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Dynamical response of an excitatory-inhibitory neural network to external stimulation:
An application to image segmentation
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Neural network models comprising elements that have exclusively excitatory or inhibitory synapses are
capable of a wide range of dynamical behavior, including chaos. In this paper, a simple excitatory-inhibitory
neural pair, which forms the building block of larger networks, is subjected to external stimulation. The
response shows transition between various types of dynamics, depending upon the magnitude of the stimulus.
The corresponding network model, obtained by coupling such pairs over a local neighborhood in a two-
dimensional plane, can achieve a satisfactory segmentation of an image into “object” and “background.”
Results for synthetic and “real-life” images are given.
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[. INTRODUCTION tation, both classical and connectionist, are reported in the
literature[5].

Dynamical transitions in brain activity, in the presence of Most of the studies on segmentation through neural as-
an external stimulus, have received considerable attentiopembly formation have concentrated on networks of oscilla-
recently. Most investigations of these phenomena have folors that synchronize when representing the same object.
cused on the phase synchronization of oscillatory activity inMalsburg and co-workeil$] have sought to explain segmen-
neural assemblies. An example is the detection of synchronf@tion throughdynamic link architecturevith synapses that
zation of “40-Hz” oscillations within and between visual "apidly switch their functional state. Similar approaches us-
areas and between cerebral hemispheres of thed other  INd Synaptic couplings that change rapidly depending on the

animals. Assemblies of neurons have been observed to forg{imulus have been used in a neural model for segmentation
and separate depending on the stimulus. y Spornset al. [7]. Grossberg and Sommel8] have per-

.. formed figure-ground separation with a network of oscilla-
Schuster and Wagn¢,3] have demonstrated the activity tors somge of v%hich belorF:g to the “object” and the others to

dgpendent cquplmg betweer_1 the r_1eurolnal oscillators. The O%he “background.” Oscillations of the former are synchro-
cillators are tlghtly cou_pled in their active sta_te_ and VVe""klynized, whereas the others have nonoscillatory activity. étan
coupled in their passive state, and the activity dependent g1 have used an oscillatory network for Hopfield-type
couplings are independent of the underlying connectivities in, ;:nassociation in pattern segmentation, using the temporal
the neural asse_mblies._ Theoretical investigations are alstﬂ’ynamics of the nonlinear oscillators driven by noise and
made about the interactions between the weakly coupled agypthreshold periodic forcing. If the input is a superposition
semblies of neuronal oscillators by Granretral. [4]. of several overlapping stored patterns, the network segments

These studies have led to the speculation that phase syBut each pattern successively, as synchronous activation of a
chronization of oscillatory neural activity is one of the key group of “neurons.” Similar segmentation through synchro-
mechanisms for “visual binding.” This is the process by nization of activity among a cluster of neurons have been
which local stimulus features of an obje@.g., color, mo- shown by other groupgl0—14. In an alternative approach,
tion, shapg after being processed in parallel by different Sompolinsky and Tsodkyd5] have demonstrated the effec-
(spatially separajeregions of the cortex, are correctly inte- tiveness of coherent coupling in feature segmentation. Sev-
grated in higher brain areas, forming a coherent representaral image patterns are stored in the model and the couplings
tion (“gestalt”). are tuned by Hebb-like learning rule.

Sensory segmentation, the ability to pick out certain ob- In contrast to these approaches, we present a method of
jects by segregating them from their surroundings, is a primeitilizing the transition between different types of dynamics
example of “binding.” The problem of segmentation of sen- (e.g., between fixed-point and periodic behaviafsthe net-
sory input is of primary importance in several fields. In thework elements, for performing segmentation tasks. Here, we
case of visual perception, “object-background” discrimina- investigate the dynamical response of an excitatory-
tion is the most obvious form of such sensory segmentationinhibitory neural network model evolving in discrete time, to
the object to be attended to, is segregated from the surrounéxternal stimulation of constant intensitiy time), 1. In Sec.
ing objects in the visual field. Several methods for segmenH, we look at how the behavior of an individual element

within the network changes with A theoretical analysis has
been presented for the transition from period-2 cycles to
*Present address: IBM India Research Lab, Block-I, IIT Campusfixed-point behavior for an isolated excitatory-inhibitory pair
Hauz Khas, New Delhi 110 016, India (i.e., not coupled to any other elemgnith an external input
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1 e ' JEp—— andl,l’ are external stimuli. By imposing the following re-
| ‘ - - striction on the values of the synaptic weights;, /w,,
/a=20 - b=5 . S y
K I =Wy, /wy,=Kk, and absorbingv,, andw,, within a andb
o8r .7 w (respectively, we can simplify the dynamics to that of the
following one-dimensional difference equation or “map™:

7
i s X

08 ] ’ Zns1=Fa(zy+1,) —KFy(Zo+1)). A3

F(z)
=

w
XX Yy . .
Without loss of generality, we can take=1. In the follow-

!
0.4+ ! . . . . . . .
! ing account we will be considering only time-invariant ex-

o w ternal stimuli, so that, for our purposks=1/=1. The result-
v ant neural map exhibits a wide range of dynamifized

0.2 [ //
1/ F point, periodic, and chaotic despite the simplicity of the
model[16,17.
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A. Dynamics of a single excitatory-inhibitory neural pair

4
FIG. 1. The one-dimensional neural m&p[Eq. (4)]. The acti- The autonomous behavidi.e., I,1'=0) of an isolated
pair of excitatory-inhibitory neurons shows a transition from

vation functions for the constituent excitatofslope,a=20) and ) : inn \ _ ra
inhibitory (b=5) neurons are also plotted using broken lines. Thefixed point to periodic behavior and chaos with the variation

excitatory-(x) inhibitory (y) neural pair is shown as an inset. Links of the parametera andb, following the “period-doubling”
terminating in arrows indicate excitatory connections, while thoseroute, universal to all smooth, one-dimensional unimodal
terminating in circles indicate inhibitory connections. maps[18]. The map

of constant magnitude. The following section focuses on the Zy+1=F(zn) =Fa(zn) —Fp(z,), (4)

role of lateral couplings in a network of such neural pairs.
Simulation results for the spatially interacting coupled net-describing the dynamics of the pdffig. 1), has two fixed

work are presented in Sec. IV, where the model is used t@oints, atzf =0 andzj [which is the solution of the tran-
segment gray-level images. Finally, possible improvementgcendental equatiorz=exp(—b2)—exp(-az]. The fixed

of the proposed method are discussed in Sec. V. pointz* is stable if the local slope=(a—b)] is less than 1.
When this condition no longer holdg} loses stability and

z5 becomes stable by a transcritical bifurcation. On further
The model on which we have based our investigationé.ncr,ease ofa, this fixed point.also loses stability and a
comprises excitatory and inhibitory neurons, coupled to eac er!og—g C{ﬁ.le occlu_rs. Inlc;regslrzglgads toha sequence of
other over a local neighborhood. As we are updating thé)etl'_?] Jou O'Ings_ utm;atey glvmglrls:(_e tolc ac;s. itud
model only at discrete time intervals, it is the time-average ﬁ mtfrfo uc?%n or an ﬁxtg_rnal s_tlmu#s of magnitude
activity of the neurons that is being considered. Therefore!2S the €ffect of horizontally displacing the map, B4y, to
éhe left by I. This implies thatz; =0 is no longer a fixed

the “neuronal activity” can be represented as a continuous' '™ - ’ 1 -
function, saturating to some maximum value, inversely refoint, while the other fixed poirnt; is now a solution of the

lated to the absolute refractory period. This is arbitrarilyequationz=exgq —b(z+1)]—exd —a(z+1)]. The slope aiz;
taken to be 1, so that we can choose the following sigmoidiecreases with increasinggiving rise to a reverse period-

function to be the neural activation function for our model: doubling transition from chaos to periodic cycles to finally,
fixed-point behavior.

II. THE EXCITATORY-INHIBITORY NETWORK MODEL

l-exp(—pz) if z=0

. ()
0 otherwise. B. Analysis of response to constant magnitude external

Fu(2)=
stimulus

The basic module of the proposed network is a pair of exci- . .
tatory and inhibitory neurons coupled to each ottfg. 1, We shall now consider how the dynamics of the
insed. If x andy are the activities of the excitatory and the €Xcitatory-inhibitory pair changes in response to external

stimulus. The dynamics of the isolated neural pair is given

inhibitory elements, respectively, then they evolve in time X
according to by [using Eq(1)]
Xn+l=Fa(WXXXn_nyyn+|n) Zn+1:eXF[_b(Zn+|)]_exﬂ:_a(zn+|)]- (5)
Yt 1= Fo(WyxXn—Wyyyn+ 1), 2) Note that, forl >0, only the stability of the nonzero fixed
point z5 needs to be examined. Hence, in what followss,
=275 . The fixed point is marginally stable ifat-b)exp

where,w;; is the weight of synaptic coupling from elemgnt
to element, F is the activation function defined by E€l), [—a(z*+I))]=bZ"—1, where]. is the critical external stimu-
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lus for which z* just attains stability. Defining a new vari- 0.15 ' ' ' '
able,a=(bz* —1)/(a—b), the fixed point can be expressed
as

1 1-
z* =5t —Moz, (6) 01f
7

where u=b/a, and the condition for marginal stability be- —°
comes

exd —a(z* +1.)]=a. 7) 005
Now, from Eq.(5), the marginally stable fixed point can be
expressed ag* =—exd—a(z* +Iy]+exd —b(z* +1.)]. So,
from Eqgs.(6) and(7), we have 0 . . . .
0 20 40 60 80 100
a
azm(1+aa)1/“- tS) FIG. 2. Critical magnitude I¢) of the external stimulus, at

which transition from periodic to fixed-point behavior occurs. The
circles (filled and blank and squares represent the values obtained
through numerical procedures far=0.5, 0.25, and 0.1, respec-
tively. The curves indicate the theoretically predicted values ob-
tained from Eq(12).

Assumingaa<1, only the first order terms ia need to be
considered, so that

a= —1 . 9 C. Choosing the operating region
btk — — To make the network segment regions of different inten-
B sities (;<I,, say, one can fixu and choose a suitabkg
such thatl;<I1.<l,. So elements, which receive input of
intensity 1,, will undergo oscillatory behavior, while ele-
ments receiving input of intensitys, will go to a fixed-point
solution. Notice that, the curves obtained from ELR) give
two values ofa for the samd . This gives rise to an opera-
tional question: given a certalg, which value ofa is more
M—l) o i—lln(a) (10) appropriate? Notice that, the region of thes |, curve[Fig.
7 pa a ' (2)] to the left of the maxima, has a very high gradient. This
implies that, in the presence of wide variation in the possible
This equation, together with Ed9), provides the critical value of I, choice ofa from this region will show very
value of the external stimulus that drives the oscillatory neusmall variation, i.e., the system performance will be robust
ron pair to a fixed stable state, subject to the restriction thawith respect to uncertainty in the determination of the appro-
z* is real. priate value ofl .. This is possible in the case of any gray-
This expression can be further simplified. From E8), level image with a bimodal intensity distribution, having a
one can writeu In(e@)=—In(b)+In(1+aa). As before, as- long, aimost uniform valley in between the two maxima.
sumingaa<1, we need to consider only the first order terms _ On the other hand, the region of the curve to the right of
in « in the right hand side of the logarithmic expansion, soth® maxima has a very low gradiefalmost approaching

For a real solution ofZ* to exist, we must have>0, i.e.,
a<ub¥. Sinceb=pua, a>u# V"1 For example, if
n=0.5, thena>8 for z* to be real. From the condition for
marginal stability and Eq(6), one obtains

le

that zero for high values o#). This implies structural stability in
network performance, as wide variation in choiceaovill
aa 1 give almost identical results. So, choiceadfrom this region
In(a)z;—;ln(b). (11 is going to make the network performance stable against

parametric variations. As both robustness against uncertain
input and stability against parametric variations are highly
desirable properties in network computation, a trade-off
seems to be involved here. The nature of the task in hand is

From Egs.(9), (10), and(11), the critical magnitude of the
external stimulus can be expressed as

2 going to be the determining factor of which value afve
1—— 1 should choose for a specifig .
l o=+ = [In(pa)-1]. (12
( a)llf‘—i pa Ill. THE TWO-DIMENSIONAL NETWORK OF
K m EXCITATORY-INHIBITORY NEURAL PAIRS
Figure 2 shows tha vs |, curves for different values of, The introduction of spatial interactions over a local neigh-
viz., o = 0.1, 0.25, and 0.5. borhood in the above model produces some qualitative
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changes in the response of the network to external stimulus
We have considered discrete approximations of circular
neighborhood$19] of radii R, andR;, (R=1,2) for exci-
tatory and inhibitory elements, respectively, in our simula-
tions.

Let us consider the cage.,=R;, . Then the autonomous
dynamics of the coupled network is given by

1 ; [a) (b)
Z,.1=F Zn+|ReX| iE Zln )

€ Rex

where|R| indicates the number of neurons within a neigh-
borhood. To see how well the network performs segmenta-

tion, let an external input be applied to each element in the

network. In addition to the local dynamics for a single ele-
ment, we now also need to take into account the role of
lateral coupling between neighboring excitatory-inhibitory
neural pairs. The lateral coupling enables some degree o (c) (d)

local smoothing of isolated discontinuities in the image to be

achievedthereby markedly improving the segmentation per- FIG. 3. Results of implementing the proposed segmentation
formance of the netwojk This can be seen from the follow- Method on a noisy synthetic imade) original image (b) output of

ing argument. Let us assume that fite neuronal pair is the uncoupled network(c) output of the coupled networkRy

given an input while the pairs surrounding it are subject to i;'Ri”; 2)2,03n_d (d)_outpu_tzc(n)f the ocgt;plec:lj T}etwﬁ”ﬁjxg@“
an inputl’ (1<1.<1"). In the absence of lateral couplings ~ 2)- &fter 200 iterationsa=20, x=0.25 and threshold=0.02).

the surrounding pairs converge to fixed-point attractors while 1 _ 1 _
theith pair undergoes a period-2 cycle. To see how the dy- 7., =F| zy+ o > X =T DR
namics of theth pair is altered by the interaction with neigh- Red 1£Re Rinl i R,

boring pairs, we look at the time evolution of successive timernis can be rewritten as
difference of the activity of théth pairz',

1 ) 1 )
P i Zy1=F| 2.+ 75— Z,t '
- R A IS ow P
) 1 ) 1 )
=Flz22+ —— e - i
" |Rex| 1'627:28)( " |Rin| iEZRin Yn

19 If Rex=7Rin, then the equation reduces to

) 1 )
PN —— Z
( n-t |Rex| jEERex nt

Z,:1=F

1 :
zZ,+ m i ER ZIn .
Note that, the contribution from the neighboring elements & &
(which have all converged to the fixed-point attragtey  As z,=0 at all sited, the activation increases with asymp-
(URed)Zjcr. 2h=(URey)2jcr_2zh-1=2*, say. Assum- totically driving the network to a homogeneous, uniformly

ex ex . .
; [ o ; ; tivated state wheR.,=R;, . However, for the times upto
ing |z, —z*|<1 and considering only the first order term in 3! = fex™ Yin :
. ok . which we have simulated the network model, the output for

the expansion of Eq13) aboutz=2z* +1, we obtain the two caseR .= Ri, andR.,< R;, are qualitatively simi-
lar (as seen in Figs. 3 and.4

i
0Zy_ 4. IV. SIMULATION AND RESULTS

5 (aF
Zn: —_—
0z z=27* +1

The response behavior of the excitatory-inhibitory neural
Provided (,—1)<z*, —1<(dF/dz)|,-2,+,<0, so that, network with local couplings has been utilized in segmenting
52, —0 asn—. ThereforeZ converges to fixed point as a images and the results are shown in Figs. 3 and 4. Both
result of the lateral coupling with neighboring excitatory- s;r/]nthe_tl_cland re?I-rilfe gray-ll(ey el ||?1agesbhave ﬁeen lésed'
inhibitory neural pairs, allowing the isolated discontinuity to 1€ Initial state of the network is taken to be totally random.
be smoothed out and classified as part of its neighborhoo he image to bg segmented is presente.d as 'external Input to
during segmentation e network, which undergoes 200—-300 iterations. Keeging

There is an important feature to consider about the rel fixed, a suitable value g is chosen from a consideration of

tive sizes of the neighborhoods of the excitatory and inhibﬁthe histogram of the intensity distribution of the image. This

R 4R velv. Th allows the choice of a value for the critical intensitl,)|
tory neurons,Rex and Ri,, respectively. The autonomous g e that, the neurons corresponding to the object converge

dynamics of a coupled network is given by to fixed-point behavior, while those belonging to the back-
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unstablegas discussed in the previous secjidexcepting for

the boundary of the object, which is somewhat broken, the
rest of the image has been assigned to the two different
classes quite accurately.

We have also considered the 5-bit gray level “Lincoln”
image[Fig. 4a)] as an example of a real-life picture. A suit-
ablel. has been estimated by looking at the histogram of the
gray-level values, and taking the trough between two domi-
nating peaks as the required value. As in the synthetic image,
the performance of a network of uncoupled neurons is not
satisfactonfFig. 4(b)]. The results of including spatial inter-
action are shown in Figs.(d and 4d). Most of the image
has been labeled accurately, except for a few regierts,
near the neck

Note that, we have considered a single valueagand
hencel ) for the entire image. This is akin to “global thresh-
olding.” By implementing local thresholding and choosiag
on the basis of local neighborhood information, the perfor-
mance of the network can be improved.

V. DISCUSSION

fe) (d)

In the present work, we have assumed constant connec-

FIG. 4. Results of implementing the proposed segmentatiortion weights over a local neighborhood. However, a Gauss-
method on “Lincoln” image:(a) original image,(b) output of the  jan profile of weights may be biologically more realistic.
uncoupled network,(c) output of the coupled networkRe,  One can also make the critical intensityproportional to the
=1Rin=2), and(d) output of the coupled networkRe,=7Rin  ambient intensity. This is in tune with how the retina seems
=2), after 300 iterations =30, ©=0.25, and threshold?  to alter its sensitivity to incoming visual stim{R0]. Finally,
=0.02). the role of variable connection weights, that can be imple-
ground undergo period-2 cycles. In practice, after the termi-mentecj n the present m_odel t_)y changing the value(aitio
nation of the specified number of iterations, the neurons tha?]c the we_lght$, may be !nvestlgated. :
remain unchanged over successive iterati(w'vimin a toler- Chaotic neurodynamics has been used to segment images
ance valuep) are labeled as the object, the remaining bein by Hasegaw&t al.[21] and van Lgeuweet al [221' How-
labeled the back d ’ geve_r, while the fo_rrr_]er approach_ls based_on using chaos to
abeled the background. ..avoid the local minima problem in the variable shape block
gegmentation method, the latter uses locally adaptive cou-
pling to synchronize the chaotic activity of individual ele-

<I2)._Un|form noise O.f Intensitye 1 added to th's. IMage.  ments. We have instead concentrated on using stimulus in-
The signal-to-noise rap(SNR) IS Qef|n¢d as the ratio of the duced transitions in neural network dynamics to segment
range of gray levels in the original image to the range of.

. . images. As Malsburg6] has indicated, the reason oscillatory
noise addec(gwen by_e). .For SNR:L the results Of Seg- synchronization has been studied so far as a mean of seg-
mentation are shown in Fig. 3. FiguréaBshows the original

) il : ; fth led menting sensory stimuli is its relative ease of analysis. How-
Image while segmentation performance of the uncouple ne{éver, with the developments in nonlinear dynamics and chaos
work is presented in Fig.(B). As is clear from the figure, the

. S e theory, we can advance to segmentation using more general
isolated neurons perform poorly in identifying the back- 4 g g g

. ; : dynamical behavior.
ground in the presence of noise. The segmentation pen‘or-y

mance improves remarkably when spatial interactions are in-
cluded in the model. Results fdR.,=1,Ri,=2, and Rqy
=TR;,=2 are shown in Figs.(8) and 3d), respectively. The We would like to thank Professor S. K. Pa@VIU, ISI,

two architectures show very similar segmentation results, aCalcutta for his constant encouragement. S.S. acknowledges
least upto the iterations considered here, although the latter fsmancial support from JNCASR.

I, (the object against a background of intensity (I,

ACKNOWLEDGMENTS

[1] C.M. Gray, P. Kmig, A.K. Engel, and W. Singer, Natuteon- Comput.5, 550(1993.

don) 333 334(1989. [5] R. C. Gonzalez and R. E. WoodBjgital Image Processing
[2] H.G. Schuster and P. Wagner, Biol. Cybeéd, 77 (1990. (Addison-Wesley, Reading, MA, 1992
[3] H.G. Schuster and P. Wagner, Biol. Cybeéd, 83 (1990. [6] C. von der Malsburg and J. Buhmann, Biol. Cybei, 233

[4] E.R. Grannan, D. Kleinfeld, and H. Sompolinsky, Neural (1992.

046112-5



SITABHRA SINHA AND JAYANTA BASAK

[7] O. Sporns, G. Tononi, and G.M. Edelman, Proc. Natl. Acad.

Sci. U.S.A.88, 129(199)).

[8] S. Grossberg and D. Somers, Neural Netwatkd53 (1991).

[9] S.K. Han, W.S. Kim, and H. Kook, Phys. Rev. 8, 2325
(1998.

[10] H. Sompolinsky, D. Golomb, and D. Kleinfeld, Proc. Natl.
Acad. Sci. U.S.A87, 7200(1990.

[11] T.B. Schillen and P. Koig, Biol. Cybern.70, 397 (1994.

[12] D.L. Wang, IEEE Trans. Neural Net\8, 941(1995.

[13] S. Campbell and D.L. Wang, IEEE Trans. Neural Netps41
(1996.

[14] H.J. Kappen, Phys. Rev. &5, 5849(1997).

[15] H. Sompolinsky and M. Tsodyks, Neural Compu,. 642

PHYSICAL REVIEW E 65046112

(1994.

[16] S. Sinha, Fundamenta Informatica& 31 (1999.

[17] S. Sinha, Ph.D. thesis, Indian Statistical Institute, Calcutta,
1998.

[18] S. H. Strogatz,Nonlinear Dynamics and ChaogAddison-
Wesley, Reading, MA, 1994

[19] S.N. Biswas and B.B. Chaudhuri, Comput. Vis. Graph. Image
Process32, 158 (1985.

[20] F.S. Werblin, Ann. N.Y. Acad. Scil90, 75 (1972.

[21] M. Hasegawa, T. lkeguchi, T. Matozaki, and K. Aihara, IEICE
Trans. Fundamentalg9, 1630(1996.

[22] C. van Leeuwen, M. Steyvers, and M. Nooter, J. Math. Psy-
chol. 41, 319(1997.

046112-6



