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We consider a random network of nonlinear maps exhibiting a wide range of local dynamics, with the links
having normally distributed interaction strengths. The stability of such a system is examined in terms of the
asymptotic fraction of nodes that persist in a nonzero state. Scaling results show that the probability of survival
in the steady state agrees remarkably well with the May-Wigner stability criterion derived from linear stability
arguments. This suggests universality of the complexity-stability relation for random networks with respect to
arbitrary global dynamics of the system.
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The relation between the structure of a network and itgty is conducive to the long-term persistence of the nodes
dynamical properties has been a problem of long-standingemains unresolved. In addition to ecological networks, phe-
importance in many fields, especially in theoretical ecologynomena where the survival of nodes in a network may be of
[1]. A major advance in this area was the suggestion by Mayelevance are power grid breakdown, financial market
that the stability of a network can be inferred from an analy-crashes, etc.; in short, any system that is susceptible to sud-
sis of the interactions between the network elemd@fs den collapse. Further, since the present problem is related to
Confining attention only to the local stability of an arbitrary the persistence of a trajectory in a high-dimensional space
equilibrium of the dynamics, one can ignore explicit dynam-with absorbing boundaries, it is also of considerable rel-
ics and look at only the leading eigenvalues of the lineakeyvance to the general question of persistence in nonequilib-

random, rigorous results on the eigenvalue spectra of randomo]_

matrices can be applield]. If the stability matrix is com-
prised of elements from a normal distribution with zero mean,
and variancer?, then the network is almost certainly stable if bil
NCo?< 1, and unstable otherwish.is the number of nodes
in the network andC is the network connectivity, i.e., the
probability that any two given elements of the network are
coupled to each other, as reflected in the sparsity of the m
trix [2,4]. This result is often referred to as the May-Wigner
stability theoren{5].

May’s suggestion that increasing network complexity
leads to decrease in stability was supported by earlier n
merical simulation$6], but it ran counter to the empirically

established conventional wisdom that biodiversity promotegi«a ant contexts, namelyvhat is the significance of local

ecosystem stabili_ty._The or_iginal resm_JIt ha_s _been criticized OrEiynamics on network stability, especially in situations where
the ground that it is obtained by linearizing about an asipe dynamics can be widely varying?

sumed equilibrium, and so is inapplicable when either the Previous work on including explicit dynamics in network

perturbations from the equilibri'um are large, or, the dynam'models mostly involved generalized Lotka-Volterra-type or-
ics does not settle down to a fixed point attradig., they dinary differential equation§ODES [13]. However, in the

might undergo periodic oscillations as in a I‘Otka'vonerr?.l'absence of interaction between the nodes, the local dynamics

type systerh The ensuing stability versus diversity debate Min such a system is trivial. In contrast, considering randomly
%oupled maps as a model for the dynamical network allows
us to considevery general local dynamics, including chaos

) . 3 the specific context of ecological networks, this is a rea-
different groups used to measure complexity and stablhtySonable assumption for the population dynamics of indi-

[8], and the two apparently opposing conclusions have beej o species. In addition, the use of coupled maps allow us

resolved in the specific context of a community assemblyt0 work with much larger networks, compared to models
model[9], the general question of whether network complex-jncqrnorating  realistic  consumer-resource  configurations

used to analyze simple communities with very few species,

whose results are difficult to scale to larger ecosystegib
*Electronic address: sitabhra@imsc.res.in Our model hasN dynamical elements in a network with
"Electronic address: sudeshna@imsc.res.in random nonlocal connectivity, for instance, representing an

In this paper, we report results on the role that network
mplexity plays on global stabilitiin contrast to local sta-
ity) of a network, by looking at the persistence of indi-
vidual nodes in a network of randomly coupled nonlinear
maps undergoing a wide range of local dynamics. We ob-
serve that the results of the May-Wigner theorem seem to be
Yalid universally, namely, increasing the number of interac-
tions per node or increasing interaction strength will give rise
to increased likelihood of extinction. This evidence of uni-
versality (in the sense of being independent of the local dy-
UYamics at the nodgshas bearing on network problems in
eneral11,12, as it addresses an issue which arises in many
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ecological network ofN interacting species. Each node 10 & o5 10
i (=1...N) is associated with a continuous state variaf(©) Y Bg 5 ° a o
which represents the relative population density of ite v 2n
species at timen. The interaction between two species isé 107 Vo aj
represented by Lotka-Volterra-type relation, with the sign of£ v
the coupling coefficiend;; determining either a predator-prey § Ve
relation (J;>0,J;; <0), competition(J;;,J;; <0), or mutual- 3 10 Ve
ism (J;;, Jjj >0). The time evolution of the system is given by
Xn+l(i) = f[xn(i){l +2j‘]ijxn(j)}]1 (l) 107 ! 2 3 10 -1 0
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wheref represents the local on-site dynamics. For the result(a)100 N
shown in this paper we have choskto be the exponential %
map,

fx)=xd®, if x>0;=0, otherwise, (2)

with r being the nonlinearity parameter leading from peri-
odic behavior to chaokl5]. This is a much more realistic
model of population dynamics than the logistic map, and ir 10 o v 10
contrast to the latter, is defined over the semi-infinite interva o
[0,] rather than a finite, bounded interval. Our results alsc - o
hold for other models of population dynamics such as theg) 0 o (d) r

Bellows map, f(x)=rx/(1+x?) [16]. These maps have the _ _ _
property that they do not go extinct in the absence of cou- FIG. 1. The fraction ‘of. .perS|stent nodes plotted against the
pling, as we are interested not in intrinsic instability of the ’(‘;E’gei Eé?mme.tecr:s(_ag) tlhf_”l't'zl .ngn_wk;err_ozf ”g‘.’eé’ﬂ {"rz_%l (Ob)
f(frzc(:;t?;,]sut rather in the instability induced by network 'n'connectivity,C (N=100, ¢=0.15; O: r=2, [0: r=3, A: r=4); (¢

L g1 . . standard deviationgy (N=100,r=4; A: C=0.1,: C=0.25,V: C
Lheb.lc.:tonffgmt{ matzl)d—{Jt,J_} IS a S%e]lrsg_ matrlxl W'Eh. =0.5,0: C=1); (d) the nonlinearity parameter,(N=100, c=0.1;
pr(z avirty atan element s zero. 1he diagonal entlieSq. ¢ 1 0. c=0.5, A: €=0.9. The data is obtained after 40
J“—O_ indicate that in t_he absence of interaction ywth otheriarations and averaged over 5000 realizations.
species, the exponential mép) completely determines the

populathn dynamics of each species. The. honzero entries Yecreases rapidly, but eventually attains a steady-state value
the matrix are chosen from a normal distribution with mea

"Wwhich is a function of the system parameters. Note that, if
0 and variances?. Note that we have also used uniform Y b '

e ) . - x=<0 for any species, it is removed from the system and
d|str|but|o_n over the interval-c, o] without any qualitative subsequently plays no further role. After a series of such
changes in the results. The results reported below are f

R Qxtinctions, the effective number of interacting species de-
parallel updating; similar results hold for random sequential o565 and, consequently, the intensity of such extinction-
uphdat|r;]g. Alﬁ'o’ our res&JItsb hold for |nterac|t|onhcofu;|)|llngsinducing fluctuations is also reduced. We have continued the
other than the one used above. For example, the following; jations for up to 1biterations, when the probability of

type of coupling: further extinctions was found to become extremely small. We

Survival fraction
o
a
Survival fraction
>
=]

Xen (i) = F[(D]+ 2.3 F[x (D 1F[x()], then look at the fraction of species which survives as a func-
D) = FD0]+ 243 D1 D) tion of the model parameter&ig. 1). The results qualita-
gives results similar to that reported in this paper. tively agree with the May criterion for stability, in that, in-

The linear stability criteria for random networks provides creasing complexity(in terms of size, connectivity, and
a relation between the parametd¥s C, and o. However, interaction strength of the networklecreases stability, with
since we are considering explicit local dynamics, we have am larger proportion of species liable to get extinct. Note that
additional parameter,. In our work, instead of looking at the May criterion was derived on the basis of local stability,
linear stability, we shall consider persistence, i.e., the probwhereas here we are considering the species’ persistence, a
ability that a site has a nonzero valuexpfas the measure of measure of global stability.
stability of the system. Although some early work on sur-  Figure 1a) shows the ratio of persistent spechs, s with
vival and extinction of species in a coupled network wererespect to the initial number of specilis This ratioNye./ N
done in restricted contexts of exclusively competifi¢@] or  appears to vary as N for large N. This indicates that the
cooperative interactionl8], no systematic study has been number of surviving species is independeniofAgreement
previously made on whether the May criterion is valid in thewith Wigner-May stability results is also seen for theCl/
presence of local dynamics, incorporating all kinds of inter-variation of the surviving fraction with connectivityFig.
actions between species. 1(b)]. Figure Xc) shows that the fraction of survivors depend

Initially, all the N species have population values ran-on the interaction strength parameteras 1/0* where the
domly distributed about=1. Immediately after starting the exponentz is an increasing function of the connectivig
simulation the number of persistent spedies., withx>0)  This dependence is expected becausg,if decreased while
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FIG. 2. The scaling ok;J;;x; with connectivityC for N=100,
0=0.1, andr=4. The data is obtained after“iderations and aver-

aged over 5000 realizations.

keepingN fixed, the effective number of other species that
species interacts with, is decreased. In the |Gt 0, every
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FIG. 3. The scaling ok;J;;x; with o, the standard deviation of
normal distribution from which the connection weights are chosen

(N=100,C=1, andr=4). The data is obtained after 4@erations

aand averaged over 5000 realizations.

works. We observe that the relevant parameter is the image

species is independent of all other species, and will persigit the critical point of the map, rather thavitself. This point

with probability 1. Finally, we display the survival fraction
against the nonlinearity parameterof the local map. It is
clearly evident that one obtains a smooth monotonic varia
tion of the survival fraction with respect tg Fig. 1(d)]. This
a priori may seem surprising, since the local map has a sig
nificant range of diverse dynamics including windows of pe-
riodic and chaotic behavior and this is not reflected at all in

the figure.

To understand these results, we analyze the probability o
survival of any species in the steady state. A speicied|
become extinct if its populatios; becomes negative at a
particular time. By looking at the equations describing the i
system, one notes that this is only possiblejd;x; <-1.
Therefore, the probability of survival of a species is essen .
tially equivalent to P(2;J;x;>-1). The distribution of 0¥
P(Z;J;%;) has a power-law distribution about its peak at zero,
and Gaussian tails. We now scale this distribution with re- _ 1o
spect to the different network parameters, as scaling in nor -
equilibrium phenomena is the most sensitive and stringer

test of universality.

Figure 2 shows the scaling &(X;J;x;

) with the connec- & _
tivity C which goes as~Cg(C™#3,J;x,), whereg, is the = 10°
scaling function independent &, implying CP(X;J;x;>

-1) ~constant. Therefore, the probability of survival varies ;5
as~1/C, in exact agreement with the results obtained from
linear stability analysis. The expone=0.2+0.02 for a

wide range of values ofr andr. Similar agreement is seen -2

max—

X

max

X"=e~D/r gives a measure of the width of the chaotic
attractor{ 19]. Since this increases the interval over which the
probability of (X;J;x) is observed, we have normalized
. the argument of the scaling function by dividing it
Figure 4 shows the scaling ofP(X;J;x)

~ ("7, (") 72,J;%], whereg, is the scaling func-

tion. Therefore, the probability of survival varies @),

10

ith the exponenty=3.1+0.1 for a wide range of values of
ando. Interestingly, when the local dynamics is given by
the Bellows map, we again obtaiy~ 3.

e
Z -2
o 10°F

)Y

3

for the variation of the probability of survival withr (Fig. 3).
The scaling data show tha(2;J;x;) ~ o%g,(0*%;J;X)),

whereg,, is the scaling function, so that the survival prob-
ability varies as~1/¢?. The exponentr varies in the range

0.1-0.2, decreasing withand with C.

o r=23
o r=3.0 E
A r=3.15
E + r=4.0 E
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6=0.1 3
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FIG. 4. The scaling oF;J;;x; with the width of the attractax™
for N=100, C=0.5, ando=0.1. The inset shows the power-law

scaling behavior of the probability distribution of populations
The variation with the map nonlinearity parameter, how-x (N=100,C=1, ando=0.1). The data is obtained after 4@era-
ever, has no analog in the previous work on random nettions and averaged over 5000 realizations.
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The above scaling results show that the complexity-state where the survival fraction attains stationarity. The sta-
stability relations obtained by May hold true not only quali- bility of our dynamically more complex network, however,
tatively, but also quantitatively, when we introduce explicit still obeys the May criterion, and increasing complexity
local dynamics of the network elements. The exact nonlinterms of size, connectivity, and interaction strength of the
earity of the map, as would be reflected in, e.g., thenetwork leads to greater instability, resulting in a larger pro-
Lyapunov exponent, does not enter any of the results, whiclortion of species becoming extini@1]. Scaling results of
suggests that these relations are universal and independentiaf probability distribution of the interaction term in the sta-

det.ails of the local dynamips. In, addition, the results remairtionary state indicate that the stability of the network varies
valid even if the local nonlinearity parametefor all theN o 19Nco2 very much in agreement with the May-Wigner
mags |sdr_10t_tz;\ C_onstt)ant, but \Zla”ej ilzcordlng to a uniforMegits. We also find that the stability of the network scales
ranﬂ?m Istribution etv]\c/eemz anar= h h | with the nonlinearity parameter of the local maps in a
€ powel\ﬁ spectra of quantities such as t“e_ tota S‘,}’,Ste@mooth monotonic fashion, with the relevant scaling variable
population,%;-,x; (which can be identified with *biomass” in yaing the maximum value that can take(which depends
Lh? e‘;O"’?l‘;a' _cr(])nte)gt has a IO\(;v(;fr_equerr:cyd_scqlt;ng glvefn monotonically on the nonlinearityThese observations hold
y: S()~ " with 1<a<2. In addition, the 'it;' ution of 4 networks with widely varying local dynamics as well as
populationsP(x) is a clear power lawP(x)~x"? with ¢ to gifferent updating and coupling schemes, underscoring a

~ 1 for sufficiently highr (Fig. 4 inset [20]. __remarkable universality and increasing the scope of rel-
In summary, our work addresses one of the strong critizyance of the May-Wigner stability theorem.

cisms against the wider applicability of the May-Wigner re-

sults, namely their assumption of an equilibrium. Here we We thank Prashant Gade, Sanjay Jain, Purusattam Ray,
have a range of dynamics at the local level and certainly n&omdatta Sinha, and Chris Wilmers for helpful discussions.
dynamical equilibrium at the global level, as populations areThis research was supported in part by the National Science
always fluctuating. Rather, we have a nonequilibrium steadyroundation under Grant No. PHY99-07949.
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