
PHYSICAL REVIEW E 87, 012907 (2013)

Spatiotemporal order, disorder, and propagating defects in homogeneous
system of relaxation oscillators

Rajeev Singh and Sitabhra Sinha
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

(Received 23 June 2012; revised manuscript received 1 August 2012; published 14 January 2013)

A variety of complex spatial patterns relevant to chemical and biological systems can be generated through
reaction-diffusion mechanisms. In this paper, we show that diffusive coupling through the inactivating component
in a system of relaxation oscillators extends such complexity to the temporal domain, generating remarkable
spatiotemporal phenomena. We provide analytic explanations of the antiphase synchronization and spatially
patterned oscillatory death regimes. We report a chimera state where patches with distinct dynamics coexist and
also observe propagating phase defects resembling persistent structures in cellular automata that may be used for
computation.
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I. INTRODUCTION

The problem of understanding pattern formation across a
variety of chemical and biological contexts [1,2] has stimulated
much theoretical and experimental activity since the early
work of Turing [3–5]. Studying the dynamics of coupled
biochemical oscillators interacting through reaction-diffusion
mechanisms constitutes a particularly promising approach
to understanding the genesis of patterns in natural systems
[6]. Generalizations of such processes involving differential
excitatory and inhibitory interactions between elements as
represented by the coupling terms have been used to represent
a variety of complex systems [7–9]. They have also been
proposed recently as a possible mechanism for computation in
biological and chemical systems [10,11].

The stationary patterns exhibited by the models mentioned
above represent only a fraction of the variety seen in nature,
many of which exhibit periodic activity. Thus, extending
ideas underlying reaction-diffusion mechanisms to systems of
interacting relaxation oscillators should permit investigation
of spatiotemporal patterns in biological systems, where oscil-
lations are observed across many spatial and temporal scales,
ranging from the periodic variations of intracellular molecular
concentrations [12] to changes in the activity levels of different
brain areas [13]. The coherent dynamics of these oscillators
can produce functionally important collective behavior, such
as synchronization [14], yielding different biological rhythms
[15]. However, synchronized oscillations constitute only one
of a number of possible collective phenomena that can
emerge from such interactions. For example, a recent set of
experiments on coupled chemical oscillators in a microfluidic
device [16] have shown that antiphase synchronization as
well as spatially heterogeneous oscillator death states [17] can
occur in this system under different conditions. Extending the
mechanism of coupling by lateral inhibition (e.g., via a rapidly
diffusing inhibitory chemical species) to arrays of relaxation
oscillators, used for modeling biological periodic activity, can
be expected to reveal the underlying mechanism for a variety
of spatiotemporal phenomena seen in natural systems.

In this paper, we study a generic model of relaxation oscil-
lators, each comprising activator and inactivating components,
coupled to nearest neighbors through lateral inhibition via
diffusion of the inactivating component. Our model is capable

of exhibiting a variety of spatiotemporal patterns that may
be observed experimentally, while its simplicity allows an
analytical understanding of their genesis. We provide a simple
theoretical demonstration of the existence and stability of an
antiphase synchronized state for coupled relaxation oscillators.
In addition to reproducing some patterns reported earlier, we
also observe novel states, such as attractors corresponding to
spatially coexisting dynamically distinct configurations, which
we term chimera states. Although homogeneous arrays of
generic relaxation oscillators have been studied extensively,
our observation of these spatially heterogeneous attractors
for such systems is new to the best of our knowledge. We
characterize basins of attraction for various patterns seen in
the model, also demonstrating an unexpected robustness of
the chimera states. This robustness suggests that the states
we describe can be reproduced in suitably designed exper-
iments. We report phase defect-like discontinuities moving
ballistically through the system, producing complex patterns
on collision with each other. We observe analogous structures
in two-dimensional media that bear a striking resemblance to
persistent configurations in cellular automata (CA) [18], which
have been linked to the universal computation capabilities of
such systems [19,20].

II. THE MODEL

Our model system comprises N relaxation oscillators
interacting with each other in a specific topology. For the
dynamics of individual relaxation oscillators, we use the phe-
nomenological FitzHugh-Nagumo (FHN) equations, which
are a generic model for such systems. Each oscillator is
described by a fast activation variable u and a slow inactivation
variable v:

u̇ = f (u,v) = u (1 − u) (u − α) − v,
(1)

v̇ = g(u,v) = ε (k u − v − b),

where α = 0.139, k = 0.6 are parameters describing the kinet-
ics, ε = 0.001 characterizes the recovery rate of the medium,
and b is a measure of the asymmetry of the oscillator (measured
by the ratio of the time spent by the oscillator at high- and
low-value branches of u). Parameter values are chosen such
that the system is in the oscillatory regime. We have checked
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FIG. 1. (Color online) Spatiotemporal evolution of a one-
dimensional array of coupled relaxation oscillators (N = 10) with
passive elements at the boundaries (model system shown schemati-
cally on top). Pseudocolor plots of the activation variable u indicate
different regimes characterized by (a) synchronized oscillations
(SO), (b) antiphase synchronization (APS), (c) spatially patterned
oscillation death (SPOD), and (d) chimera state (CS), i.e., co-
occurrence of spatial patches with dynamically distinct behavior.

that small variations in the values do not affect our results
qualitatively. To investigate spatial patterns generated by
interaction between the oscillators, we arrange them in a one-
dimensional chain [Fig. 1 (top)]. In the chemical experiments,
the beads containing the reactive solution are suspended in
a chemically inert medium that allows passage of only the
inhibitory chemical species [16]. In our model, the oscillators
are diffusively coupled via the inactivation variable v. The
boundary conditions for the chain take into account the inert
medium by including nonreactive passive elements at each
end that are diffusively coupled to the neighboring oscillators.
The inert medium between the oscillators is not considered
explicitly, its volume being relatively small compared to the
reservoirs at the boundary. We have verified that inclusion of
intermediate nonreactive cells diffusively coupling each pair
of oscillators does not affect the fixed-point equilibria of the
system or their stability, once the diffusion constant is suitably
scaled. The dynamics of the resulting system is described by

u̇i = f (ui,vi),

v̇i = g(ui,vi) + Dv (vi−1 + vi+1 − 2 vi), (2)

v̇0 = Dv (v1 − v0), v̇
N+1 = Dv (v

N
− v

N+1 ),

where i = 1,2, . . . ,N and the diffusion constant Dv represents
the strength of coupling between neighboring relaxation
oscillators through their inactivation variables. For most
results reported here, N = 10, although we have used larger
values of N , up to 1000, to verify that our results are not
sensitively dependent on system size. We have verified that
the boundary conditions do not affect the results significantly
by also considering periodic boundaries and observing patterns
qualitatively identical to those reported here. The dynamical
equations are solved using an adaptive Runge-Kutta scheme.
The behavior of the system for each set of parameter values
b and Dv is analyzed over many (104) initial conditions, with

each oscillator having a random phase chosen from a uniform
distribution.

III. RESULTS

Figures 1(a)–1(d) show a variety of asymptotic spatiotem-
poral patterns that we observe in the model system: (a)
synchronized oscillations (SO), with all elements (except
those at the boundary) having the same phase; (b) antiphase
synchronization (APS), with neighboring elements in opposite
phase; (c) spatially patterned oscillator death (SPOD) regime,
where the oscillators are arrested in various stationary states;
and (d) chimera states (CS), where oscillating regions coexist
with patches showing negligible temporal variation. However,
these do not exhaust the range of possible spatiotemporal
phenomena that are observed, including propagating structures
that are discussed later. Both APS and SPOD states have been
observed experimentally in chemical systems [16]. Although
the latter has been referred to as “Turing patterns” in the
literature, we stress that SPOD is distinct as it is not ob-
tained through destabilization of a homogeneous equilibrium
(Turing instability) but occurs through a process of oscillator
death [17]. There is a simple mathematical reason why the
mechanism involved in generating SPOD cannot be Turing
instability: the Jacobian matrix of the stable fixed point of the
FHN model has the structure(− −

+ −
)

,

from which it immediately follows that the fixed point cannot
be destabilized by the Turing mechanism [21].

To investigate the robustness of the observed patterns
in detail, we numerically estimate the size of their basins
of attraction in the (b,Dv) parameter space (Fig. 2). To
identify distinct pattern regimes in (b,Dv) space [Fig. 2(a)]
we introduce the following order parameters. The number of
nonoscillating cells in the bulk of the system, Nno, i.e., cells
for which the variance with respect to time of the activation
variable u, σ 2

t (ui), is zero, is used to characterize the SPOD
(Nno = N ) and CS regimes (0 < Nno < N ). Both SO and APS
states have all elements in the bulk oscillating. However, SO
is distinguished by having all oscillators in the same phase as
measured by the variance of the activation variables u, 〈σ 2

i (u)〉t
= 0, where 〈〉t represents time average. We can also define the
synchronization among the oscillators in two distinct (even,
odd) sublattices, as measured by the time-averaged variance
of the activation variable, viz., 〈σ 2

even(u)〉t and 〈σ 2
odd(u)〉t .

This pair of order parameters is zero for both SO and APS
states; however, if 〈σ 2

i (u)〉t > 0, it signifies the APS regime.
In practice, different regimes are characterized by thresholds
whose specific values do not affect the qualitative nature of
the results. Figure 2(a) indicates the parameter regions where
SO, APS, SPOD, and CS states are observed for more than
50% of initial conditions (i.e., they have the largest basin).
As mentioned earlier, the system also exhibits other regimes
apart from the above ones, which occur in regions of (b,Dv)
parameter space shown in white.

While diffusive coupling in a homogeneous system of
oscillators is expected to promote the SO state [22], a striking
observation from this phase diagram is that the APS state has

012907-2



SPATIOTEMPORAL ORDER, DISORDER, AND . . . PHYSICAL REVIEW E 87, 012907 (2013)

SO

APS

SPOD

CS

 (a)

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

B
as

in
 S

iz
e

SOAPS

SPODCS (b)

b 
 1

0

D
v
  103

FIG. 2. (Color online) Different dynamical regimes of a one-
dimensional array of coupled relaxation oscillators (N = 10) in
the Dv − b parameter plane, showing regions where the majority
(>50%) of initial conditions result in synchronized oscillations (SO),
antiphase synchronization (APS), spatially patterned oscillator death
(SPOD), and chimera state (CS). (b) Variation of the attraction basin
size for the different regimes mentioned above (measured as fraction
of initial states reaching the attractor), with coupling strength D for
b = 0.064 [i.e., along the broken line shown in panel (a)]. In practice,
the regimes are distinguished by thresholds applied on the order
parameters σ 2

t (ui), 〈σ 2
i (u)〉t , 〈σ 2

even(u)〉t and 〈σ 2
odd(u)〉t , which have

been taken to be 0.05 for the present figure. Basin sizes have been
estimated using 104 initial conditions.

a very large basin of attraction in certain regions [Fig. 2(b)].
The existence of APS is somewhat counterintuitive, as for
diffusively coupled identical isochronous oscillators the only
stable attractors are synchronized oscillations or oscillator
death [22]. To understand the origin of such antiphase
oscillations, we consider a simple model that captures the
essence of relaxation oscillation phenomena and can be
solved exactly. We consider the relaxation limit (ε → 0 in
FHN system) and extreme asymmetry, where the limit cycle
has a slow segment in which the system spends the entire
duration of the oscillation period (the remaining segment of the
cycle being traversed extremely fast). In this limit, we obtain
the one-dimensional dynamical system: ẋ = ω(x), where x

parameterizes the slow part of the limit cycle and can be
redefined to belong to the interval (0,1). Figure 3(a) shows
a schematic diagram of the trajectory of the limit cycle, where
the system spends almost its entire oscillation period on the
solid branch (the return from x = 1 to x = 0, shown by the
broken line, is considered to be instantaneous). The model can
be exactly solved if ω(x) is a constant (= ω, say), although
the geometrical argument is valid for any arbitrary positive
definite function defined over the interval (0,1). By appropriate
choice of time scale, we set the period ω−1 = 1. A system
of two such diffusively coupled oscillators can be described
by

ẋ1 = 1 + D (x2 − x1), ẋ2 = 1 + D (x1 − x2). (3)
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FIG. 3. (Color online) (a) Schematic diagram of a limit cycle
trajectory for an oscillator in the relaxation limit (ε → 0) and extreme
asymmetry (for details see text), such that the oscillator is on the
solid line (0 < x < 1) for its entire period. (b) Time series of two
such coupled oscillators [Eq. (3) with D = 1] and (c) the Poincare
map for the system at different coupling strengths D showing stable
antiphase synchronization. (d) Phase-plane diagram indicating the
general mechanism (see text) for oscillator death in a system of two
coupled oscillators (1 and 2).

Given the values of x1,x2 at some arbitrary initial time t ′, the
solution of Eq. (3) at a later time t follows the relations

x1(t) + x2(t) = x1(t ′) + x2(t ′) + 2(t − t ′),
(4)

x1(t) − x2(t) = [x1(t ′) − x2(t ′)] exp[−2D(t − t ′)],

till time t ′′ when max(x1,x2) reaches x = 1. After this, the
larger of (x1,x2) is mapped back to x = 0 (because of the
instantaneous nature of the remaining segment of the limit
cycle) and t ′ is replaced by t ′′. Using the above exact solution
of the coupled system Eq. (3), its Poincare map P (x) is
constructed in two steps. First, if x1 starts at 0 and x2 starts at
some point 0 < x < 1, we find the location of x1[=f (x)] at
some time t when x2 = 1 (which is then immediately mapped
to x2 = 0). Now, starting with x2 = 0 and x1 = f (x), when
x1 = 1 we find the location of x2: x ′ = f [f (x)] = P (x). Using
solution Eq. (4), with x1(t ′) = 0, x2(t ′) = x, x1(t) = f (x), and
x2(t) = 1, we get f (x) = 1 + D−1 W {−Dx exp[D(x − 2)]},
where W is the Lambert W function. Figure 3(c) shows the
Poincare map P (x) = f [f (x)] for different values of the
coupling strength D. The map has one stable and one unstable
fixed point, which correspond to the APS and SO states,
respectively. Thus, for the model Eq. (3) we find that APS is the
only stable state. Relaxing the extremal conditions under which
this was derived may allow a stable SO state to coexist with
the stable APS state [23]. This is a fundamental mechanism
for generating APS states in any system of diffusively coupled
oscillators exhibiting antiphase oscillations.

When the coupling Dv between oscillators in the array is
increased to very high values, we observe that the oscillatory
regimes (e.g., SO and APS) are replaced by stationary spatial
patterns such as SPOD (Fig. 2). To understand the genesis
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FIG. 4. (Color online) (a), (b) Spatio-temporal evolution of a
system of coupled relaxation oscillators showing traveling waves
of phase defects in (a) a linear array with passive elements at
the boundaries and (b) with periodic boundary conditions. (c),
(d) Propagating defects in two-dimensional media with periodic
boundary condition showing (c) two horizontally moving “gliders”
and (d) collision of two “gliders.” For clear visualization of the motion
of the spatially extended defects, snapshots of the two-dimensional
medium are taken at intervals which are multiples of the oscillation
period for the mean activity of the system τ .

of SPOD at strong coupling, we can again focus on a
pair of coupled relaxation oscillators in the relaxation limit
(ε → 0). The parameter b is chosen such that the v nullcline
is placed symmetrically between the two branches of the u

nullcline with the oscillator taking equal time to traverse each
branch [Fig. 3(d)]. When the two oscillators (1 and 2) are in
opposite branches (as shown in the schematic diagram), the
two opposing forces acting on each oscillator, corresponding
to the coupling [Fd = Dv(v2 − v1)] and the intrinsic kinetics
(Fn), respectively, can exactly cancel when the coupling is
strong resulting in oscillator death. Symmetry ensures that the
force due to the intrinsic kinetics for the two oscillators is
identical in magnitude but oppositely directed in the steady
state. The occurrence and stabilization of this heterogeneous
stationary state is the key to the occurrence of SPOD at strong
coupling.

At intermediate values of coupling Dv in large arrays,
the competition of the above mechanism with the intrinsic
oscillatory dynamics dominant at low coupling, may give rise
to chimera states. This CS regime is especially interesting,
as the system exhibits a remarkable heterogeneous dynamical
state in spite of the bulk being homogeneous. The occurrence
of CS is not dependent on boundary conditions, as it is
also reproduced with periodic boundaries. The observation
of such states in a generic model of relaxation oscillators
suggests that they should be present in a wide class of systems;
similar phenomena have been recently reported in a specific
chemical system model [24]. The chimera state described
here comprises regions with dynamically distinct behavior,
as opposed to its recent usage referring to the co-occurrence
of coherent and noncoherent domains [25].

Aside from the spatiotemporal patterns in Figs. 1(a)–1(d),
we also observe attractors having point-like “phase defects”
(i.e., with a discontinuity of phase along the oscillator array
at this point), moving in the background of system-wide
oscillations. As seen from a typical example of such states
[Fig. 4(a)], after initial transients these defects move in the
medium with interactions between two such entities resulting
in either the two being deflected in opposite directions, or either
both or only one getting annihilated. This is unlike the situation
of oppositely charged defects in nonoscillatory media, which
typically annihilate on collision [26]. While the boundary for
systems with passive elements at the ends is a source of new
defects entering the medium, similar persistent structures are
also seen in systems with periodic boundary conditions, where,
in the steady state, a conserved number of defects can reflect
off each other indefinitely [Fig. 4(b)].

To observe how these propagating defects manifest in
higher dimensional systems, we consider a two-dimensional
array of coupled oscillators defined on a torus. The sys-
tem can have extremely complicated transient phenomena,
and for simplicity we discuss only its asymptotic behavior.
For a square lattice, we observe that there is a specific
configuration of four sites that persists indefinitely (remi-
niscent of the glider configurations in the two-dimensional
CA “Game of Life” [18]). These structures can move in
horizontal or vertical directions [Fig. 4(c)]. The interaction
of such “gliders” can produce complex spatiotemporal pat-
terns, e.g., Fig. 4(d), which shows two “gliders” that on
collision move off in directions perpendicular to their incident
ones [27].

IV. CONCLUSIONS

To conclude, we have shown that a simple model of relax-
ation oscillators interacting via lateral inhibition-like coupling
yields a variety of spatiotemporal patterns. Our model is simple
and generic, suggesting that the patterns we predict may be
observed in a range of experiments. These include coupled
electronic circuits implementing relaxation oscillators [28] and
Pt wire undergoing CO oxidation where the system is in an
oscillatory regime [29] as well as the microfluidic chemical
systems mentioned earlier. It will also be of great interest to see
whether similar patterns occur in well-known generic models
of chemical oscillators such as the Brusselator [30]. Recent
theoretical work on trapped ions [31] suggests yet another
system where such patterns can be found experimentally.
Our initial exploration of propagating configurations in two-
dimensional media suggests that systems of higher dimensions
may exhibit yet more striking features. The possibility of using
the propagating defects for computation is an intriguing one,
especially as analogous entities have been used to construct
logic gates in CA [18].
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