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Optimal interdependence enhances the dynamical robustness of complex systems
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Although interdependent systems have usually been associated with increased fragility, we show that
strengthening the interdependence between dynamical processes on different networks can make them more
likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic
collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal
range of interdependence between the networks. This is related to the appearance of attractors of the global
dynamics comprising disjoint sets (“islands”) of stable activity.
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Many complex systems that occur in biological [1], tech-
nological [2], and socioeconomic [3] contexts are strongly
influenced by the behavior of other systems [4]. Such
interdependence can result in perturbations in one system
propagating to others, potentially resulting in a cascading
avalanche through the network of networks [5,6]. Recent
studies of percolation of failure processes in a system of two
[7–9] or more [10,11] connected networks have suggested that
interdependence makes the entire system fragile. However, a
proper appraisal of the role of interdependence on the stability
of complex systems necessarily needs to take into account the
dynamical processes occurring on them [12,13]. Compared
to a purely structural approach (such as percolation, which
considers the effect of removing nodes or links), a dynamical
system perspective provides a richer framework for assessing
the robustness of systems [14,15]. Indeed, investigating how
fluctuations from equilibrium in a local region of a complex
system can propagate to other regions forms the basis for
addressing the dynamical stability of systems [16]. Extending
this framework to the context of interdependent networks
can potentially offer us insights into why such systems are
ubiquitous in the real world in spite of their structural fragility.

In this Rapid Communication we show that strong inter-
dependence between networks can increase the robustness of
the system in terms of its dynamical stability. In particular,
we show for a pair of networks that there exists an optimal
range of interdependence which substantially enhances the
persistence probability of active nodes. By contrast, decreasing
the internetwork coupling strength so that the networks are
effectively independent results in a catastrophic collapse with
extinction of activity in the system almost in its entirety.
The increased persistence at optimal coupling is seen to be
related to the appearance of attractors of the global dynamics
comprising disjoint sets of stable activity. Our results also
suggest that the nature of internetwork interactions is a crucial
determinant of the role of interdependence on the dynamical
robustness of complex systems. For example, increasing the
intensity of nonlinear interactions between nodes leads to loss
of stability and subsequent transition to a quiescent state, while
stronger diffusive coupling between the networks can make
a global state corresponding to persistent activity extremely
robust.

Let us consider a model system comprising G interde-
pendent networks. Each network has N dynamical elements

connected to each other through a sparse random topology
of nonlinear interactions. Interdependence is introduced by
diffusively coupling an element i in a network to the corre-
sponding ith element of other network(s). This framework
can be used to represent, for instance, dispersal across G

neighboring habitat patches of N interacting species in an
ecological system. A continuous dynamical variable z

μ

i (i =
1, . . . ,N ; μ = 1, . . . ,G) is associated with each node of the
coupled networks. In the above-mentioned example, it can
be interpreted as the relative mass density of the ith species
in the μth patch. We consider generalized Lotka-Volterra
interactions between the nodes within a network as this is
one of the simplest and ubiquitous types of nonlinear coupling
[17,18]. The dynamical evolution of the system can then be
described in terms of the GN coupled equations:
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Here Jμ is the interaction matrix for the μth network, while D

is a measure of the strength of interdependence via diffusive
coupling between networks. The range of the variable z

μ

i

is decided by the function F (·) governing the dynamics of
individual elements in the system. Here we consider F to be a
smooth unimodal nonlinear map defined over a finite support
and having an absorbing state. This class of dynamical systems
is quite general and are capable of exhibiting a wide range of
behavior including equilibria, periodic oscillations, and chaos
[19]. For the results shown here we have used the logistic
form [20]: F (z) = rz(1 − z) if 0 < z < 1, and = 0 otherwise,
such that z = 0 is the absorbing state, and r is a nonlinearity
parameter that determines the nature of the dynamics.

Unlike most studies with logistic map where r ∈ [0,4],
we specifically choose r > 4 such that F (·) maps a finite
subinterval within [0,1] directly to the absorbing state. Iterative
application of F (·) implies that only a a set of measure zero
will remain in the unit interval [21], resulting in a leaky
dynamical system [22]. Thus, an isolated node will almost
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always converge to the absorbing state, corresponding to its
extinction. Interaction with other nodes can, however, maintain
a node in the active state [z ∈ (0,1)] indefinitely. We define a
measure for the global stability of the system as the asymptotic
fraction of nodes in each network that have not reached
the absorbing state, viz., factive = Ltn→∞factive(n), where
factive(n) = ∑N

i=1 �{F [zμ

i (n)]}/N (with �[x] = 1 for x > 0,

and 0 otherwise). Thus, we explicitly investigate conditions
under which interdependence between networks can result in
persistent activity in at least a subset of the nodes comprising
the system. Using an ecological analogy, our focus is on the
long-term survival of a finite fraction of the ecosystem as
a function of the degree of dispersal between neighboring
patches rather than the intrinsic stability of individual species
populations.

The degree of interdependence between the networks can
be varied by changing the number of pairs of corresponding
nodes M (0 � M � N ) that are linked via dispersion. The
interaction matrix Jμ in each network is considered to be
sparse, such that only C fraction of the matrix elements are
nonzero with their interaction strengths chosen randomly from
a Normal(0,σ 2) distribution. For simplicity, we shall focus on
a pair of interdependent networks (i.e., G = 2) schematically
shown in Fig. 1(a), both networks being chosen from the same
ensemble so as to have identical parameters r , C, and σ . We
distinguish between the variables z of the N nodes in the
two networks by denoting them as xi and yi (i = 1, . . . ,N),
respectively, their initial values being chosen at random from
the uniform distribution [0,1].

Figures 1(b) and 1(c) show the time evolution of the
state of the dynamical variables xi and the global stability
measure factive(n) for one of the networks (N = 256, C = 0.1,
σ = 0.01) where the nonlinearity parameters ri are distributed
uniformly in [4.0,4.1]. As mentioned above, this distribution
of ri implies that the individual node dynamics would almost
certainly converge to the absorbing state, and this is indeed
what is observed when the networks are isolated, i.e., D = 0.
However, when the interdependence is increased, e.g., to
D = 0.15, we observe that a finite fraction of nodes persist in
the active state, although for much lower (e.g., D = 0.1) and
higher (e.g., D = 0.2) interdependence the system exhibits
complete extinction of activity [Figs. 1(b) and 1(c)]. Thus
an optimal diffusive coupling between corresponding nodes
in the two networks enhances the global stability of the
system. This suggests, for instance, that ecological niches
which in isolation are vulnerable to systemic collapse resulting
in mass extinction, can retain species diversity if connected
to neighboring habitats through species dispersal. Indeed, for
this to happen, it is not even required that all species in the
network be capable of moving between the different habitats.
As seen from Fig. 1(d), if only a subset of M nodes (out of N )
are coupled between the two networks through diffusion, the
system exhibits enhanced persistence with factive increasing
with M . However, enhancing the intensity of nonlinear
interactions within each network by increasing either their
connectivity C or range of interaction strengths (measured by
the dispersion σ ), as well as amplifying the intrinsic nonlinear
dynamics of the nodes by increasing the range of r , decreases
the survival probability of active nodes. This is also evident
from the variation with C and σ of the probability that a node
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FIG. 1. (a) Schematic diagram representing two interdependent
networks, each comprising N nodes that have intranetwork directed
nonlinear interactions (indicated by arrows) and internetwork dif-
fusive coupling between M (�N ) pairs of corresponding nodes
(broken lines). (b) Pseudocolor representation of the spatiotemporal
evolution of dynamical state xi for each node i in one of the
networks at two different values of the internetwork diffusive coupling
strength, viz., (top) D = 0.1 and (bottom) D = 0.15, with black
representing the absorbing state xi = 0, i.e., extinction of activity.
Increased interdependence between the networks allows more nodes
to maintain persistent activity, i.e., x �= 0. Increasing D further can
result in a decrease in the fraction of active nodes factive with time
as seen in (c), indicating that long-term persistent activity occurs
only within an optimal range of interdependence. (d) Increasing
intranetwork interactions either in terms of the connection density
(C) or their strength (σ ) for a given internetwork diffusive coupling
strength (e.g., D = 0.15) results in a decrease in the fraction factive

of nodes with persistent activity. A similar decrease is also observed
on increasing the range of the nonlinearity parameter r . However,
increasing the number of corresponding node pairs M in the two
networks that are coupled diffusively is seen to increase factive,
pointing to a fundamental distinction between intra- and internetwork
interactions in their contribution to the overall dynamical robustness
of the system. Results shown here are obtained for N = 256,
C = 0.1,C ′ = 0.3,σ = 0.01,σ ′ = 0.05, r ∈ [4.0,4.1], r ′ ∈ [4.1,4.2]
and averaged over 100 realizations.

persists in the active state asymptotically [Figs. 2(a) and 2(b)]
and is in agreement with earlier studies of global stability of
independent networks [18,23].

Figure 2(c) shows in detail the contrasting contribution
of intra- and internetwork interactions to the robustness of
the network in terms of maintaining persistent activity. The
probability that a node persists in the active state asymp-
totically is seen to vary nonmonotonically with increasing
interdependence D between the networks at different values
of the parameters C, σ , and r that determine intranetwork
dynamics. For reference let us focus on the curve for C = 0.1,
σ = 0.01, and r ∈ [4.0,4.1] [shown using circles in Fig. 2(c)].
We observe that when diffusion is either too low (D < 0.09)
or high (D > 0.2) all activity in the network ceases within
the duration of simulation. However, for the intermediate
range of values of D, activity continues in at least a part
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FIG. 2. (a)–(c) Probability that nodal activity persists for longer
than the duration of simulation P (τ > T ) for an interdependent
system of two networks decreases monotonically with increasing
connection density C (a) and dispersion of interaction strengths σ

(b) as shown for three different values of internetwork coupling
strength D [indicated by same symbols in (a) and (b)]. (c) shows
that the probability of persistent nodal activity has a nonmonotonic
dependence on D but decreases with increasing C, σ , and r .
Each of the networks comprise N = 256 nodes. Parameter values
used are C = 0.1, σ = 0.01, r ∈ [4.0,4.1], C ′ = 0.3, σ ′ = 0.05, and
r ′ ∈ [4.1,4.2]. (d) Probability of persistent activity in a system of two
diffusively coupled elements (N = 1) whose nonlinearity parameters
fluctuate about r0 due to a noise of strength ε. Nonmonotonic
dependence on coupling strength D is seen, similar to that for the
large networks shown in (a). Parameter values are r0 = 4.05, ε =
0.005, r ′

0 = 4.2, and ε ′ = 0.01. For all panels, simulation duration
is T = 5 × 104 iterations and results shown are averaged over 100
realizations.

of the network with the persistence probability reaching a
peak around D � 0.16. Varying the other parameters, such
as network connectivity C, intranetwork interaction strength
σ , or the nonlinearity parameter r , has a simpler outcome,
viz., a decrease in the probability that activity will persist in
the network at long times. This is shown by the other curves
where we increase in turn C (triangles), σ (squares), and r

(diamonds). Thus, our results indicate that there exists an
attractor corresponding to persistent activity in the network
for an optimal range of interdependence (in the neighborhood
of D = 0.15) which coexists with the attractor corresponding
to the extinction of network activity, relatively independent of
other parameters.

To understand this in detail, we first note that even when
N = 1, this much simpler system of two diffusively coupled
elements exhibits qualitatively similar features when subjected
to noise [Fig. 2(d)]. The multiplicative noise of strength ε in
the nonlinearity parameter, viz., r = r0(1 + εη), where η is a

Gaussian random process with zero mean and unit variance, is
introduced in lieu of the perturbations that each map will feel
when connected to a much larger network through nonlinear
interactions [Eq. (1)] [24]. As in the case of the network, we
choose r0 > 4 so that an isolated node will almost always
converge to the absorbing state, resulting in its extinction.
Upon coupling two nodes, however, we observe that the
probability of long-term survival of activity in the system
becomes finite at an intermediate range of diffusive coupling
strength (around D = 0.15), similar to that observed for a
N = 256 network in Fig. 2(c). Thus, understanding the genesis
of diffusion-induced persistence for a pair of coupled logistic
maps subject to noise [25], may provide an explanation for the
same phenomenon observed in the system of interdependent
networks described earlier.

The evolution equation for each node in the coupled
system comprises two terms, the first representing the intrinsic
dynamics of the node with the nonlinearity parameter r

effectively reduced by a factor of (1 − D) and the second
being the contribution from the other node diffusively coupled
to it. Note that the system converges to the absorbing state
if the sum of the two terms exceeds 1. A lower bound for
the range of D where persistence can occur is obtained by
observing that in a persistent system the effective parameter
governing the intrinsic dynamics has to necessarily be lower
than 4, implying that Dc1 = 1 − (4/r). The upper bound
for persistence is obtained by noting that when D > Dc2 =
[1 − (1/r)]/2, the dynamics of the two nodes become syn-
chronized asymptotically, effectively making them identical
to the uncoupled node that almost surely converges to the
absorbing state. In the regime Dc1 < D < Dc2, persistence
results from out-of-phase oscillations of the two nodes, each
alternately visiting disjoint intervals in (0,1) such that the sum
of the terms in their evolution equations never exceeds 1. Thus,
regions in the (0,1) × (0,1) domain giving rise to in-phase
oscillation converge to the absorbing state (extinction), while
the ones mapping to out-of-phase solution persist, resulting in
a complex basin of attraction for the persistent activity state of
the system [26].

The bifurcation diagrams shown in Figs. 3(a)–3(c) indicate
how the range of diffusive coupling strengths over which
persistent activity is observed changes as we move from the
simple case of two coupled maps (N = 1) to interdependent
networks (N � 1). As already discussed, diffusively coupling
two logistic maps having r > 4 allow their states to remain
in the unit interval (corresponding to the nodes being active)
provided the strength of coupling D remains within an optimal
range [Fig. 3(a)]. Note that within this range there exists
a region, approximately between (0.11,0.18), in which the
attractor of the dynamical state of the node occupies a much
smaller region of the available phase space I : (0,1). It is
intuitively clear that for such values of D, introducing noise
is much less likely to result in the system dynamics going
outside the unit interval (thereby making the node inactive).
If we now introduce multiplicative noise of low intensity
(i.e., small ε), the range of D over which persistent activity
occurs shrinks [Fig. 3(b)]. However, noise does not completely
alter the nature of the system dynamics even though the
bifurcation structure is now less crisp. The system appears
to be particularly robust in the region referred to earlier where
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FIG. 3. Bifurcation diagrams showing the attractor of the dy-
namical state x of a representative element as a function of the
diffusive coupling strength between [(a),(b)] two maps and (c) two
networks each comprising N = 256 nodes. (a),(b) The range of D

over which there is long-term persistence of activity in two coupled
maps for r = 4.0025 (a) is reduced when multiplicative noise of
strength ε = 0.0125 is introduced (b). The bifurcation structure
resembles that of coupled networks shown in (c) for M = 24,
C = 0.1,σ = 0.01,r ∈ [4.0,4.1]. The contribution of intranetwork
interactions is qualitatively similar to multiplicative noise, resulting
in a similar range of D for which persistence is observed in (b)
and (c). (d),(e) This similarity is reinforced by comparing the return
maps (upper panels) and time series (lower panels) of the asymptotic
dynamical states for (d) two coupled maps with noise [as in (b)]
and (e) two networks [as in (c)] for D = 0.15. The broken curve in
panel (d) represents the return map of an uncoupled logistic map for
r = 4.0025 shown for comparison.

the attractor covers only a small volume of the unit interval.
We can compare this case with that of two interdependent
networks, each comprising a large number of nodes [Fig. 3(c)]
where the intranetwork interactions are considered effectively
to be “noise.” We observe a reasonable similarity between their
bifurcation structures, with the region of persistent activity
spanning approximately the same range of D. As in the case
of coupled maps with noise, in the case of networks also the
system is most robust in the region where the attractor for
the unperturbed system of two diffusively coupled maps is
confined within a small subinterval inside I × I . The validity
of considering the dynamics of coupled nodes embedded
within a network as equivalent to the pair being perturbed
by an effective noise is further established by the strong
resemblance between the return maps and time series for
the two cases [Figs. 3(d) and 3(e)]. As mentioned earlier, to
survive indefinitely the dynamical state of each map switches
alternately between two disjoint intervals of the unit interval in

an out-of-phase arrangement [see the time series in the lower
panels of Figs. 3(d) and 3(e)], corresponding to a trajectory
that jumps between two “islands” of the basin for the attractor
corresponding to persistent activity in the coupled system [26].

The above analysis, apart from explaining why populations
that go extinct rapidly in isolation will survive for long times
upon being coupled optimally, also helps us understand how
the persistence behavior in the system will be affected by
increasing the number of interacting components. As can be
observed from Eq. (1), increasing N keeping C,σ unchanged
corresponds to the summation in the interaction term being
performed over more components. This suggests that there will
be stronger fluctuations, which can be interpreted as a larger
effective noise applied to the individual elements resulting in a
higher probability of reaching the absorbing state and thereby
lowering the survival fraction factive. We have confirmed
this through explicit numerical calculations in which N is
systematically increased. To ensure that the results reported
here are not sensitively dependent on the specific details of
the model that we have considered here, we have also carried
out simulations with (i) different forms of unimodal nonlinear
maps, e.g., F (x) = (x − l)er(1−x) for x > l; 0 otherwise [27],
and (ii) different types of connection topologies for the initial
network, e.g., those with small-world properties [28,29] or
having scale-free degree distribution [30]. We find in all such
cases that the qualitative features reported here are unchanged,
with the network connecting the surviving nodes becoming
homogeneous asymptotically irrespective of the nature of the
initial topology, suggesting that the enhanced persistence of
activity in optimally interdependent networks is a generic
property.

To conclude, we have investigated the role of interdepen-
dence between constituent networks on the stability of the
entire system in a dynamical framework. Unlike percolation-
based approaches where failure is often identified exclusively
with breakdown of connectivity so that increasing interde-
pendence necessarily enhances fragility [5], our dynamical
perspective leads to a strikingly different conclusion. In par-
ticular, we show that the system has a much higher likelihood
of survival for an optimal interdependence, with both networks
facing almost certain catastrophic collapse in isolation. Such
enhancement of persistence of activity in a critical range of
coupling is analogous to the promotion of synchronization
among self-propelled agents for an optimal interaction strength
[31]. Our results suggest that interdependence may be essential
in several natural systems for maintaining diversity in the pres-
ence of fluctuations that are potentially destabilizing. Thus,
interdependence need not always have negative repercussions.
Instead its impact may depend strongly on the context, e.g., the
nature of coupling and the type of dynamics being considered.

We would like to thank T. Bagarti, A. Chakraborty, D. Dhar,
V. Sasidevan, and A. Sharma for helpful discussions.
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