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Abstract – In many complex systems, heterogeneous connections can subject constituent ele-
ments to conflicting influences, resulting in frustration. Here we show numerically that an ini-
tially frustrated system can achieve structural balance by a link adaptation process inspired by
Hebb’s principle, with interaction strengths evolving in accordance with the dynamical states of
its components. In the presence of fluctuations the time required to converge to the balanced
state exhibits large dispersion characterized by a bimodal distribution, pointing to an intriguing
problem in the study of evolving energy landscapes.

Copyright c© EPLA, 2014

A variety of critical phenomena has been observed
in complex systems comprising many dynamical ele-
ments and interacting via a non-trivial connection topol-
ogy [1–3]. While the coevolution of network structure and
nodal activity in such systems has been studied exten-
sively [4–9], in most cases only the presence or absence
of links were considered. In contrast, many naturally
occurring networks have links with heterogeneously dis-
tributed properties. Connections in such systems can
differ quantitatively by having a distribution of weights
(that may for instance represent the strength of interac-
tion) [10,11] and/or qualitatively through the nature of
their interactions, viz., positive (cooperative or activating)
and negative (antagonistic or inhibitory) [12]. The pres-
ence of negative links can introduce frustration through
the presence of inconsistent relations within cycles in the
system [13,14]. Networks whose positive and negative
links are arranged such that frustration is absent are said
to be structurally balanced —a concept that was originally
introduced in the context of social interactions [15]. A bal-
anced network can be always represented as comprising
two subnetworks, with only positive interactions within
each subnetwork, while links between the two are exclu-
sively negative [16]. Networks of dynamical elements with
such structural organization are capable of exhibiting non-
trivial collective phenomena, e.g., “chimera” order [17].
Recently, several quantitative models have been proposed

for understanding the processes that lead to structural
balance. Evolving networks in which the sign of links are
flipped to reduce frustration have been shown to reach bal-
ance; however, the introduction of constraints can some-
times result in jammed states that prevent convergence
to the balanced state [18,19]. Another approach, using
coupled differential equations for describing link adapta-
tion [20], has been analytically demonstrated to result in
balance [21,22].
While most studies on structural balance have been car-

ried out in the context of social networks, an important
question is whether other kinds of networks, in particular
those that occur in biology, exhibit balance. The recent
observation that the resting human brain is organized into
two dynamically anti-correlated subnetworks [23] points
to the intriguing possibility that the underlying network
is balanced. As connections in the brain evolve according
to long-term potentiation which embodies Hebb’s princi-
ple [24,25], i.e., the link weights change in proportion to
the correlation of the activity in the connected elements,
it suggests a novel process for achieving structural bal-
ance. Thus, networks can remove frustration by adjust-
ing the weights associated with the links in accordance
with the dynamical states of their nodes. Such a local
adaptation process has an intuitive interpretation in so-
cial systems, viz., agents that act alike have their ties
strengthened, while those behaving differently gradually
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Fig. 1: (Colour on-line) Coevolution of coupling strength with
the dynamics on the node starting from a disordered state of
spin orientations and interaction strengths randomly selected
to be ±1. (a) The spin configurations in the initial (left), inter-
mediate (center) and final, i.e., after convergence to structural
balance (right), states. Solid (broken) lines represent positive
(negative) interactions between spins. The corresponding cou-
pling matrices J are shown in (b) while the schematic energy
landscapes are represented in (c). The two minima in the bal-
anced state correspond to the pair of degenerate ground states
related by the reversal of each spin.

develop antagonistic relations. In fact, Hebb’s rule may
apply more broadly to a large class of systems, e.g., in
gene regulation networks where the co-expression of genes
has been suggested to result in their co-regulation over
evolutionary time-scales [26,27].
In this paper, we show that such a link-weight adap-

tation dynamics can in fact lead to structural balance
(shown schematically in fig. 1), using only information
about the pairwise correlations between the dynamical
states of connected nodes. More importantly, the time
required by the adaptation process to attain balance in
the presence of stochastic fluctuations exhibits a surpris-
ingly high degree of variability characterized by a bimodal
distribution. We investigate this phenomenon from the
perspective of an evolving energy landscape, that changes
from having an initial rugged nature to a smooth structure
corresponding to the balanced state. The transition occurs
when the system is trapped for a sufficient duration in any
of the numerous energy minima in the rugged landscape,
which is then converted into a global minimum by the
adaptive dynamics. The observed bimodality implies that
if the system escapes being trapped at the initial stage,
then it will take an extremely long time to get trapped
in another minimum. Our results suggest that environ-
mental fluctuations can prevent a system from attaining a
balanced state even in the presence of appropriate adap-
tive dynamics, which may have important implications for
biological networks.
We consider a system of N globally coupled Ising

spins σi = ±1 (i = 1, . . . , N), the energy for a given

configuration of spins being

E = −
∑

i�=j

Jijσiσj , (1)

where Jij(= Jji) represents the interaction strength
between the spin pair (i, j) (see footnote 1). The balanced
state corresponds to the situation where the interactions
are consistent with the states of the corresponding spin
pairs, i.e., Jij and σiσj have the same sign. Starting from
a disordered spin configuration and random distribution of
interactions, the states of the spins are updated stochas-
tically at discrete time-steps using the Metropolis Monte
Carlo (MC) algorithm with temperature T [29]. The inter-
action strengths also evolve after every MC step according
to the deterministic adaptation dynamics,

Jij(t+ 1) = (1− ǫ)Jij(t) + ǫσi(t)σj(t), (2)

where the adaptation rate, ǫ, governs the rate of change
of the interaction relative to the spin dynamics. The Jij
dynamics alters the energy landscape on which the state of
the spin system evolves. The relaxation time τ is defined
as the characteristic time for reaching the balanced state.
Note that the form of eq. (2) ensures that the relaxation
time ∼ 1/ǫ in the absence of any thermal fluctuation (i.e.,
at T = 0). Also, it restricts the asymptotic distribution
of Jij to the range [−1, 1], independent of whether the
system converges to a balanced state or not.
In our simulations, the initial state of the system for

each realization is constructed by choosing the spins σi to
be ±1 with equal probability. For most results shown here,
each initial Jij is chosen independently from a distribution
with two equally weighted δ function peaks at ±1, i.e.,

P (z;µ) =
1 + µ

2
δ(z − 1) +

1− µ

2
δ(z + 1), (3)

where the mean µ = 0. We have verified that the results
do not change qualitatively if the initial distribution has
a bias, i.e., non-zero mean, or has a different functional
form (e.g., a uniform distribution in [−1, 1]), provided
that the system is initially far from balance. For each set
of parameters (T, ǫ), 104 different realizations have been
used to statistically quantify the relaxation behavior of
the system, which is identified using the energy per bond
E = E/

(

N
2

)

, as the order parameter. We have carried out
simulations with systems of sizes ranging from N = 64 to
N = 512 to ensure that the results reported here are not
dependent on the system size.
In the absence of thermal fluctuations (i.e., at T = 0),

the dynamics of the system can be understood intuitively.
Starting from a random initial state, the spin dynam-
ics stop when the system gets trapped in a local energy
minimum within a few MC steps. The subsequent evolu-
tion of the interaction strengths makes this configuration

1Structural balance in real social networks have been recently
investigated using a similar energy function [28].
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Fig. 2: (Color on-line) (a) Typical time-evolution of the en-
ergy per bond E for a system of N spins starting from dif-
ferent initial conditions. The relaxation time τ indicated in
the figure is the duration after which E decreases below −0.5.
(b)–(e): time-evolution of the distributions for the interaction
strength Jij shown for two cases: when the system relaxes
rapidly ((b), (c)) and when convergence takes much longer
((d), (e)). Snapshots of the Jij distribution at specific times
immediately before, during and immediately after the conver-
gence are shown for the two cases in (c), (e), respectively. For
all figures N = 256 with T = 51, ǫ = 0.05.

a global minimum. However, at finite temperature, the
stochastic fluctuations of the spins may prevent the sys-
tem from remaining in a metastable state for sufficiently
long. This does not allow the Jij dynamics to alter the
energy landscape sufficiently to make the configuration
the global minimum. Thus, an extremely long time may
be required to reach structural balance, and the relax-
ation time diverges due to the stronger fluctuations on
increasing temperature.
Figure 2(a) shows the time-evolution of the order

parameter E for several typical runs with different initial
conditions and noise realizations of a system at finite
T and ǫ. The order parameter of the system initially
has a value corresponding to a maximally disordered
state (E ≈ 0) but eventually relaxes to a balanced state
(E = −1). The time required for reaching balance, τ , is
estimated by measuring the duration (starting from the
initial state) after which E reaches −1/2 (fig. 2(a)). For
a large range of parameters, we observe two very distinct
types of behavior: in one, the system relaxes rapidly, while
in the other this takes a longer time. Characteristic time-
evolution corresponding to these two types of behavior are
shown in fig. 2(b)–(e). When the system relaxes rapidly,
we observe that at first smaller peaks emerge from the
two peaks of the initial Jij distribution (located at ±1).
These eventually cross each other to reach the opposite
ends asymptotically, converging to a two-peaked distribu-
tion again (fig. 2(b), (c)), indicating that all interactions
are now balanced. However, in the case where conver-
gence takes significantly longer (fig. 2(d), (e)), the initial

distribution is first completely altered to a form resem-
bling a Gaussian distribution with zero mean. After a
long time, the system abruptly converges towards a bal-
anced state with a corresponding transformation of the Jij
distribution to one having peaks at ±1. Note that even
with the same initial spin configuration and realization of
Jij distribution, different MC runs generate distinct tra-
jectories similar to those shown in fig. 2(a). This implies
that knowledge of the initial conditions is not sufficient to
decide whether the system will relax rapidly or not.
To quantitatively characterize the distinction between

the two types of relaxation behavior, we focus on the
statistics of τ . Figure 3(a) shows the distribution of the
relaxation time for a given set of (T, ǫ) where cases of
both fast and slow convergences are seen. The bimodal
nature can be clearly observed, with the peak at lower τ
(∼100 MC steps) corresponding to fast convergence to bal-
anced state while that occurring at a higher value (∼ 107

MC steps) arises from the instances of slow relaxation.
The distribution decays exponentially at very high values
of τ . Figure 3(b) shows the temperature dependence of
the distribution of relaxation time for two different val-
ues of the adaptation rate. For the smaller ǫ (= 0.03),
the second peak is well separated from the first when bi-
modality appears, while for the larger ǫ (= 0.05) the sec-
ond peak appears close to the first one. To estimate the
temperature at which the second peak appears, we plot
the standard deviation of log10(τ) as a function of T (in-
set), as bimodality is characterized by an increase in the
dispersion of relaxation times. In fig. 3(c), we show how
varying both T and ǫ can affect the probability that the re-
laxation takes a long time (viz., ≥ 105 MC steps). We ob-
serve a monotonic increase in the probability P (τ > 105)
from 0 to 1 as the temperature is increased for a given
value of ǫ. Indeed, this is expected, as the system relaxes
rapidly when the temperature is low and this probability
is negligible, while, at larger temperatures the relaxation
takes increasingly longer and the probability approaches
1. We can define a transition temperature T1/2(ǫ) as the
value of T at which this probability is equal to 1/2. We
observe that T1/2(ǫ) increases with ǫ, which implies that
the relaxation to the balanced state requires a longer du-
ration as the interaction dynamics becomes slower. For
a given adaptation rate, the variation of the probability
P (τ > 105) with T for different system sizes allows us
to do finite-size scaling, with data collapse occurring for
a scaling exponent α (Fig. 3(d)) that varies with ǫ (in-
set). The variation of α with ǫ (inset) appears to reflect
the transition from one type of bimodality, i.e., where the
second peak is clearly separated from the first, to another
type where they are close (fig. 3(b)).
So far we have assumed that the initial Jij distribution

is unbiased (i.e., µ = 0). However, having a higher frac-
tion of interactions of a particular sign can have significant
consequences for both the structure of the final balanced
state and the time required to converge to it. To inves-
tigate the role of this initial bias among the interaction

10003-p3
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Fig. 3: (Colour on-line) (a) The cumulative distribution of
relaxation time τ for a system of N = 64 spins with T =
12, ǫ = 0.03 shows a gap, implying a bimodal nature for the
distribution. The inset, showing the corresponding frequency
(in log scale) histogram with logarithmic binning clearly in-
dicates this bimodal nature. (b) Probability distributions of
log

10
(τ ), shown as a function of temperature T for ǫ = 0.03

(top) and 0.05 (bottom), indicates the onset of bimodal behav-
ior at higher values of temperature, e.g., for T � 10 in (top).
Bimodality appears around the temperature where the stan-
dard deviation of log

10
(τ ) starts increasing appreciably from

an almost constant value (insets). (c) The probability that re-
laxation takes longer than 105 MC steps, P (τ > 105) shown as
a function of ǫ and T . The point of transition from fast to slow
convergence can be quantified by T1/2(ǫ), i.e., the temperature
at which P (τ > 105) = 1/2 for a given value ǫ (indicated by the
boundary between the dark and light regions). (d) Finite-size
scaling of the probability that relaxation takes longer than 105

MC steps, P (τ > 105), as a function of T for different system
sizes N (ǫ = 0.05). Reasonable data collapse is seen for the
exponent α ≈ −0.32. The inset shows the scaling exponent
values resulting in the best data collapse as a function of ǫ.

strengths, we consider a distribution with two differently
weighted δ-function peaks at ±1 (i.e., µ �= 0). If all the
interactions are anti-ferromagnetic (µ = −1), the system
is extremely frustrated and the relaxation to a balanced
state may take a long time, whereas in the case where
the interactions are all ferromagnetic (µ = 1), the system
is balanced to begin with. Thus, with increasing µ, we
expect the relaxation time to decrease, which is indeed
observed; in addition, the peak at higher values of τ dis-
appears as µ approaches 1. On the other hand, when µ ap-
proaches −1, the peak corresponding to shorter relaxation
times is no longer present. The two clusters that comprise

the final balanced state can have very different size distri-
butions depending on the bias in the initial distribution of
Jij . For the unbiased case, the two clusters are approxi-
mately of the same size. This property holds for the entire
range of negative values for µ. As µ increases from 0, the
size difference between the two clusters start increasing,
eventually leading to a single cluster where all the spins
interact with each other ferromagnetically (µ ≃ 1). Note
that if the system initially has a very low degree of frustra-
tion, the system relaxes almost immediately to a balanced
state where the larger cluster comprises almost the entire
system. To visualize the coevolving dynamics in the link
weights and spin orientations as the system approaches
balance for different values of µ, we use an additional or-
der parameter [18,19] that measures the frustration in a
signed network in terms of the fraction of triads deviating
from balance (a triad being balanced if the product of its
link weights approaches +1),

U = −
∑

i,j,k

JijJjkJki
(

N
3

) . (4)

Figure 4(c) shows that the trajectories corresponding to
different values of µ converge to a single curve after
transients, eventually reaching the balanced state (E =
−1, U = −1). For µ < 0, the initial trajectory is ap-
proximately vertical indicating that it is dominated by the
adaptation dynamics (eq. (2)), whereas for µ > 0, it has a
strong horizontal component implying that it is governed
primarily by the MC update of the spin states. Realiza-
tions in which the system takes a long time to relax to
the balanced state are distinguished by trajectories that
appear to be trapped in a confined region in the (E,U)
space for a considerable period (fig. 4(c), inset).
We can qualitatively explain the appearance of short

relaxation times as follows. In the initial state, when the
system has a random assignment of interaction strengths,
the energy landscape is extremely rugged, resembling that
of a spin glass [13,14]. The system starts out in a potential
well corresponding to one of the many initially available
local minima. As the state of the system evolves, the Jij
dynamics (eq. (2)) lowers the energy of the state by mak-
ing the interactions consistent with the spin orientations
of the system, while the spin dynamics can either result
in a further lowering of energy as the state moves towards
the bottom of the potential well, or escape from the initial
local minimum due to thermal fluctuations. The proba-
bility of escaping from the well at the t-th iteration, p(t),
depends on the potential barrier height with neighboring
wells. If the state cannot escape in the first few iterations
from the local minimum in whose basin it starts, succes-
sive lowering of the energy of this well by the Jij dynamics
results in the deepening of the minimum, further reducing
the probability of escape. Eventually, the system relaxes
to the balanced state with a time-scale of ∼ 1/ǫ, when
the well becomes the global minimum of a smooth energy
landscape.

10003-p4
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shown as a function of the mean μ of the initial distribution for
Jij for T = 17, ǫ = 0.05. The filled circles represent the aver-
age of log

10
(τ ) for different values of μ. The distribution does

not change much for small bias (|μ|); however the lower peak
disappears as μ approached −1 while the relaxation behavior
occurs faster as μ approaches +1. (b) Scaled size difference
δ = (C1 − C2)/N between the two clusters of aligned spins
shown as a function of μ. As μ increases from negative values
to 1, δ increases from values close to 0 towards 1. (c) Trajecto-
ries representing the time-evolution of the system (N = 256) in
the (E,U) order parameter space for different values of μ (from
top to bottom, μ increases from −1 to 1 in steps of 0.1). After
transients, all trajectories converge to a single curve indepen-
dent of the time required to converge to the balanced state. A
magnified view (inset) compares the trajectory corresponding
to a long relaxation time (solid curve), which appears to be
trapped in this region, with the one corresponding to a short
relaxation time (broken curve) for μ = 0.

If, on the other hand, the system escapes from the initial
well within the first few iterations, the system jumps from
well to well with ease as the barrier heights separating
the local minima are all relatively low. In this case, the
relaxation time will be large as balance can be attained
only through a low-probability event of the system getting
trapped in a local minimum for sufficiently long. This can
be approximated by a stochastic process where a particle
can decay with a given probability at each time-step, the
survival time distribution decaying exponentially. This
tail is manifested as the higher peak in the relaxation time
distribution in our model.

Distributions of time-scales having high variability and
characterized by the appearance of multiple modes, have
been reported in many different contexts. These in-
clude physical phenomena, such as the distribution of
the time between eruptions of certain geysers [30] and
earthquake inter-event times [31], as well as, social sys-
tems, e.g., the intervals in short-message communication
between individuals [32]. Another instance in which bi-
modality has been reported is in the distribution of the

duration of public hearings in the U.S. Senate for con-
firmation of Supreme Court nominees [33]. As hearings
presumably continue until the members have a clear po-
larization, which one can interpret as convergence to a
structurally balanced state, one can see this process as a
networked system of agents adapting their links. Thus,
the duration of these hearings corresponds to the time re-
quired to reach balance, suggesting that our results may
be relevant for explaining the bimodality. Bimodal dis-
tributions are also seen in several biological systems [34],
which brings us to the intriguing question raised at the
beginning of the paper, viz., whether balance occurs in
biological networks. While the observation of two dynam-
ically anti-correlated functional subnetworks in the resting
human brain [23] suggests one possible example of a bal-
anced system, it would be of interest to look for signatures
of this phenomenon in other biological contexts, such as,
in intra-cellular signaling. Our model can provide insights
in this case as the specific adaptation process we have in-
vestigated has been suggested to be also operating in the
cell [26,27]. However, instead of the entire network, bal-
ance may be manifested only in specific subnetworks. This
will appear as clustering of the constituent elements into
two groups with strongly anti-correlated activities, and
the balanced configuration should be invariant across dif-
ferent cell types and species. An important implication of
our results is that even if networks are evolving according
to the process outlined here, it is possible that the system
will not be able to achieve balance due to fluctuations in
the cellular environment. This can be a possible reason
why balance may not be commonly observed in biological
systems.
To conclude, we have shown that a link adaptation dy-

namics inspired by the Hebbian principle can lead to struc-
tural balance in an initially frustrated network. However,
in the presence of fluctuations, we observe that the system
exhibits a large dispersion in the time-scale of relaxation
to the balanced state, characterized by a bimodal distri-
bution. This extreme variability of the time required for
removing frustration completely by a link adaptation is
a novel phenomenon that requires further investigation.
Our results suggest that even when a system has the po-
tential of attaining structural balance, the time required
for this process to converge may be so large that it will
not be observed in practice. Although we have considered
a globally connected network of binary state dynamical
elements, it is possible to extend our analysis to sparse
networks [35,36] and different nodal dynamics.

∗ ∗ ∗

We thank Chandan Dasgupta, Deepak Dhar S. S.

Manna, Shakti N. Menon and Purusattam Ray for
helpful discussions. This work was supported in part by
UGC-UPE, IMSc Associate Program and IMSc Complex
Systems Project. We thank IMSc for providing access to
the “Annapurna” supercomputer.

10003-p5



Rajeev Singh et al.

REFERENCES

[1] Newman M. E. J., Networks: An Introduction (Oxford
University Press, Oxford) 2010.

[2] Barrat A., Barthélemy M. and Vespignani A., Dy-

namical Processes on Complex Networks (Cambridge Uni-
versity Press, Cambridge) 2008.

[3] Dorogovtsev S. N., Goltsev A. V. and Mendes

J. F. F., Rev. Mod. Phys., 80 (2008) 1275.
[4] Jain S. and Krishna S., Proc. Natl. Acad. Sci. U.S.A.,

98 (2001) 543.
[5] Gross T., D’Lima C. J. D. and Blasius B., Phys. Rev.

Lett., 96 (2006) 208701.
[6] Gross T. and Blasius B., J. R. Soc. Interface, 5 (2008)

259.
[7] MacArthur B. D., Sánchez-Garćıa R. J. and
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