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Dynamical response of an excitatory-inhibitory neural network to external stimulation:
An application to image segmentation
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Neural network models comprising elements that have exclusively excitatory or inhibitory synapses are
capable of a wide range of dynamical behavior, including chaos. In this paper, a simple excitatory-inhibitory
neural pair, which forms the building block of larger networks, is subjected to external stimulation. The
response shows transition between various types of dynamics, depending upon the magnitude of the stimulus.
The corresponding network model, obtained by coupling such pairs over a local neighborhood in a two-
dimensional plane, can achieve a satisfactory segmentation of an image into ‘‘object’’ and ‘‘background.’’
Results for synthetic and ‘‘real-life’’ images are given.
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I. INTRODUCTION

Dynamical transitions in brain activity, in the presence
an external stimulus, have received considerable atten
recently. Most investigations of these phenomena have
cused on the phase synchronization of oscillatory activity
neural assemblies. An example is the detection of synchr
zation of ‘‘40-Hz’’ oscillations within and between visua
areas and between cerebral hemispheres of cats@1# and other
animals. Assemblies of neurons have been observed to
and separate depending on the stimulus.

Schuster and Wagner@2,3# have demonstrated the activit
dependent coupling between the neuronal oscillators. The
cillators are tightly coupled in their active state and wea
coupled in their passive state, and the activity depend
couplings are independent of the underlying connectivitie
the neural assemblies. Theoretical investigations are
made about the interactions between the weakly coupled
semblies of neuronal oscillators by Grannanet al. @4#.

These studies have led to the speculation that phase
chronization of oscillatory neural activity is one of the ke
mechanisms for ‘‘visual binding.’’ This is the process b
which local stimulus features of an object~e.g., color, mo-
tion, shape!, after being processed in parallel by differe
~spatially separate! regions of the cortex, are correctly inte
grated in higher brain areas, forming a coherent represe
tion ~‘‘gestalt’’ !.

Sensory segmentation, the ability to pick out certain o
jects by segregating them from their surroundings, is a pr
example of ‘‘binding.’’ The problem of segmentation of se
sory input is of primary importance in several fields. In t
case of visual perception, ‘‘object-background’’ discrimin
tion is the most obvious form of such sensory segmentat
the object to be attended to, is segregated from the surro
ing objects in the visual field. Several methods for segm
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tation, both classical and connectionist, are reported in
literature@5#.

Most of the studies on segmentation through neural
sembly formation have concentrated on networks of osci
tors that synchronize when representing the same ob
Malsburg and co-workers@6# have sought to explain segmen
tation throughdynamic link architecturewith synapses tha
rapidly switch their functional state. Similar approaches
ing synaptic couplings that change rapidly depending on
stimulus have been used in a neural model for segmenta
by Spornset al. @7#. Grossberg and Sommers@8# have per-
formed figure-ground separation with a network of oscil
tors, some of which belong to the ‘‘object’’ and the others
the ‘‘background.’’ Oscillations of the former are synchr
nized, whereas the others have nonoscillatory activity. Haet
al @9# have used an oscillatory network for Hopfield-typ
autoassociation in pattern segmentation, using the temp
dynamics of the nonlinear oscillators driven by noise a
subthreshold periodic forcing. If the input is a superpositi
of several overlapping stored patterns, the network segm
out each pattern successively, as synchronous activation
group of ‘‘neurons.’’ Similar segmentation through synchr
nization of activity among a cluster of neurons have be
shown by other groups@10–14#. In an alternative approach
Sompolinsky and Tsodkys@15# have demonstrated the effec
tiveness of coherent coupling in feature segmentation. S
eral image patterns are stored in the model and the coupl
are tuned by Hebb-like learning rule.

In contrast to these approaches, we present a metho
utilizing the transition between different types of dynami
~e.g., between fixed-point and periodic behaviors! of the net-
work elements, for performing segmentation tasks. Here,
investigate the dynamical response of an excitato
inhibitory neural network model evolving in discrete time,
external stimulation of constant intensity~in time!, I. In Sec.
II, we look at how the behavior of an individual eleme
within the network changes withI. A theoretical analysis has
been presented for the transition from period-2 cycles
fixed-point behavior for an isolated excitatory-inhibitory pa
~i.e., not coupled to any other element! with an external input
,
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of constant magnitude. The following section focuses on
role of lateral couplings in a network of such neural pai
Simulation results for the spatially interacting coupled n
work are presented in Sec. IV, where the model is used
segment gray-level images. Finally, possible improveme
of the proposed method are discussed in Sec. V.

II. THE EXCITATORY-INHIBITORY NETWORK MODEL

The model on which we have based our investigatio
comprises excitatory and inhibitory neurons, coupled to e
other over a local neighborhood. As we are updating
model only at discrete time intervals, it is the time-averag
activity of the neurons that is being considered. Therefo
the ‘‘neuronal activity’’ can be represented as a continuo
function, saturating to some maximum value, inversely
lated to the absolute refractory period. This is arbitrar
taken to be 1, so that we can choose the following sigm
function to be the neural activation function for our mode

Fm~z!5H 12exp~2mz! if z>0

0 otherwise.
~1!

The basic module of the proposed network is a pair of ex
tatory and inhibitory neurons coupled to each other~Fig. 1,
inset!. If x andy are the activities of the excitatory and th
inhibitory elements, respectively, then they evolve in tim
according to

xn115Fa~wxxxn2wxyyn1I n!,

yn115Fb~wyxxn2wyyyn1I n8!, ~2!

where,wi j is the weight of synaptic coupling from elemenj
to elementi, F is the activation function defined by Eq.~1!,

FIG. 1. The one-dimensional neural map,F @Eq. ~4!#. The acti-
vation functions for the constituent excitatory~slope,a520) and
inhibitory (b55) neurons are also plotted using broken lines. T
excitatory-~x! inhibitory ~y! neural pair is shown as an inset. Link
terminating in arrows indicate excitatory connections, while tho
terminating in circles indicate inhibitory connections.
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and I ,I 8 are external stimuli. By imposing the following re
striction on the values of the synaptic weights:wxy /wxx
5wyy /wyx5k, and absorbingwxx and wyy within a and b
~respectively!, we can simplify the dynamics to that of th
following one-dimensional difference equation or ‘‘map’’:

zn115Fa~zn1I n!2kFb~zn1I n8!. ~3!

Without loss of generality, we can takek51. In the follow-
ing account we will be considering only time-invariant e
ternal stimuli, so that, for our purposesI n5I n85I . The result-
ant neural map exhibits a wide range of dynamics~fixed
point, periodic, and chaotic!, despite the simplicity of the
model @16,17#.

A. Dynamics of a single excitatory-inhibitory neural pair

The autonomous behavior~i.e., I ,I 850) of an isolated
pair of excitatory-inhibitory neurons shows a transition fro
fixed point to periodic behavior and chaos with the variati
of the parametersa andb, following the ‘‘period-doubling’’
route, universal to all smooth, one-dimensional unimo
maps@18#. The map

zn115F~zn!5Fa~zn!2Fb~zn!, ~4!

describing the dynamics of the pair~Fig. 1!, has two fixed
points, atz1* 50 andz2* @which is the solution of the tran
scendental equationz5exp(2bz)2exp(2az)#. The fixed
point z1* is stable if the local slope@.(a2b)# is less than 1.
When this condition no longer holds,z1* loses stability and
z2* becomes stable by a transcritical bifurcation. On furth
increase ofa, this fixed point also loses stability and
period-2 cycle occurs. Increasinga leads to a sequence o
period doublings ultimately giving rise to chaos.

The introduction of an external stimulus of magnitudeI
has the effect of horizontally displacing the map, Eq.~4!, to
the left by I. This implies thatz1* 50 is no longer a fixed
point, while the other fixed pointz2* is now a solution of the
equationz5exp@2b(z1I)#2exp@2a(z1I)#. The slope atz2*
decreases with increasingI, giving rise to a reverse period
doubling transition from chaos to periodic cycles to final
fixed-point behavior.

B. Analysis of response to constant magnitude external
stimulus

We shall now consider how the dynamics of th
excitatory-inhibitory pair changes in response to exter
stimulus. The dynamics of the isolated neural pair is giv
by @using Eq.~1!#

zn115exp@2b~zn1I !#2exp@2a~zn1I !#. ~5!

Note that, forI .0, only the stability of the nonzero fixed
point z2* needs to be examined. Hence, in what follows,z*
5z2* . The fixed point is marginally stable if (a2b)exp
@2a(z*1Ic)#5bz*21, where,I c is the critical external stimu-
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DYNAMICAL RESPONSE OF AN EXCITATORY- . . . PHYSICAL REVIEW E 65 046112
lus for which z* just attains stability. Defining a new var
able,a5(bz* 21)/(a2b), the fixed point can be expresse
as

z* 5
1

b
1

12m

m
a, ~6!

wherem5b/a, and the condition for marginal stability be
comes

exp@2a~z* 1I c!#5a. ~7!

Now, from Eq.~5!, the marginally stable fixed point can b
expressed asz* 52exp@2a(z*1Ic)#1exp@2b(z*1Ic)#. So,
from Eqs.~6! and ~7!, we have

a5
1

b1/m
~11aa!1/m. ~8!

Assumingaa!1, only the first order terms ina need to be
considered, so that

a5
1

b1/m2
a

m

. ~9!

For a real solution ofz* to exist, we must havea.0, i.e.,
a,mb1/m. Sinceb5ma, a.m (m11)/(m21). For example, if
m50.5, thena.8 for z* to be real. From the condition fo
marginal stability and Eq.~6!, one obtains

I c5S m21

m Da2
1

ma
2

1

a
ln~a!. ~10!

This equation, together with Eq.~9!, provides the critical
value of the external stimulus that drives the oscillatory n
ron pair to a fixed stable state, subject to the restriction
z* is real.

This expression can be further simplified. From Eq.~8!,
one can writem ln(a)52ln(b)1ln(11aa). As before, as-
sumingaa!1, we need to consider only the first order term
in a in the right hand side of the logarithmic expansion,
that

ln~a!5
aa

m
2

1

m
ln~b!. ~11!

From Eqs.~9!, ~10!, and ~11!, the critical magnitude of the
external stimulus can be expressed as

I c5

12
2

m

~ma!1/m2
a

m

1
1

ma
@ ln~ma!21#. ~12!

Figure 2 shows thea vs I c curves for different values ofm,
viz., m 5 0.1, 0.25, and 0.5.
04611
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C. Choosing the operating region

To make the network segment regions of different inte
sities (I 1,I 2, say!, one can fixm and choose a suitablea,
such thatI 1,I c,I 2. So elements, which receive input o
intensity I 1, will undergo oscillatory behavior, while ele
ments receiving input of intensityI 2, will go to a fixed-point
solution. Notice that, the curves obtained from Eq.~12! give
two values ofa for the sameI c . This gives rise to an opera
tional question: given a certainI c , which value ofa is more
appropriate? Notice that, the region of thea vs I c curve@Fig.
~2!# to the left of the maxima, has a very high gradient. Th
implies that, in the presence of wide variation in the possi
value of I c , choice of a from this region will show very
small variation, i.e., the system performance will be rob
with respect to uncertainty in the determination of the app
priate value ofI c . This is possible in the case of any gra
level image with a bimodal intensity distribution, having
long, almost uniform valley in between the two maxima.

On the other hand, the region of the curve to the right
the maxima has a very low gradient~almost approaching
zero for high values ofa!. This implies structural stability in
network performance, as wide variation in choice ofa will
give almost identical results. So, choice ofa from this region
is going to make the network performance stable aga
parametric variations. As both robustness against uncer
input and stability against parametric variations are hig
desirable properties in network computation, a trade-
seems to be involved here. The nature of the task in han
going to be the determining factor of which value ofa we
should choose for a specificI c .

III. THE TWO-DIMENSIONAL NETWORK OF
EXCITATORY-INHIBITORY NEURAL PAIRS

The introduction of spatial interactions over a local neig
borhood in the above model produces some qualita

FIG. 2. Critical magnitude (I c) of the external stimulus, a
which transition from periodic to fixed-point behavior occurs. T
circles ~filled and blank! and squares represent the values obtain
through numerical procedures form50.5, 0.25, and 0.1, respec
tively. The curves indicate the theoretically predicted values
tained from Eq.~12!.
2-3
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SITABHRA SINHA AND JAYANTA BASAK PHYSICAL REVIEW E 65 046112
changes in the response of the network to external stimu
We have considered discrete approximations of circu
neighborhoods@19# of radii Rex andRin (R51,2) for exci-
tatory and inhibitory elements, respectively, in our simu
tions.

Let us consider the caseRex5Rin . Then the autonomou
dynamics of the coupled network is given by

zn115FS zn1
1

uRexu
(

i PRex

zn
i D ,

where uRu indicates the number of neurons within a neig
borhood. To see how well the network performs segmen
tion, let an external inputI be applied to each element in th
network. In addition to the local dynamics for a single e
ment, we now also need to take into account the role
lateral coupling between neighboring excitatory-inhibito
neural pairs. The lateral coupling enables some degre
local smoothing of isolated discontinuities in the image to
achieved~thereby markedly improving the segmentation p
formance of the network!. This can be seen from the follow
ing argument. Let us assume that thei th neuronal pair is
given an inputI while the pairs surrounding it are subject
an input I 8 (I ,I c,I 8). In the absence of lateral coupling
the surrounding pairs converge to fixed-point attractors w
the i th pair undergoes a period-2 cycle. To see how the
namics of thei th pair is altered by the interaction with neigh
boring pairs, we look at the time evolution of successive ti
difference of the activity of thei th pair zi ,

dzn
i 5zn11

i 2zn
i

5FS zn
i 1

1

uRexu
(

j PRex

zn
j 1I D

2FS zn21
i 1

1

uRexu
(

j PRex

zn21
j 1I D . ~13!

Note that, the contribution from the neighboring eleme
~which have all converged to the fixed-point attractor! is
(1/uRexu)S j PRex

zn
j 5(1/uRexu)S j PRex

zn21
j 5z* , say. Assum-

ing uzn
i 2z* u!1 and considering only the first order term

the expansion of Eq.~13! aboutz52z* 1I , we obtain

dzn
i 5S ]F

]zD
z52z* 1I

dzn21
i .

Provided (I c2I ),z* , 21,(]F/]z)uz52z* 1I,0, so that,
dzn

i →0 asn→`. Therefore,zi converges to fixed point as
result of the lateral coupling with neighboring excitator
inhibitory neural pairs, allowing the isolated discontinuity
be smoothed out and classified as part of its neighborh
during segmentation.

There is an important feature to consider about the r
tive sizes of the neighborhoods of the excitatory and inh
tory neurons,Rex and Rin , respectively. The autonomou
dynamics of a coupled network is given by
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zn115FS zn1
1

uRexu
(

i PRex

xn
i 2

1

uRinu (
i PRin

yn
i D .

This can be rewritten as

zn115FS zn1
1

uRexu
(

i PRex

zn
i 1

1

uRexu
(

i PRex

yn
i

2
1

uRinu (
i PRin

yn
i D .

If Rex5Rin , then the equation reduces to

zn115FS zn1
1

uRexu
(

i PRex

zn
i D .

As zn>0 at all sitesi, the activation increases withn, asymp-
totically driving the network to a homogeneous, uniform
activated state whenRex5Rin . However, for the times upto
which we have simulated the network model, the output
the two casesRex5Rin andRex,Rin are qualitatively simi-
lar ~as seen in Figs. 3 and 4!.

IV. SIMULATION AND RESULTS

The response behavior of the excitatory-inhibitory neu
network with local couplings has been utilized in segment
images and the results are shown in Figs. 3 and 4. B
synthetic and ‘‘real-life’’ gray-level images have been use
The initial state of the network is taken to be totally rando
The image to be segmented is presented as external inp
the network, which undergoes 200–300 iterations. Keepina
fixed, a suitable value ofm is chosen from a consideration o
the histogram of the intensity distribution of the image. Th
allows the choice of a value for the critical intensity (I c),
such that, the neurons corresponding to the object conv
to fixed-point behavior, while those belonging to the bac

FIG. 3. Results of implementing the proposed segmenta
method on a noisy synthetic image:~a! original image,~b! output of
the uncoupled network,~c! output of the coupled network (Rex

51,Rin52), and ~d! output of the coupled network (Rex5Rin

52), after 200 iterations (a520, m50.25 and thresholdu50.02).
2-4
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ground undergo period-2 cycles. In practice, after the ter
nation of the specified number of iterations, the neurons
remain unchanged over successive iterations~within a toler-
ance value,u) are labeled as the object, the remaining be
labeled the background.

The synthetic image chosen is that of a square of inten
I 2 ~the object! against a background of intensityI 1 (I 1
,I 2). Uniform noise of intensitye is added to this image
The signal-to-noise ratio~SNR! is defined as the ratio of th
range of gray levels in the original image to the range
noise added~given by e). For SNR51, the results of seg
mentation are shown in Fig. 3. Figure 3~a! shows the original
image while segmentation performance of the uncoupled
work is presented in Fig. 3~b!. As is clear from the figure, the
isolated neurons perform poorly in identifying the bac
ground in the presence of noise. The segmentation pe
mance improves remarkably when spatial interactions are
cluded in the model. Results forRex51,Rin52, andRex
5Rin52 are shown in Figs. 3~c! and 3~d!, respectively. The
two architectures show very similar segmentation results
least upto the iterations considered here, although the latt

FIG. 4. Results of implementing the proposed segmenta
method on ‘‘Lincoln’’ image:~a! original image,~b! output of the
uncoupled network,~c! output of the coupled network (Rex

51,Rin52), and ~d! output of the coupled network (Rex5Rin

52), after 300 iterations (a530, m50.25, and thresholdu
50.02).
al
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unstable~as discussed in the previous section!. Excepting for
the boundary of the object, which is somewhat broken,
rest of the image has been assigned to the two diffe
classes quite accurately.

We have also considered the 5-bit gray level ‘‘Lincoln
image@Fig. 4~a!# as an example of a real-life picture. A sui
ableI c has been estimated by looking at the histogram of
gray-level values, and taking the trough between two do
nating peaks as the required value. As in the synthetic ima
the performance of a network of uncoupled neurons is
satisfactory@Fig. 4~b!#. The results of including spatial inter
action are shown in Figs. 4~c! and 4~d!. Most of the image
has been labeled accurately, except for a few regions~e.g.,
near the neck!.

Note that, we have considered a single value ofa ~and
henceI c) for the entire image. This is akin to ‘‘global thresh
olding.’’ By implementing local thresholding and choosinga
on the basis of local neighborhood information, the perf
mance of the network can be improved.

V. DISCUSSION

In the present work, we have assumed constant con
tion weights over a local neighborhood. However, a Gau
ian profile of weights may be biologically more realisti
One can also make the critical intensityI c proportional to the
ambient intensity. This is in tune with how the retina see
to alter its sensitivity to incoming visual stimuli@20#. Finally,
the role of variable connection weights, that can be imp
mented in the present model by changing the value ofk ~ratio
of the weights!, may be investigated.

Chaotic neurodynamics has been used to segment im
by Hasegawaet al. @21# and van Leeuwenet al. @22#. How-
ever, while the former approach is based on using chao
avoid the local minima problem in the variable shape blo
segmentation method, the latter uses locally adaptive c
pling to synchronize the chaotic activity of individual ele
ments. We have instead concentrated on using stimulus
duced transitions in neural network dynamics to segm
images. As Malsburg@6# has indicated, the reason oscillato
synchronization has been studied so far as a mean of
menting sensory stimuli is its relative ease of analysis. Ho
ever, with the developments in nonlinear dynamics and ch
theory, we can advance to segmentation using more gen
dynamical behavior.
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