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When big data fails: Adaptive agents using coarse-grained information have competitive advantage
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The recent trend for acquiring big data assumes that possessing quantitatively more and qualitatively finer data
necessarily provides an advantage that may be critical in competitive situations. Using a model complex adaptive
system where agents compete for a limited resource using information coarse grained to different levels, we show
that agents having access to more and better data perform worse than others in certain situations. The relation
between information asymmetry and individual payoffs is seen to be complex, depending on the composition of
the population of competing agents.
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Agents in a population often coordinate their actions with
that of their neighbors, resulting in striking forms, such as
in swarming and flocking [1,2]. Typically, in such cases,
individuals use information obtained from their local envi-
ronment to adjust their actions in order to achieve some
desired objective [3–6]. Emergent coordination is therefore
crucially dependent on the information acquired by an agent
and its ability to process it appropriately, which determines
its future course of action. Often the objectives of different
agents in a system may not be compatible with each other,
for instance, when they are competing for a limited resource.
Examples of such situations are abundant in nature, where
individuals vie for food, shelter, and mating opportunities.
Even in our more complex social environment, we regularly
come across instances of such competition [7], e.g., choosing
the least congested route through an urban road network [8,9]
or anticipating the relative demand for a financial asset so
as to profit by buying or selling it [10,11]. In these settings,
individuals may use strategies which project information from
past experiences to make decisions about the future course
of action [12–14]. Conventional wisdom suggests that the
relative success of an agent would increase with the quality
and quantity of available data that would form the basis for
its decisions. Indeed, the recent excitement about “big data” is
partially based on the premise that access to more and better
information provides a competitive advantage [15].

In this Rapid Communication, we show that agents using
quantitatively more data that are also finely resolved (and hence
also qualitatively superior) may not actually do better—and can
in fact do worse—in certain situations when they are competing
with agents that have access to less, as well as lower-resolution,
information. The surprising result arises from emergent coordi-
nation in the collective activity of agents who use information
at a particular coarse graining (say, level X). This leads to
macroscopic patterns of behavior that may be discernible from
the data only at a different level of coarse graining (say, level
Y ). Thus, if there are other agents in the population who have
access to information about the system at this latter levelY , they

can potentially exploit this predictability to their advantage. We
also show that the relation between information asymmetry and
the performance of agents is a complex one, depending on the
relative fraction in the population of agents of each type. Thus,
the utility of “big data” is contingent upon the precise nature
of an agent’s ecosystem comprising all its competitors. The
premise that more and better information will automatically
result in better performance, e.g., by improving predictive
power, therefore needs to be treated with caution. This is
especially true for competitive situations where adaptation
through learning occurs, such as in financial markets [16,17].

To investigate how information asymmetry between agents
affects their performance, we focus on a complex adaptive
system where agents compete for a limited resource. Here, the
heterogeneous agents use the different types of information
that they have access to for the same purpose, viz., to have
preferential access to the resource. In particular, we use the
paradigm of the minority game (MG) [18–20] which has all
the ingredients to address the above question in a quantitative
manner. It also has the advantage that the classical version,
in which all agents use the same coarse-grained information,
is well understood and can be used as a benchmark for the
more complex situation that is investigated here. We consider
a population of an odd number N of agents who independently
and simultaneously choose between two options (A and B,
say) in each round. The option that is chosen by fewer agents
is considered the better choice (outcome) in each round and
leads to a higher payoff (say, 1), while those who had chosen
the alternative receive a lower payoff (say, 0).

We assume that the population consists of different types
of agents, each type having access only to data coarse grained
to a particular level of resolution k (see Fig. 1). For clarity,
we focus on the interaction between only two types of agents
corresponding to the extremes of coarse graining, viz., the
lowest resolution k = 2 (which we designate as type 1 agents)
and the highest resolution k = N + 1 (type 2 agents). The
former can only distinguish between NA > N/2 and NA <

N/2 (i.e., whether A was chosen by the majority or not) in a
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FIG. 1. A schematic representation of a complex adaptive system
comprising N agents that are competing for a limited resource. Every
agent has to choose between two possible actions (A or B) at each
round, with the option chosen by the lesser number of agents being the
better choice (outcome) in that round. Agents make decisions using
strategies based on information about the collective choice in previous
m rounds. The system can be in any of k possible states (2 � k �
N + 1, depending on the level of coarse graining) at each round. Here,
agents are distinguished into two classes (types 1 and 2) according
to the two extreme levels of coarse-grained information, i.e., k = 2
and k = N + 1, respectively, that they have access to. After each
round t , the information about the total number of agents choosing a
specific action A (say), NA

t , that is accessed only by type 2 agents, as
well as binary information, viz., the choice of the minority (A or B)
which is accessed only by type 1 agents, are added to the history of
outcomes. The information about the outcome is also used as feedback
for adaptive selection of strategies by the agents.

particular round [18] while the latter can determine the exact
number of agents NA opting for A in a round [21]. The memory
length of each type of agent indicates the number of past rounds
whose information they retain, and is denoted by m1 (m2) for
a type 1 (type 2) agent. Each agent uses strategies that map
the information about past events [m1 bits for a type 1 agent,
m2 log2(N + 1) bits for a type 2 agent] to the choice of action
in the next round (i.e., A or B). Each agent initially chooses
at random a small sample of strategies (e.g., of size 2 as here)
from the set of all possible strategies, which is of size 22m1 for a
type 1 agent and 2(N+1)m2 for a type 2 agent. At each round, an
agent scores the strategies according to the potential payoffs
that would have been obtained by using them in the previous
rounds (feedback), and uses the one having the highest score.

We first focus on the simplest case of a single type 1 agent
with memory length m1 interacting with a population of N−1
type 2 agents with memory length m2. One may naively
expect that agent(s) having more information at their disposal
(measured in bits) will have an advantage over the other type of
agent(s). Consequently, it would have been expected that when
the number of bits m1 in the information accessible to the type 1
agents is less than m2 log2(N + 1), the corresponding quantity
for the type 2 agents, then the latter would have obtained a
relatively higher payoff. This would also be in accordance with
the intuitive notion that the highly resolved data of type 2 agents

10
2

10
3

0
2

4
6

8
10
0.4

 

 
 

 

0.5

 

N
m

1
  

 

A
vg

 p
ay

of
fs

 P
1, P

2
10

2
10

3

0
2

4
6

8
10
0.4

 

 

 

 

 0.5

N
m

1
 

A
vg

 p
ay

of
fs

 P
1, P

2

0 2 4 6 8 10
0

1

2

3

Sequence length L
binary

H
 1

 (
 ×

 1
0−

2  )

 

 

m
2
 = 1

m
2
 = 2

m
2
 = 2(b)

Type 2 agent

m
2
 = 1(a)

Type 1 agent

(c)

FIG. 2. Average payoffs P1, P2 of type 1 and type 2 agents
(respectively) shown as a function of the memory length m1 of a single
type 1 agent interacting with N − 1 type 2 agents with memory length
(a) m2 = 1 and (b) m2 = 2 for different population sizes N . In both
cases, the type 1 agent receives the highest payoff when its memory
length m1 = 2. Note that only when m2 = 1, the lone type 1 agent
has a relative advantage over type 2 agents (viz., when the former
has a lower memory m1). Payoffs are averaged over 104 iterations in
the steady state and over 100 different realizations. (c) Information
content H1 of the binary sequence containing the history of outcomes
for a game involving only type 2 agents shown as a function of the
sequence length Lbin. Results shown are for N = 255 agents and
averaged over 100 realizations.

is qualitatively better than the low-resolution outcome data of
type 1 agents. However, the mean payoffs of the two types of
agents shown in Fig. 2 for different memory lengths m1 and
population sizes N reveals that the actual behavior is more
complex.

The most surprising outcome for the case when the type 2
agents have memory length m2 = 1 [Fig. 2(a)] is that the type 1
agent is able to acquire a relatively higher payoff at low values
of m1 even though the information accessible to it is highly
coarse grained and quantitatively much less compared to the
rest of the population. Moreover, the range of m1 over which
the type 1 agent does better than type 2 agents is seen to increase
with N . Thus, the success of an agent in a complex adaptive
system, where the information accessible by the individual
entities differs both in terms of quality and quantity, is not
entirely determined by the amount and resolution of the data
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at its disposal. Instead, as we show below, it depends more on
whether discernible patterns in the behavior of the population
are present at the level of coarse graining it has access to.
When the memory length of the type 2 agents is increased
to m2 = 2 [Fig. 2(b)], the type 1 agent is no longer observed to
have a higher payoff than the rest of the population, regardless
of its memory length m1. Note that type 2 agents attain the
highest degree of emergent coordination among themselves
for m2 = 2 independent of N [21]. Thus, it is not surprising
that the lone type 1 agent will not be able to outperform the
optimally coordinated population of type 2 agents. However,
as we shall show below, introducing multiple type 1 agents
makes it possible for these mutually competing individuals to
develop emergent coordination within themselves by which
they can outperform type 2 agents with m2 = 2. If m2 > 2,
the behavior of the type 2 agents is indistinguishable from
agents randomly choosing between A and B [21]. As there is
no predictability in the time series available to the type 1 agent
that it can exploit, it will on average receive essentially the
same payoff as the rest of the population.

Note that the above results are in stark contrast to the case of
a population comprising only type 1 agents, but where one or
more agents have a larger memory length than others. When
they have access to the same binary history of outcomes, it
is known that the agents with smaller memory are always
at a disadvantage when playing against a group of larger
memory agents [22,23]. Thus, the results reported here cannot
be reproduced if we simply replace the type 2 agents with type
1 agents having quantitatively equivalent memory in terms of
size (i.e., m2 ∼ log2 N ). Another important point to consider
is that if the population is homogeneous, comprising only
type 1 agents, it is known that the system behaves essentially
identically even if the agents are provided with a random
sequence instead of the endogenous history of past outcomes
[24,25]. Thus, the only requirement for the agents to display
the collective dynamics observed in this system is that all
of them possess the same information regardless of whether it
is true or false. However, when the population consists of both
type 1 and type 2 agents, replacing the actual history by random
sequences coarse grained at different levels as appropriate for
the different types of agents leads to a different outcome. For
example, a single type 1 agent interacting with N − 1 type 2
agents no longer enjoys a relative advantage with regard to the
rest of the population (see Supplemental Material [26]) unlike
what is observed when the agents are provided with the actual
history [Fig. 2(a)].

To explain the relative performance of different types of
agents having access to information at the two extreme levels
of coarse graining, we focus on the information content in the
history of outcomes that can be exploited by the agents to their
advantage. As we shall see, the collective action of any one type
of agents may result in predictable patterns at the other level
of coarse graining and hence observable only to these other
agents. This “useful” information content above the noise level
can be quantified by measuring the predictability of a particular
choice (say, A) being the outcome in a particular round, given
the history of past outcomes. This history can be either the
binary sequence of outcomes A,B or the detailed time series of
the number of agents {NA

t } choosing a particular option A, the
former (latter) being accessible only to a type 1 (type 2) agent.

We can therefore define two distinct information measures,
viz., H1 = ∑

uLbin
P (uLbin )[P (A|uLbin ) − (1/2)]2, and H2 =

∑
uLdet

P (uLdet )[P (A|uLdet ) − (1/2)]2. Here, uLbin is the binary
sequence of outcomes for the previous Lbin rounds while uLdet

is the sequence of integers, each lying between 0 and N ,
representing the number of agents choosing A in the previous
Ldet rounds. The probability with which a particular sequence
of L successive outcomes is observed is denoted as P (uL),
while P (A|uL) represents the conditional probability that the
outcome A follows the sequence uL.

Let us consider a population comprising only type 2 agents
having memory length m2. The collective behavior of such
agents generates a history of binary outcomes whose infor-
mation content H1 is shown in Fig. 2(c) for m2 = 1 and 2.
Note that this information cannot be used by the type 2 agents
themselves, whose strategies are based on uLdet but is accessible
in principle to a hypothetical type 1 agent whose strategies
use uLbin . We observe that H1 increases with the length of
the binary sequence, Lbin, over the range of sequence lengths
considered here, with H1 = 0 when the history is restricted
to the immediately preceding round, i.e., Lbin = 1. Thus, if a
type 1 agent with memory length m1 is introduced into this
population, it can make use of the predictability present in the
binary sequence accessible to it when m1 > 1. As m1 increases,
the number of possible strategies that can be used by the type
1 agent increases exponentially (=22m1 ). It therefore becomes
progressively less likely that the agent will randomly pick the
strategy that can optimally exploit the predictability present in
uLbin . This implies that the highest payoff for a type 1 agent is
achieved for the lowest value ofm1 having nonzero information
content, i.e., m1 = 2, as is indeed confirmed by Fig. 2.

The above arguments explain the performance of a single
type 1 agent interacting with a population of agents of the
other type [26]. However, in reality, the number of each type
of agents having access to data at different levels of coarse
graining can be arbitrary. We shall now consider the situation
where the relative fraction of the two types of agents present
in the population is varied between the two extreme cases
considered earlier. Figure 3 shows the average payoffs P1, P2

for a population of N agents of types 1 and 2, respectively, for
different values of the fraction f1 and memory length m1 of
type 1 agents, keeping the memory length of type 2 agents fixed
[viz., m2 = 1 for Fig. 3(a), and =2 for Fig. 3(b)]. As in Fig. 2,
here also we see that type 1 agents can outperform type 2 agents
even when the quantity of information (m1 bits) available to
the former is much less than that for the latter [m2 log2(N + 1)
bits]. This is seen in the low m1 region in Fig. 3 when f1 is
low, where the few type 1 agents receive a higher payoff than
the more numerous type 2 agents. As f1 → 0, we approach
the case of a single type 1 agent (playing N − 1 type 2 agents)
that achieves a maximum payoff at m∗

1 = 2, which is indeed
observed in Fig. 3. On the other hand, when f1 → 1, the
maximum payoff should occur at m∗

1 � log2(0.337N ), as it is a
conventional game between type 1 agents [27]. Indeed, for any
fraction 0 < f1 < 1 of type 1 agents, their best performance
is achieved for a memory size m∗

1 that lies between 2 and
log2(0.337N ) (indicated by the dashed curves in Fig. 3). Thus,
multiple type 1 agents can achieve a higher individual payoff
together than by playing singly against a population of type 2
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FIG. 3. The average payoffs P1, P2 of type 1 (shown in blue) and
type 2 agents (red) comprising a population of size N (= 255) for
different population fractions f1 and memory length m1 of the type 1
agents. The memory lengths of the type 2 agents are fixed at m2 [=1 for
(a) and =2 for (b)]. The contours separate the regions in the (m1, f1)
parameter space where type 1 agents have a relative advantage over
type 2 agents and vice versa. The dashed curve represents the optimal
population fraction f ∗

1 of type 1 agents with a given memory length
m1 at which they receive the highest payoff. The dotted curve is the
value of m1 at which Nf1 type 1 agents are expected to have maximum
payoff in the absence of any type 2 agents. Payoffs are averaged over
104 iterations in the steady state and over 100 different realizations.

agents, suggesting an important role of emergent coordination
among a group of competing agents who are distinguished by
the nature of the information available to them.

Let us now consider the performance of the type 2 agents.
When playing against type 1 agents with low memory length
m1, type 2 agents achieve their highest payoff when f1 → 1
[26]. In other words, it is important to have the size of the group
to which detailed data is available as small as possible in order
for them to achieve a maximum payoff in this regime of low
m1. When more agents have access to this data (i.e., decreasing
f1), their payoff is eroded until they actually perform worse
than the type 1 agents who have coarser-grained data. Thus,
access to more and better data is not by itself a determining
factor for success in a complex adaptive situation.

As the memory length m1 of the type 1 agents increases,
the optimal population fraction at which type 2 agents achieve
the highest payoff decreases from the neighborhood of f1 =
1. In fact, type 2 agents with m2 = 2 (the optimal memory
length for a population exclusively composed of such agents)
achieve their best performance when f1 → 0. Thus, in this
high m1 regime (m1 � 6 for m2 = 2), type 2 agents achieve
high payoffs by dominating the population. By contrast, type 1
agents do better for largef1 as a result of emergent coordination
within their group. Indeed, in this regime, for any given m1, the
payoff of type 1 agents increases with f1. Thus, the outcome
is not symmetric for agents having access to information at the
two extreme levels of coarse graining [28].

We note here that concerns about the potential pitfalls of big
data have been voiced earlier [29]. There have been several
critical discussions from different perspectives [30] on how
big data projects can fail through improper planning, e.g.,
as a result of unclear objectives or cost-related issues [31].
Another strand of literature deals with problems related to the
analysis of big data in distributed computing frameworks [32].
In this Rapid Communication, however, a more fundamental
mechanism is revealed which severely limits the value of big
data analytics in competitive environments where agents can
adapt their behavior based on information about past outcomes.
As most socioeconomic phenomena of interest can be seen to
be a result of interactions between agents in a complex adaptive
system [33,34], the results reported here may play a key role in
explaining the behavior observed in a variety of such systems.

To conclude, we have shown that information asymmetry
among agents in a complex adaptive system can have surprising
consequences. Specifically, in a system where agents compete
for a scarce or limited resource using strategies based on
information about the collective behavior in previous interac-
tions, asymmetry arising from individuals having access only
to data coarse grained to different levels can result in agents
with more and better data performing worse than others under
certain circumstances. Such counterintuitive effects arise from
predictable patterns emerging in the collective information
about the system at a certain level of coarse graining and thus
discernible only to agents privy to that level. This provides
them a competitive advantage when the population is domi-
nated by agents of a different type who do not have access to
the coarse-graining level at which such patterns generated by
their own collective activity are apparent. The relation between
the relative performance of the different types of agents
and the nature of information asymmetry is therefore crucially
dependent on the exact composition of the population to which
they belong. Our results imply that striving to acquire and
process ever increasing quantities of data in the hope of making
more accurate predictions in complex adaptive systems, such
as financial markets, may sometimes be counterproductive.
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