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Deterministic stochastic resonance in a piecewise linear chaotic map
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~Received 17 April 1998!

The phenomenon of stochastic resonance~SR! is observed in a completely deterministic setting—with
thermal noise being replaced by one-dimensional chaos. The piecewise linear map investigated in the paper
shows a transition from symmetry-broken to symmetric chaos on increasing a system parameter. In the latter
state, the chaotic trajectory switches between the two formerly disjoint attractors, driven by the map’s inherent
dynamics. This chaotic switching rate is found to ‘‘resonate’’ with the frequency of an externally applied
periodic perturbation~multiplicative or additive!. By periodically modulating the parameter at a specific fre-
quencyv, we observe the existence of resonance where the response of the system~in terms of the residence-
time distribution! is maximum. This is a clear indication of SR-like behavior in a chaotic system.
@S1063-651X~98!03112-7#

PACS number~s!: 05.45.1b, 05.40.1j
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Stochastic resonance~SR! is a recently observed nonlin
ear phenomena in noisy systems, where the noise help
amplifying a subthreshold signal~which would have been
otherwise undetected! when the signal frequency is close to
critical value@1#. This occurs because of noise-induced ho
ping between multiple stable states of a system, locking o
an externally imposed periodic signal. The characteristic
nature of SR is the nonmonotonic nature of the signal
noise ratio~SNR! as a function of the external noise inte
sity. A theoretical understanding of this phenomena
bistable systems, subject to both periodic and random f
ing, has been obtained based on the rate equation appr
@2#. As the output of a chaotic process is indistinguisha
from that of a noisy system, the question of whether a sim
process occurs in the former case has long been debate
fact, the authors of Ref.@1# indicated that the Lorenz system
of equations, a well-known paradigm of chaotic behavi
might be showing SR. Later studies@3,4#, in both discrete-
and continuous-time systems, seemed to support this v
However, it is difficult to guarantee that the response beh
ior is due to ‘‘resonance’’ and not due to ‘‘forcing.’’ In the
latter case, the periodic perturbation is of so large an am
tude that the system is forced to follow the driving frequen
of the periodic forcing. The ambiguity is partly because t
SNR is a monotonically decreasing function of the forci
frequency, and cannot be used to distinguish between r
nance and forcing.

The signature of SR can also be observed in the reside
time distribution. In the presence of a periodic modulatio
the distribution shows a number of peaks superposed o
exponential background. However, this is observed both
the case of resonance as well as forcing. The ambiguity
therefore, present in theoretical@5# and experimental@6#
studies of noise-free SR, where regular and chaotic ph
take the role of the two stable states in conventional S
Although the distribution of the lengths of the chaotic inte
val shows a multipeaked structure, this by itself is not su
cient to ensure that the enhanced response is not due to
ing. In the present work this problem is avoided
measuring the response of the system in terms of the pea
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the normalized distribution of residence times@7#. For SR,
the strength of the peaks shows nonmonotonicity with
variation of both noise intensity and signal frequency.

Ippen, Lindner, and Ditto@8# have used a chaotic driving
term to show SR-like behavior in the SNR of the syste
response. However, in this case the chaos is supplied f
outside, and not inherent to the system. Indeed, this dist
tion between stochastic and chaotic driving is somewhat
tificial as, e.g., random numbers for Monte Carlo simulatio
are generated using chaos. If SR is actually used for in
mation processing by biological systems, then it is likely th
organs producing chaotic behavior might enhance their
vival capability through selective amplification of signals
a noisy background. In this case, the inherent chaos of
system itself could play the role of ‘‘noise.’’ In the mode
proposed in this paper, a simple one-dimensional map
been shown to use its inherent chaoticity to replicate SR-
phenomena. This suggests a deep relation between stoch
resonance, on the one hand, and crises in chaotic dynam
on the other hand, mentioned in Ref.@9#. The present work
also supports this view.

The simplest chaotic system to show SR-type behav
are one-dimensional maps with two critical points. The m
commonly studied system of this kind is the cubic map@10#
xn115axn

31(12a)xn , wherea is a tunable parameter. Th
map is found to consist of two attractors, the initial conditi
determining the attractor into which the system settles. V
ous properties of such ‘bimodal’ maps differ from those o
served for the well-studied class of maps with a single cr
cal point ~e.g., the logistic map!.

Recently, SR has been studied in one-dimensional~1D!
maps with two well-defined states~but not necessarily
stable! with switching between them aided by either additi
or multiplicative external noise@11#. However, dynamical
contact of two chaotic 1D maps can also induce rhythm
hopping between the two domains of the system@12#. The
present work shows how the chaotic dynamics of a sys
can itself be used for resonant switching between two sta
without introducing any external noise.
8009 © 1998 The American Physical Society
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The model chosen here is a piecewise linear bimodal m
henceforth referred to as the discontinuous antisymme
tent ~DAT! map, defined in the interval@-1,1#

x~n11!5F~xn!

55
11a@0.52x~n!# if x~n!>0.5

12a@0.52x~n!# if 0 ,x~n!,0.5

211a@0.51x~n!# if 20.5,x~n!,0

212a@0.51x~n!# if x~n!<20.5.

~1!

The map has a discontinuity atx50. The behavior of the
system was controlled by the parametera (0,a,4). The
onset of chaos occurs ata51. The chaos is symmetry bro
ken, i.e., the trajectory is restricted to either of the two s
intervals R:~0,1# and L:~0,21#, depending on initial condi-
tion. Symmetry is restored ata52. The Lyapunov exponen
of the map is a simple monotonic function of the parame
a. The piecewise linear nature of the map makes its beha
simpler to study than, say, the cubic map described ab
The map is shown in Fig. 1, the inset giving a detailed p
ture of the region around the discontinuity atx50. Figure 2
shows the evolution of the map’s attractor witha increasing
from 0 to 4.

FIG. 1. The DAT map fora052.01. Inset: a magnified view o
the map in the interval@20.005,0.005#3@20.005,0.005#.

FIG. 2. Attractor of the DAT map vsa0. The figure was ob-
tained forx0PR. Forx0PL the corresponding image is obtained b
reflecting about thex axis.
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The map has a symmetrical pair of fixed pointsx1,2*
56(11a/2)/(11a) which are stable for 0,a,1 and un-
stable fora.1. Another pair of unstable fixed points,x3,4*
56(12a/2)/(12a) come into existence fora.2. It is to
be noted that asa→2 from above,x3,4* both collide atx
50 causing an interior crisis, which leads to symme
breaking of the chaotic attractor.

To observe SR, the value ofa was kept close to 2, and
then modulated sinusoidally with amplituded and frequency
v, i.e.,

an115H a01d sin~2pvn! if xPR

a02d sin~2pvn! if xPL.
~2!

We refer to this henceforth as multiplicative or paramet
perturbation, to distinguish it from additive perturbation~dis-
cussed later!.

The system immediately offers an analogy to the class
bistable well scenario of SR. The sub intervalsL andR cor-
respond to the two wells between which the system hop
and fro, aided by the inherent noise~chaos! and the periodic
signal. In each positive~negative! half-cycle of the periodic
signal, a portion of the map defined overR ~L! overlaps into
the domain of the other portion defined overL ~R!. This is
analogous to the successive raising and lowering of the w
in synchronization with the signal frequency, allowing th
system to escape from one well to the other. The resul
intermittent switching of the trajectory betweenL and R is
shown in Fig. 3. If the dynamics of the system due to t
internal noise~chaos! has some inherent time scale~saynk),
as 1/v→nk , the two time scales may lock onto each oth
This resonance should be observable through an increa
the response characteristics of the map.

The response of the system is measured in terms of
normalized distribution of residence times,N(n) @7#. This
distribution shows a series of peaks centered atnj5( j
2 1

2 )n0, i.e., odd-integral multiples of the forcing period
n051/v. The strength of thejth peak,

Pj5E
nj 2an0

nj 1an0
N~n!dn~0,a,0.25!, ~3!

is obtained at different values ofv, keepinga0 fixed for
j 51, 2, and 3. To maximize sensitivity,a was taken to be

FIG. 3. The time evolution of the sinusoidally perturbed DA
map for a052.01, v5

1
400, and d50.05. The broken line is the

boundary betweenL andR.
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0.25. Fora052.01 andd50.05, the response of the syste
showed a nonmonotonic behavior asv was varied, withP1
peaking atv1; 1

400, a value dependent upona0—a clear sig-
nature of a SR-type phenomenon.P2 andP3 also showed a
nonmonotonic behavior, peaking roughly at odd-integ
multiples ofv1 @Fig. 4~a!#. For a0,2, P1 increases mono
tonically to 1 with decreasingv, while, Pj ( j .1) goes down
to zero. So, ‘‘true resonance,’’ signified by the nonmon
tonic profile ofP1, occurs only fora0.2.

Similar observations ofPj were done also by varyinga0
keepingv fixed. Figure 4~b! shows the results of simulation
for v5 1

400 and d50.05. Here also a nonmonotonicity wa
observed forP1, P2, andP3. The broadness of the respon
curve and the magnitude of the peak strengths are a func
of the perturbation magnitude,d. The variation ofP1 with
a0 for different values ofd were also studied. Asd de-
creases, the response curve becomes more sharply pe
while the peak strength decreases.

Note that the parametric perturbation cannot be d
without modulating the noise intensity. This seems to be
difference between this type of chaotic resonance and c
sical SR. As the local slope of the map,a, is varied periodi-
cally, the internal noise, whose intensity is a function of t
Lyapunov exponent~and hence ofa) also varies periodi-
cally. In contrast, for classical SR, the wells are raised
lowered periodically without affecting the external nois
which is independent of the geometry of the wells.

Analytical calculations were done to obtain the invaria
probability density and the dominant time scale govern
the residence-time distribution. This was done by proper p
titioning of the domain of definition of the system and o
taining the eigenvalues of the corresponding transition m
trix. From Fig. 2, it is clear that the system spends a lon
time in the interval@2e/2,e/2#, wheree5a022. So a natu-
ral partitioning of the interval@21,1# is into the four sub-
intervals:C1: @21,2e/2#, C2: @2e/2,0#, C3: @0,e/2#, and
C4: @e/2,1#. This is an exactly Markov partition at integra
values ofe, i.e., the partition boundaries$pi% transform into
each other on application of the map dynamics (f (pj )
P$pi%). It is assumed that fore→0 the partitioning approxi-
mately retains its Markovian character, so that the proc
can be mapped onto a Markov process. Close toe50, the
transition matrix corresponding to the above partitioning

W5U12e/22e2/4

12e2/4

e

4~12e2/4!

e

4~12e2/4!
0

e

21e

1

21e

1

21e
0

0
1

21e

1

21e

e

21e

0
e

4~12e2/4!

e

4~12e2/4!

12e/22e2/4

12e2/4

U ,

~4!

whereWi j 5P(Ci ,Cj ) is the probability of transition from
Ci to Cj . The eigenvalues of the above matrix arel151,
l25(12e/22e2/4)/(12e2/4), l35(12e)/(12e2/4,) and
l450. The largest eigenvalue 1 corresponds to the invar
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probability density over the four intervals. The next large
eigenvalue dominates any time-dependent phenomena.
relevant time scale~i.e., the mean residence time! is given by
@3#

nk5
21

lnS 12e/22e2/4

12e2/4
D .

21

ln~12e/2!
. ~5!

So, for a052.01, nk.200. This predicts that a peak in th
response should be observed at a frequency 1/2nk .1/400,
which agrees with the simulation results. For smalle, l2
.exp(2e/2). Therefore, asa0→2 from above, the resi-
dence time diverges as

nk;~a02a0* !21, a0* 52. ~6!

The mean time spent by the trajectory in any one of
subintervals~L or R! can be calculated exactly for piecewis
linear maps @13#. For e.0, the intervalsb15@0,e/2(2
1e)# andb25†12 @e/2(21e) #,1‡ of R maps toL, so that
the trajectory escapes from one subinterval to the other. N
the symmetrical placement of the twoR→L ‘‘escape re-
gions’’ about x50.5, because of the symmetryF(1/22x)
5F(1/21x) of the DAT map. So the total fraction ofR
escaping toL after one iteration isl 152e/2(21e). Let us
now consider the first preimage ofb1 andb2, which escapes
from R to L after two iterations. The total fraction ofR be-
longing to this set isl 254e/2(21e)2. Proceeding in this
manner, we find from the geometry of the map that the to
fraction of R which maps toL after n iterations, is

l n5
2ne

2~21e!n
. ~7!

These are just the probabilities that the trajectory spend
period of n iterations in R before escaping toL (( j 51

` l j

51). So the average lifetime of a trajectory inR is

^n&5(
j 51

`

~ j 21!l j5
2

e
. ~8!

FIG. 4. ~a! Pn (n51, 2, 3! vs v for a052.01 andd50.05, ~b!
Pn (n51, 2, 3! vs a0 for v5

1
400 andd50.05. The circles represen

the average value ofPn for 18 different initial values ofx, and the
bars represent the standard deviation. The data points are joine
solid lines for the reader’s convenience.
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For a052.01, ^n&5200, in good agreement with the resu
obtained using the approximate Markov partitioning~which
ensures the validity of the latter approximation!. The above
equation also exactly establishes the linear scaling relatio
the mean lifetime aboute50, with ^n& diverging at a0
52. By symmetry of the map, identical results will be o
tained if we consider the trajectory switching fromL to R.

Another interesting quantity which also shows a scal
behavior arounde50, is the drift ratev from one subinterval
to the other@14#. This measures the rate at which the chao
trajectory switches betweenL andR. Owing to the symmetry
F(2x)52F(x) of the DAT map, the net drift rate is zero
i.e., switching to either subinterval occurs equally often. L
us consider switching fromR to L ~identical results will hold
for switching in the opposite direction due to symmetr!.
The drift rate is measured by the fraction of R mapping toL
per iteration. Hence v5 e/~21e!. It is again a linear scaling
relation asa0→2 from above. Note that, fora0,2, v50 as
the two subintervals are isolated from each other. Thusv is
analogous to an order parameter, having a finite~positive!
value abovea052 and zero below it. This suggests that t
merging of the chaotic attractors ata052 is akin to a critical
phenomena, with the local slopea0 as the tuning paramete

A similar study was also conducted with additive pertu
bation for the above map. In this case the dynamical sys
is defined as follows:xn115F(xn)1d sin(2pvn). For a
51.9 ~say!, the map has two disconnected subinterva
L:@21,0! and R:~0,1#. However, an additive perturbation o
magnituded.0.1 causes a portion ofL to diffuse intoR in
the positive half-cycle of the sinusoidal signal~of frequency
v). Similarly, in the negative half-cycle, a portion of theR
interval diffuses intoL. The long-term behavior of the map
described by a ‘‘smeared-out’’ DAT map with a widthd,
rather than the ‘‘crisp’’ piecewise linear DAT map witha0
51.9. This happens as the map performs a periodic ver
motion, causing a smearing out over time. The simulat
results showed a nonmonotonic behavior for the respons
either v or a0 was varied, keeping the other constant, b
this was less marked than in the case of multiplicative p
tat
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turbation. This work can be seen in context with studies c
ducted on the dynamics of the logistic map under parame
perturbation@15#.

Low-dimensional discrete-time dynamical systems
amenable to several analytical techniques, and hence ca
well understood compared to other systems. The exam
tion of resonance phenomena in this scenario was for eas
numerical and theoretical analysis. However, it is reasona
to assume that similar behavior occurs in a high
dimensional chaotic system described by both maps and
ferential equations.

The close resemblance of the merging of attractors w
critical phenomena has possible relevance to SR in Is
systems. Although numerical studies have reported SR
kinetic Ising system, it seems to be inconclusive as the
mary peak strength of the normalized residence-time dis
bution shows only a monotonic behavior@16#. This response
profile is identical to that observed in the DAT map fora0
,2. A study of kinetic aspects like hysteresis is plann
which should give information concerning the phase dep
dence of the resonance behavior.

The observation of SR in chaotic systems also has im
cations for the area of noisy information processing. It h
been proposed that the sensory apparatus of several crea
use SR to enhance their sensitivity to weak external stimu
e.g., the approach of a predator. Some experimental wor
crayfish has provided supporting evidence for this asser
@17#. The above study indicates that external noise is
necessary for such amplification, as chaos in neural netw
can enhance weak signals. As chaotic behavior is extrem
common in a recurrent network of excitatory and inhibito
neurons, such a scenario is not entirely unlikely to have
curred in the biological world. This can, however, be co
firmed only by further biological studies and detailed mo
eling of the phenomena.
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P. M. Gade ~JNCASR, Bangalore! and P. A. Rikvold
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