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Abstract
Complex networks, comprising tens to thousands of nodes are ubiquitous in 
society, ranging from acquaintance networks—which are of interest in sociology— 
to networks of interactions between companies and financial institutions—which 
are of interest in economics. A large number of such systems exhibit structural 
patterns that appear to be universal. One such organizational feature seen in 
many networks is modularity, where the network is divided into several con-
nected clusters (‘communities’) with the connection density in each cluster being 
significantly higher than that for the entire network. Modularity can often be 
also hierarchical, appearing at several different scales. Recent advances in recon-
structing networks from empirical data have shown that modularity is ubiqui-
tous. In this article we explore the role of modularity in organizing the collective 
dynamics of social networks. The lessons of this analysis may have important 
implications for understanding the process of consensus formation through indi-
viduals affecting the opinions of their neighbours via interactions through the 
links of the social network.
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so·ci·e·ty 1. the totality of social relationships among organized groups of human beings 
or animals. (Collins English Dictionary 10th edition, 2009)

com·mu·ni·ty 1. a social group of any size whose members reside in a specific locality, 
share government, and often have a common cultural and historical heritage. (Retrieved 
from http://dictionary.reference.com/)
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In a letter written from his cell at Birmingham City Jail and addressed to his fel-
low clergymen, Martin Luther King, Jr., had astutely observed that ‘we are caught 
in an inescapable network of mutuality, tied in a single garment of destiny. 
Whatever affects one directly, affects all indirectly’ (King, 1963). It succinctly 
expresses the important fact that society is essentially the network of transactions, 
exchanges and interactions between individuals and families, and in some contexts, 
between organizations, groups or institutions. It is then perhaps not surprising that 
the study of complex networks has been intensely pursued by many sociologists in 
the preceding century (Wasserman, 1994). However, the last decade and a half has 
seen an unprecedented interest in this area from scientists working in a variety of 
disciplines (Boccaletti et al., 2006; Newman, 2010). To an extent this has been 
driven by the technological development of computers and the internet. The rise of 
online social networks has meant that scientists can now analyze systems compris-
ing millions of individuals, compared to a network of tens, or perhaps hundreds of 
individuals, that could be studied by sociologists in earlier times. In parallel, new 
computational algorithms for analyzing ‘big data’ has allowed us to look for novel 
structural patterns of connectivity in these large social networks. 

Hand in hand with the increased power in handling empirical data, we have seen 
the rise of new theoretical approaches in understanding important aspects of the 
structure, dynamics and evolution of complex networks, starting from the pioneer-
ing papers introducing the concept of ‘small-world’ (Watts and Strogatz, 1998) and 
‘scale-free’ (Barabasi and Albert, 1999) networks. These developments marked a 
striking departure from the hitherto usual practice of considering the interactions 
being arranged along the links of a regular geometric lattice (grid) suggested by the 
nearest neighbour interactions seen in physical systems, or assuming that the inter-
actions were taking place between pairs of randomly chosen vertices of a graph, the 
most famous class of such random networks being named after Paul Erdos and 
Alfred Renyi who had studied them in detail (Bollobas, 1998). While it was known 
that real networks, such as those that occur among individuals in a society, are nei-
ther completely random not geometrically regular, before the introduction of the 
new theoretical models of complex networks it had not been possible to get a deep 
understanding of the role of the actual structure of interactions—such as the exis-
tence of a few relatively longer range interactions in small-world networks, or of a 
few nodes having an extraordinary larger number of connections than average in 
scale-free networks—on the dynamical properties of the entire system. Indeed, it is 
now known that network structure can profoundly influence the dynamics on such 
networks, e.g., the spreading of contagion among the individuals comprising the 
network (Pastor-Satorras and Vespignani, 2001; Watts and Strogatz, 1998). 

Recent research activity on complex networks has focussed on acquiring a more 
nuanced understanding of complex networks, by moving beyond the global or mac-
roscopic features of such systems. In particular, the average properties of network 
metrics such as path length, coefficient of clustering, etc., can often mask significant 
differences in the detailed structural aspects of networks. On the other hand, motifs 
(Milo et al., 2002), i.e., statistically significant recurring patterns of connections 
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between a few nodes—often, around three or four—that has been suggested to be 
related to specific functional properties of certain biological systems (Mangan and 
Alon, 2003), gives us only a very narrowly focussed or microscopic perspective on 
a network. As systems that have similar macro- and micro- properties can neverthe-
less still have important structural differences, it is necessary to approach the study 
of networks at a level which is intermediate—or mesoscopic—in scale. At this level, 
one is studying how sections of the network relate to one another, allowing a descrip-
tion of the coordination dynamics of large networks by considering relatively large 
groups of nodes as a single unit and the dynamical interactions between such ‘meta’-
nodes. Examples of significant structural patterns that are seen at the meso-scale 
include modularity, i.e., the existence of communities in networks, hierarchy, i.e., 
the occurrence of multiple levels into which different nodes and their interactions 
can be arranged (Pan and Sinha, 2008; Simon, 1962) and the distinction into core 
and periphery (Borgatti and Everett, 2000). Of these, we shall focus in this article on 
the role of modularity on the collective dynamics of social networks (Figure 1). 

Modules of a network refer to groups of nodes or vertices that have a signifi-
cantly higher density of connections between members of the same group in com-
parison to that between members of different groups. For weighted networks one 

Interaction complexity

Ag
en

t b
eh

av
io

ur
 c

om
pl

ex
ity

Minority Game
(El-Farol Bar Problem)

Games on modular networks

Structural balance in
evolving networks

Coordination problems on
modular networksMean-field dynamics

Structured networksQuasi-mean-field

Si
m

pl
e 

ru
le

s
St

ra
te

gi
es

Figure 1. The wide spectrum of modelling approaches used for explaining social 
organization and its collective dynamics. The abscissae show increasing complexity in 
representation of agent behaviour while the ordinate indicates increasing complexity 
in describing the nature of interactions between agents. Traditional physics or graph 
theory-based approaches have tended to stress on interaction complexity while 
conventional economic theories have focussed on describing complexity of behaviour 
of individual agents

Source: Author.
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can alternatively define a module in terms of strength of connections between 
nodes, with the members of a particular module being much more strongly inter-
connected to each other than with members of other modules. Several quantitative 
techniques have been proposed in the past decade to identify modules in a net-
work from the adjacency information (i.e., a complete listing of all connected 
pairs in the network). One of the most widely used ones works by partitioning the 
network into M modules that maximizes a quantity,
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where, L is the total number of connections in the network, ls is the number of 
links between nodes in module s and ds is the total degree of all nodes belonging 
to module s (Newman and Girvan, 2004). Thus, the measure looks at how much 
more the members of each module are likely to be connected to each other com-
pared to the overall connection probability between an arbitrarily chosen pair 
(Newman, 2006), although several other methods—including one which uses 
information theoretic concepts (Rosvall and Bergstrom, 2007)—have been pro-
posed. Using these techniques to identify modular organization, it has been 
observed that it is ubiquitous and occurs in many biological, technological and 
social networks (Fortunato, 2010). In the context of society, modules are often 
associated with communities or groups of individuals who interact with each 
other much more frequently (or intensely) than with those belonging outside the 
community. This may refer (among other examples) to a group of friends, employ-
ees belonging to the same organization or members of religious cult. In a pioneer-
ing work that uncovered the structural details of a large social network, the 
network of interactions among the over 7 million subscribers of a mobile phone 
operator in an European country was analyzed to show the preponderance of 
cohesive groups with dense inter-connections and relatively sparse connections 
with those outside, or in other words, the evidence of a clear modular organization 
(Onnela et al., 2007). Similar modular structures have since been shown in many 
other social networks including those of non-human animals, such as dolphins 
(Lusseau and Newman, 2004). However, one could argue that most of the quantita-
tive analysis done so far has been for human social networks where the connections 
refer to some kind of electronic communication, such as mobile telephone calls or 
e-mail or through online interactions in the world-wide web; and therefore, the evi-
dence of modularity uncovered pertains only to such virtual social worlds. 

Fortunately, several efforts are underway to construct large databases of social 
networks obtained through information about interactions in the physical world 
(as opposed to via electronic media). The results of one such effort has been pub-
lished recently (Banerjee et al., 2013) where 75 villages from different districts of 
the state of Karnataka in India were targeted for a survey of broad range of social 
network related information. The connections in this network can be of a variety 
of types, including family relationships, friendships, acquaintances, borrowing 
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and lending transactions, etc. We have started an analysis of the mesoscopic orga-
nization of this set of social networks (Figure 2) and our preliminary results indi-
cate that these networks show the existence of several modules, which can differ 
in size as well as degree of connectivity. 

In this context, it may not be out-of-place to mention that another set of social 
networks that has recently received some attention from complex network theo-
rists are those that occur in works of literature, films or television (Figure 3). 
Possibly the first fictional world social networks analyzed were those that occur 
in the plays of Shakespeare (Stiller and Hudson, 2005; Stiller et al., 2003) and in 
the series of comics with inter-connected characters, e.g., Spiderman and X-Men, 
published by Marvel Entertainment that is known as the Marvel Universe (Alberich 
et al., 2002; Gleiser, 2007). This has been followed by analysis of the network of 
characters that appear in mythologies of different cultures such as Greek and 
Roman (Choi and Kim, 2007), Anglo–Saxon and Irish (Mac Carron and Kenna, 
2012), as well as Icelandic sagas (Mac Carron and Kenna, 2013). Works of lit-
erature such as the Greek tragedies of Aeschylus and Sophocles (Rydberg-Cox, 
2011) and novels such as Alice in Wonderland (Agarwal et al., 2012) have also 
been used for reconstructing their underlying social networks, with analysis of 
the latter suggesting that one needs to look at how the structure of the network 
among characters evolve as the plot progresses in order to correctly identify the 
importance of each character. There has been a broad agreement that most of 
these fictional social networks share most of the features that are seen in actual 
networks, such as the small-world character. This is also seen to be true for 

Figure 2. Magnified view of a section of the social network of a village in Karnataka 
comprising ~1500 individuals with the links representing all types of social interactions 
for which information was collected through a survey

Source: Data obtained from Banerjee et al. (2013).
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interactions among characters in TV soap operas (Matthews and Barrett, 2005). 
The general understanding has been that the creators of fictional worlds employ 
many of the features seen in the real-world in order to make them more believ-
able. The number of characters that are seen simultaneously in a certain scene 
may be approximately considered as a temporary module of the network. It is seen 
that the size of such a group is always kept below a certain maximum size, and if 
the number of characters need to be increased this is often done by increasing the 
number of different scenes rather than adding to the number of characters in a 
given scene. It has been suggested that this is related to the limits of cognitive 
capacity of the reader/viewer (Matthews and Barrett, 2005; Stiller et al., 2003). 
This may also be a plausible explanation of why social networks seen in films are 
often much simpler than what we are familiar with in real life—the former often 

Figure 3. A graphical representation of the fictional social network formed by the 
characters in the movie Love Actually (2003). Size of each node is proportional to the 
total length of dialogue, which is a surrogate measure of on-screen time, assigned to the 
corresponding character in the movie. Two nodes are connected if the corresponding 
pair of characters is present in the same scene. The node at the top left corresponding 
to the character of David (the prime minister, played by Hugh Grant) is one of the hubs 
of the network, i.e., nodes having a much larger number of connections to other nodes 
than the average 

Source: Figure adapted from Sinha (2011).
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being focussed exclusively on the protagonist and a small number of his/her 
immediate circle of acquaintances. While we spend a lifetime in understanding 
our own social networks, a filmmaker does not have the luxury of creating equally 
complicated network structures as viewers will not be able to make sense of them 
in the typical duration for which such a film is shown. Indeed, some viewers of 
ensemble dramas such as Love Actually (Figure 3) often complain that the rela-
tionships of the characters were too complicated to be made sense of, although 
they regularly navigate much more complex social networks in real life. 

Complex social networks of course are not unique to humans, but are seen in 
most other primate species. Indeed, it has been suggested that the evolution to 
bigger brains may have been triggered by the need in primates for social coordina-
tion skills as they started to live in bigger and bigger groups (Dunbar and Shultz, 
2007). As observation of the social relations of primates—e.g., social grooming 
between members of the same species (allogrooming)—can be used to recon-
struct detailed networks of such societies, one can ask whether there is evidence 
of modules in such networks. Using a detailed database of recorded interactions 
among Macaque monkeys in the wild collected by the group of Anindya Sinha at 
the National Institute of Advanced Studies, Bangalore, we have constructed the 
networks of these individuals. We have considered the allogrooming frequency 
(AGF), allogrooming duration (AGD), as well as, approach frequency (AF, num-
ber of times an individual approaches another individual) between different mem-
bers of a troupe of Macaque monkeys, both male and female. Each type of 
interaction data is used to construct a graph, where the nodes represent the various 
group members and the weighted links represent the social relation between a pair 
of members (AGF, AGD or AF). The individuals were identified by their social rank 
within the group, which is easy to determine as the group has a linear hierarchy—
the lowest ranked individual is labelled 1, while the highest ranked individual is 
ranked N in a group containing N members. While for males the rank is fluid and 
can change from time to time, it is seen that for females the ranks are stable over 
their lifetimes. 

An important test of the utility of a network description is whether it will allow 
us to make any predictions about the social proximity of various groups of indi-
viduals. As this may be possible by determining any existing community structure 
within the social network, we have tried partition the network into several closely 
knit modules. As these networks are weighted, we need to modify our earlier defi-
nition of a module somewhat. Thus, nodes belonging to the same module will 
have relatively stronger connections, i.e., larger weights, between themselves than 
to nodes belonging outside the module. Our results of the community organiza-
tion of a particular troupe are shown in Table 1. We note that for the female 
macaque network (in contrast to the male networks), all three types of weights 
lead us to segment the network into the same two modules—indicating that the 
communities detected are robust. Moreover, the members of these two modules 
coincide with the individuals forming two splinter groups that were observed 
when the original troupe had split a few years after these observations were 
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recorded. Our analysis shows that the split could be predicted from an analysis of 
the nature of social interactions in the original group. Thus, modularity is quite 
prominent in at least certain primate societies and can be used to predict future 
outcomes of social dynamics within the group.

While similarly detailed data cannot be obtained for human social networks, 
e.g., as it raises privacy issues, we can use other types of socio-economic infor-
mation to construct a variety of different networks. One such network is that 
which shows the relationships between different stocks in a financial market 
(Pan and Sinha, 2007a). While it is understood that it is the actions of individual 
traders buying and selling various stocks which are causing the stock prices to 
move up or down, we can study the resultant effect in terms of the correlations 
that these actions impose on the price movements of these stocks. It is in a sense 
analogous to Brownian motion, where the observed motion of macroscopic par-
ticles suspended in a fluid is actually a result of collisions with a large number 
of molecules of the fluid which are too small to be observed. By performing 
spectral analysis of the correlation matrices calculated from the time series of 
stock price fluctuations we have earlier reconstructed the network of interac-
tions between various stocks in the National Stock Exchange of India (Pan and 
Sinha, 2007a). By focusing only on strong correlations, i.e., those which lie 
above a certain threshold, so as to maximize the number of connected clusters 
of stocks, we identified three prominent modules, two of which clearly corre-
spond to specific business sectors (namely, Information Technology and 
Pharmaceuticals, respectively). A similar study carried out for the New York 
Stock Exchange (Kim and Jeong, 2005) shows the occurrence of nine modules, 
each being identified with a particular sector such as utilities, energy, health 
care, etc. Our analysis suggests that increasing modular character of the stock 
interaction network, with interactions between stocks belonging to the same 
sector becoming stronger, is a hallmark of market evolution from emerging to 
the developed stage. 

Table 1. Modular decomposition of the male and female macaque networks indicating the 
membership of the different modules into which the social networks are decomposed 
(N.comm gives the number of communities or modules obtained). The maximum modularity 
Q and the average modularity (along with the standard deviation) of 100 randomized 
networks, Qrandom, are also indicated (Pan, 2009)

Gender Type Q N.comm Qrandom ±Std Modules 

Female AG.Preq 0.1205 2 0.0812±0.0173 [1 3 4 5 6] [2 7 8 9 10 11] 

AG.Time 0.1397 2 0.0983±0.0209 [1 3 4 5 6] [2 7 8 9 10 11] 

AF 0.1095 2 0.0729±0.0197 [1 3 4 5 6] [2 7 8 9 10 11] 

Male AG.Preq 0.0852 2 0.1301±0.0247 [1 4 9 10 11 12] [2 3 5 6 7 8] 

AG.Time 0.1646 4 0.1369±0.0244 [1 2 4 6] [3 5 7] [8 9] [10 11 12] 

AF 0.2398 4 0.1426±0.0253 [1 3] [2 4] [5 8 9] [6 7 10 11 12] 
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Given that modular nature is seen across the range of networks seen in the 
socio-economic context, we now inquire about the possible consequences of 
such an organizational principle. This assumes importance in view of our obser-
vation (Pan and Sinha, 2009) that modular networks in fact have static proper-
ties that are indistinguishable from the small-world networks introduced by 
Watts and Strogatz (1998), i.e., they exhibit high clustering but low average 
path length. For this we have introduced an ensemble of model random net-
works (Figure 4) having a given number of modules, where the modularity can 
be controlled by varying the ratio of inter-modular to intra-modular connection 
densities. Note that this allows us to vary the degree of modularity while keep-
ing the average number of connections per node constant, so that any variation 
in the dynamics can be attributed to changes in modularity exclusively. In addi-
tion to clustering and path lengths, many other properties such as the modularity 
parameter Q, also yield similar results for the Watts-Strogatz small-world model 
and the modular random network model. This suggests that many of the social 
networks that have been reported in the literature to be small-world may in fact 
owe this property to their modular character. In order to distinguish between the 
two models we have to look at the role modularity plays in different dynamical 
processes on networks. We have shown that for a range of different types of 

Figure 4. Schematic representation of a random network with modular organization 
(d, the colouring of the nodes corresponding to their dynamical states), whose degree of 
modularity can be varied systematically by increasing the ratio of inter-modular to intra-
modular connectivity, r. This is seen from the adjacency matrices (top), where, starting from 
a set of isolated groups of nodes (a, r = 0) by increasing r we obtain a modular network (b, r 
= 0.1) and further increase eventually results in a homogeneous random network (c, r = 1) 

Source: Author.

(d)

(a) r = 0 (b) r = 0.1 (c) r = 1
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processes such as synchronization, ordering and diffusion, the existence of 
modular structures introduces multiple dynamical time-scales in the system 
(Pan and Sinha, 2009). In the simplest case, where the network is partitioned 
into several modules of equal size, we see two distinct time-scales with fast 
intra-modular events being clearly distinguished from relatively slow inter-
modular events. In the context of diffusion of different contagia, such as the 
spreading of innovation (Rogers, 2010), over a social network this will mean 
that the diffusion across communities can take extremely long times—so that 
community organization of populations can effectively act as bottlenecks in the 
process of spreading new ideas through a society. 

Modular organization also has important consequences on the process of coor-
dination among agents in a society. If an agent can make one of several mutually 
exclusive decisions based on information about how other agents in its neighbour-
hood are deciding, we can map this to the problem of collective ordering in net-
works of discrete-state dynamical elements (spins) whose orientations are decided 
by the orientation of the majority of its neighbouring elements (Dasgupta et al., 
2009). In the simplest case, where an agent has to decide between two possible 
choices (e.g., ‘Yes’ or ‘No’), it reduces to the well-studied Ising model of statisti-
cal physics. By considering only positive interactions between connected ele-
ments, we have shown that in the presence of noise, e.g., due to imperfect 
information or uncertainty and for a sufficient degree of modular organization of 
the contact network, the system can be in one of two distinct phases. One of these 
correspond to global ordering (seen at a low level of noise) where most (or all) 
agents vote similarly, while, the other corresponds to modular order, where agents 
within each module make the same decisions but disagree with members in other 
modules (at a high enough level of noise). This indicates the spontaneous polar-
ization of society into groups having contrary opinions even though the mutual 
interactions between every pair of connected agents favour consensus (Dasgupta 
et al., 2009). As polarization often results in conflict this has disquieting conse-
quences for our increasingly fragmented society. In fact, mass media may have 
the entirely unintended consequence of stimulating consensus, whereas increas-
ing dependence on social networking with their high degree of modularity can 
result in fringe opinions getting reinforced and therefore entrenched, resulting in 
polarization. Even when global order is achievable, the time required to achieve 
consensus increases rapidly as the network organization becomes more modular. 
We have shown that under these circumstances, coordination can be achieved 
relatively faster through positive feedback effects (Arthur, 1989, 1990) that rein-
force the choice adopted by the majority and/or having different strengths for 
inter-modular and intra-modular interactions which is consistent with the well-
known ‘weak ties’ hypothesis (Granovetter, 1973).

If we now introduce antagonistic relation between two communities of binary-
valued dynamical elements (with interactions between members belonging to the 
same community favouring consensus), we observe that in the presence of noise 
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and when subjected to common external stimuli, the system can either show 
local order—i.e., the two communities are unified but in opposition to each 
other—or global order, e.g., if the common stimulus is sufficiently strong to 
override their inherent antagonism. However, under certain circumstances, we 
see a novel state that corresponds to the simultaneous existence of strong order-
ing in one module and weak or no ordering in the other (Singh et al., 2011). We 
have referred to this state as a chimera state, as it corresponds to a juxtaposition 
of disparate regimes (ordered, as well as, disordered). Our results imply that when 
two highly polarized communities—which essentially are in opposition to each 
other—encounter a common external stimulus (e.g., foreign invasion) this could 
have the effect of causing both of the groups to come to agreement (global con-
sensus). However, in the presence of noise, there is another possibility where one 
community is unanimous in their response while the other community cannot 
come to a common agreement. 

How would antagonistic communities of the kind we have just discussed come 
into existence? Relations between individuals can evolve over time according to 
some simple adaptation rules, e.g., two individuals who consistently hold the same 
opinions can have their links strengthened, while those who hold mostly opposite 
views can end up having antagonistic relation. We have recently shown that such 
rules can drive a network to achieve social balance, where the network can be 
divided into two communities with all interactions within a community being affil-
iative while all links between communities are antagonistic. However, much to our 
surprise, we see that in the presence of noise there can be extreme variability in the 
time required to converge to the balanced state (Singh et al., 2014). This has con-
sequences for the feasibility of observing social balance in real networks, as it is 
possible that the degree of uncertainty may prevent the evolving system to con-
verge to the balanced state within a reasonable duration of time.

This brings us to the issue of why so many complex networks in nature show 
modularity. While it is possible to show that modular organization can arise from 
multi-constraint optimization, i.e., where a network tries to simultaneously mini-
mize path length, number of links and probability of instability (Pan and Sinha, 
2007b), are there mechanisms that pertain specifically to social networks? The 
observation that cooperation can emerge as a result of mesoscopic structure of 
social networks (Lozano et al., 2008) provides such a possible alternative scenario 
of the genesis of modular structures in social networks. In particular, our prelimi-
nary results on games like Prisoners Dilemma on evolving networks suggest that 
cooperation and communities can in fact, co-evolve. Thus, modular structures 
may be the foundation on which social capital such as trust can accumulate to suf-
ficient levels where complex civilization can become possible. Thus, the dynami-
cal and functional consequences of modular organization in social networks 
remains a rich area for investigation for not only social scientists, but also com-
plex systems theorists looking for insights about the relation between network 
structure and its function that can be applied to other arenas. 
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