a restaurant where there were 
too many customers. Walking down to the next restaurant 
would mean failing to report back to work on time. Paise is the 
smallest Indian coin and there were indeed some well-known 
rankings of these restaurants, as some of them would offer 
tastier items compared to the others. A more general example 
of such a problem would be when society provides hospitals 
(and beds) in every locality but the local patients go to hospitals 
of better rank (commonly perceived) elsewhere, thereby com-
peting with the local patients of those hospitals. Unavailability 
of treatment in time may be considered as lack of the service 
for those people and consequently as (social) wastage of serv-
ice by those unattended hospitals.

A dictator’s solution to the KPR problem is the following. The 
dictator asks everyone to form a queue and then assigns each 
one a restaurant with rank matching the sequence of the person 
in the queue on the fi rst evening. Then each person is told to 
go to the next ranked restaurant the followingevening (for the 
person in the last ranked restaurant this means going to the 
fi rst ranked restaurant). This shift then proceeds continuously 
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for successive evenings. This is clearly one of the most effi cient 
solutions (with utilisation fraction f of the services by the restau-
rants is at its maximum and equal to unity) and the system 
arrives at this solution immediately (from the fi rst evening 
itself). However, in reality this cannot be the true solution of 
the KPR problem, where each agent decides on its own (in 
parallel or democratically) every evening, based on complete 
information about past events. In this game, the customers try 
to evolve a learning strategy to eventually get dinners at the 
best possible ranked restaurant, avoiding the crowd. It is seen 
that the evolution of these strategies take considerable time to 
converge (growing with N) and even then the eventual utilisa-
tion fraction f is far below unity.

KPR Game Strategies

In the KPR problem, all agents are trying to get meals in best-
ranked restaurants. But a restaurant can serve only one 
customer. If more than one customer arrives any evening in a 
restaurant, one will be served and rest will miss their dinner 
for that evening. The aim of the KPR game strategy is to fi nd a 
strategy which gives maximum utilisation of the services such 
that all agents will be getting food from every restaurant on an 
average. This problem is a repeated game and agents learn 
their strategies by analysing the previous history. Let us now 
consider some simple strategies. 

Random Strategies

For a random choice, where there is no ranking of the restau-
rants, on each day an agent selects any one restaurant with 
equal probability (Chakrabarti et al 2009). There is no memory or 
learning and each day the same process is repeated. When 
there are n restaurants (choices) and gn (= N) agents (g = 1 in 
the typical KPR problem) choosing randomly every evening 
from the set of n restaurants (choices), the probability D(m) 
that any particular restaurant is chosen simultaneously by m 
agents is given by the Poisson distribution

D(m) = (gm/m!) exp (– g) as n →∞.

In other words, the fraction of restaurants not chosen by 
anyone in any evening is given by D (m=0) = exp(– g), giving 
the average fraction of restaurants occupied on any evening 

f= 1- exp(– g) ≈ 0.63 for g=1.

The distribution of the fraction utilised any day will be 
Gaussian around the average given above and the time 
required to reach steady state is zero (random choosers/trad-
ers do not have any memory). Obviously, for rank-dependent 
choices, this utilisation fraction decreases further. 

Stochastic Crowd Avoiding Choice

We again consider fi rst the case where there exists no ranking 
of the restaurants. Let us proceed with the following stochastic 
strategy (Ghosh et al 2010). If an agent has chosen the restau-
rant number k the previous evening (t-1), then that agent 
goes to the same restaurant next evening (t) with probability 
pk(t) = 1/Nk(t – 1), where Nk denotes the number of agents who 

had chosen the same k-th restaurant on that (t-1)-th evening 
(Σk Nk = N). This agent goes (in the next t-th evening) to any 
other restaurant k’(≠k) with probability pk’(t) = (1-pk(t))/(N-1). 
In this process the average utilisation fraction f becomes 
close to 0.8, and the time required to reach this steady value 
is bounded by log N (Ghosh et al 2010). When the ranking of 
the restaurants are considered (and k denotes the rank of 
the restaurant), the strategy to follow is very similar. Any of 
the Nk agents who had chosen the k-th ranked restaurant 
last evening goes to (k-1)-th ranked restaurant with prob-
ability pk(t)=1/Nk(t-1) this evening and with probability 
pk’(t)=(1-pk(t))/(N-1) to any other restaurant with rank k’≠ k-1. 
For periodic boundary condition we assume k’=1 for k=N. One 
can show (Ghosh et al 2010) that full occupation solution, with 
rotation of the population along the periodic chain of restau-
rants, is achieved in about N evenings (trials).

KPR and Minority Game

The Minority Game (Challet et al 2005) is a two choice game 
(n = 2) and an agent will win (pay off 1) if she is in a less 
crowded restaurant, or else lose (pay off 0). Now, anyone can 
apply a “stochastic crowd avoiding” strategy for this two 
choice case (Dhar et al 2011). The strategy of the two choice 
game will be as follows. Consider a city with exactly two 
restaurants and let us assume there are N persons in the city, 
each of whom goes for dinner every evening to one of the two 
restaurants. Assume that N is odd, and write N = 2 M + 1. A 
restaurant is said to be crowded any evening if the number of 
persons turning up for dinner there exceeds M + 1 that 
evening. A person is happy if she goes to a restaurant that is 
not crowded, and will get a payoff 1. If she turns up at a 
crowded restaurant, her payoff is 0. Once the choice of which 
restaurant to go to is made, an agent cannot change it for that 
day/evening. The previous history of how many agents chose 
to go to both the restaurants is available to everyone and the 
agents do not communicate with each other for any decision. 

The strategy is defi ned as follows. At t=0, each agent 
chooses one of the two restaurants with probability 1/2, inde-
pendently of others. Suppose any instance of time t, one 
restaurant has M-Δ(t) persons (minority group) and other has 
M + Δ (t) + 1 (majority group). At any subsequent evening 
(time t+1), each person follows the following strategy: If at 
time t, she found herself in the minority, she chooses the same 
restaurant next time or evening (t+1). If she fi nds herself in 
the majority, she changes next evening her choice with a 
probability p+, given by 

p+= Δ(t)/[M+Δ(t)+1].

(As discussed already p-= 0 in minority side). For large M, the 
number of agents changing their choice is distributed accord-
ing to the Poisson distribution, with mean approximately equal to 
Δ, and width varying as √Δ(t). Thus we have the approximate 
recursion Δ(t+1) ≈ √Δ(t), for Δ(t) >> 1. This shows that within a 
time of order log log N, the magnitude of Δ will become of O(1).

If all agents follow the above strategy, the dynamics of 
the system will stop when Δ = 0 (call it absorbing state) 
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(Dhar et al 2011). But one can avoid this absorbing state by 
having only two random agents in the whole game (for details, 
see Biswas et al 2012). The reason is as follows. A population 
of N agents try to evolve a strategy such that two of them will 
fl ip randomly among the two choices (restaurants), while the 
rest (N-2) of them will follow the stochastic strategy given by 
p+= Δ(t)/[M+Δ(t)+1]. This will ensure (see Biswas et al 2012 
for details) that the fl uctuation will become arbitrarily small 
in value (giving maximum social effi ciency) and that too 
achieved in log N time or evenings. The absorbing state will 
never appear while everyone will have an average period of 2 
in the minority/majority. A decrease in the number of random 
traders will enforce the indefi nite stay in the majority for the 
random trader. Increasing the number of such traders above 2 
will increase fl uctuation, eventually converging to its square 
root of N value (with least social effi ciency).

Summary

A repetitive game has been considered where N agents choose 
every time (in parallel) one among the n(≤ N) choices, such 
that each agent can be in minority: no one else made the same 
choice in the KPR case (typically n = N) and Nk<N/2 for the 
Minority Game (n = 2; k = 1, 2). The strategies to achieve this 
objective evolve with time bounded by N. Acceptable strategies 
are those which evolve quickly (say within log N time). Also 
the effectiveness of a strategy is measured by the resulting uti-
lisation factor f giving the (steady state) number of occupied 
restaurants in any evening for the KPR, by the value of fl uctua-
tion Δ in the Minority Game case (Δ = 0 corresponds to maxi-
mum effi ciency). 

The study of the KPR problem shows that a dictated solution 
leads to one of the best possible solutions to the problem, with 
each agent getting his dinner at the best-ranked restaurant 
with a period of N evenings, and with best possible value of 
f (=1) starting from the fi rst evening on itself. For a democratic 
situation (for parallel decision strategies), the agents employ 
stochastic algorithms based on past occupation information 
(for example, of Nk(t)). These strategies are of course less effi -
cient ( f<<1; the best one discussed in Ghosh et al 2010, giving 
f  0.8 only). Here the time required is very weakly dependent 
on N, if at all. We also note that most of the “smarter” strate-
gies lead to much lower effi ciency. 

We note that the stochastic strategy Minority Game (Dhar et al 
2011), is a very effi cient one: The strategy is described by 
p+= Δ(t)/[M+Δ(t)+1], where the agents very quickly (in log 
log N time; N = 2M + 1) get divided almost equally (M and 
M + 1) between the two choices. This strategy guarantees that 
a single cheater, who does not follow this strategy, will always 
be a loser. However, the dynamics in the system stops very 
quickly (leading to the absorbing state), making the resource 
distribution highly asymmetric (people in the majority stay 
there forever), thereby making this strategy socially unaccept-
able. To rectify for this, note that the presence of a single ran-
dom trader (who picks between the two choices completely 
randomly) will avoid this absorbing state and the asymmetric 
distribution. However, this will always make that random trader 

a loser. But the presence of more than one random trader will 
avoid that situation too, making the average time period of 
switching between majority and minority for all the traders 
(irrespective of whether they are chartists or random traders) 
to be 2. Hence, the system will always evolve collectively such that 
only two agents will make random choices between the binary 
choices, while the rest N-2 will follow the probabilities p+.

In brief, in the Minority Game N (=2M + 1) players develop 
their respective strategies, based on past experiences, to 
choose every evening between the two equally acceptable res-
taurants. Successful players are those who are in the less 
crowded restaurants (with a population M – Δ, Δ≥ 0) on any 
evening. The system is most effi cient when the players play 
such that Δ=0, and they stay on average half of the times in 
the minority. As discussed above, this can be achieved with a 
stochastic strategy and in log log N time (or evenings). For the 
KPR problem N players typically chose among N restaurants, 
again by employing parallel decision strategies by each player 
every evening such that any one is alone in choosing that res-
taurant any evening and this has to occur very quickly (not 
more than log N trials or evenings). This is again achieved by 
following the stochastic strategy described above, with an 
average success of 80% approximately.

Concluding Remarks

In the above sections we have tried to provide a glimpse of the 
variety of questions that are being addressed by practitioners 
of the new discipline of econophysics. As mentioned earlier, it is 
marked by a desire to accurately describe real economic pheno-
mena by careful observation and reproducing the empirical 
features with models inspired by statistical physics. A common 
point to most of these works is a desire to identify universal 
features that are independent of system-specifi c details, and 
these features are often manifested as scaling relations (or 
power laws, in the language of physics). While several attempts 
at describing phenomena such as inequality distribution and 
scale-invariant statistical properties of fi nancial markets have 
met with reasonable success, there is still some way to go 
before econophysics can replace mainstream economics as the 
dominant paradigm for theoretically explaining the entire 
range of economic activities.

Most importantly, we should not forget that economic 
phenomena form just one aspect of the entire set of processes 
that make up the human social organisation. For example, the 
process by which certain products or ideas achieve extreme 
popularity while other competing products and ideas (that are 
often indistinguishable from the eventual winner in terms of 
intrinsic quality) fall on the wayside is as much a subject of 
study for economists (or econophysicists) as it is for socio-
logists (Sinha and Pan 2007; Pan and Sinha 2010). Thus, 
econophysics should strive to be a theory for the entire spec-
trum of human social behaviour. As John Maynard Keynes 
(1932), one of the greatest economists, had once said “do not 
let us overestimate the importance of the economic problem, 
or sacrifi ce to its supposed necessities other matters of greater 
and more permanent signifi cance”.
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