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A free vortex in excitable media can be displaced and removed by a wave train. However, simple physical
arguments suggest that vortices anchored to large inexcitable obstacles cannot be removed similarly. We show
that unpinning of vortices attached to obstacles smaller than the core radius of the free vortex is possible
through pacing. The wave-train frequency necessary for unpinning increases with the obstacle size and we
present a geometric explanation of this dependence. Our model-independent results suggest that decreasing
excitability of the medium can facilitate pacing-induced removal of vortices in cardiac tissue.
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Rotating spiral waves of propagating excitation character-
ize the disruption of ordered behavior in excitable media
describing a broad class of physical, chemical, and biological
systems �1�. In the heart, spiral waves of electrical activity
have been associated with life-threatening arrhythmias �2–4�,
i.e., breakdown of the normal rhythmic pumping action of
the heart. Controlling such spatial patterns with low-
amplitude external perturbation is a problem of fundamental
interest �5–9� with significant implications for the clinical
treatment of cardiac arrhythmias �10�.

In a homogeneous active medium, a spiral wave can be
controlled by a wave train induced by periodic stimulation
from a local source �pacing� �4�. If the frequency of stimu-
lation is higher than that of the spiral wave, the wave train
induces the spiral to drift. In a finite medium, the vortex is
eventually driven to the boundary and thereby eliminated
from the system �11–13�. Inhomogeneities in the medium,
such as inexcitable obstacles, can anchor the spiral wave
preventing its removal by a stimulated wave train �14�. This
mechanism is analogous to pinning of vortices in disordered
superconductors �15,16�. In the heart, obstacles such as
blood vessels or scar tissue can play the role of pinning cen-
ters �17�, leading to anatomical reentry, the sustained peri-
odic excitation of the region around the obstacle.

In the immediate neighborhood of the obstacle, pinned
vortices are qualitatively equivalent to waves circulating in a
one-dimensional ring. They can be removed by external
stimulation provided the electrode is located on the reentrant
circuit, i.e., the closed path of the vortex around the obstacle,
and the stimulus is delivered within a narrow time interval
�18�. However, for the more general situation of pacing
waves generated far away from the reentrant circuit, a clas-
sical result due to Wiener and Rosenblueth �WR� states that
all waves circulating around such obstacles are created or
annihilated in pairs �see Ref. �19�, in particular, pp. 216–
224�. This implies that it is impossible to unpin the spiral
wave by a stimulated wave train.

In this Rapid Communication, we demonstrate that the
WR mechanism for the failure of pacing in unpinning spiral
waves is valid only when the radius of the free spiral core
�i.e., the closed trajectory of the spiral tip defined as a phase
singularity �20�� is small compared to the size of the ob-
stacle. We elucidate the transition between the case of a free
vortex and one attached to a large obstacle by systematically
decreasing the core radius of the free spiral, RFS, relative to
the obstacle size, Robst, by increasing the excitability of the
medium. Our main result is that an anchored rotating wave
can be removed by a stimulated wave train provided RFS
�Robst.

To illustrate our arguments, we use the simple model of
excitable media introduced in Ref. �21� described by an ex-
citatory �u� and a recovery �v� variable:

�tu =
1

�
u�1 − u��u − �v +

b

a
�� + �2u ,

�tv = �u − v� , �1�

where a and b are parameters describing the kinetics. The
relative time scale � between the local dynamics of u and v is
set to 0.02. We discretize the system on a square spatial grid
of size L�L, with a lattice spacing of �x=0.25 and time
step of �t=0.01. For our simulations L=200. We solve Eq.
�1� using forward Euler scheme with a standard nine-point
stencil for the Laplacian. No flux boundary conditions are
implemented at the edges of the simulation domain. An ob-
stacle is implemented by introducing a circular region of
radius Robst in the center of simulation domain inside which
diffusion is absent. Pacing is delivered by setting the value of
u to up=0.9 in a region of 6�3 points at the center of the
upper boundary of the simulation domain. The maximum
pacing frequency is limited by the refractory period, Tref, the
duration for which stimulation of an excited region does not
induce a response.
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When the obstacle size is large relative to the core radius
of the free spiral, RFS, the failure of a wave train in unpin-
ning the vortex is illustrated in Fig. 1. Initially, the spiral
wave S0 rotates counterclockwise around the obstacle. Dur-
ing the interaction with pacing waves, the number of waves
attached to the obstacle can change due to two possible pro-
cesses �see Ref. �19�, pp. 216 and 220�. First, when the pac-
ing wave reaches the obstacle, it splits into two oppositely
rotating waves: one clockwise and the other counterclock-
wise. Second, collision between two rotating waves, as seen
in Fig. 1�c�, results in the annihilation of a pair of counter-
clockwise and clockwise waves. In both cases, the number of
waves rotating counterclockwise is always larger than the
number rotating clockwise by 1. Thus, in addition to conser-
vation of total topological charge �i.e., sum of the individual
chiralities, +1 or −1� for all spiral waves in a medium
�20,22�, topological charge around the obstacle also appears
to be conserved. However, in the limiting case of infinitesi-
mally small obstacle corresponding to a free vortex, a stimu-
lated wave train with frequency higher than that of the spiral
wave will always succeed in displacing the latter, eventually
removing it from a finite medium. Thus, there is a transition
from failure to successful pacing as Robst is reduced relative
to RFS.

The primary fact responsible for this transition is that the
spiral wave is no longer in physical contact with an obstacle
of size smaller than RFS �17� contrary to the fundamental
assumption of Ref. �19�. Figure 2 shows an explicit example
of successful detachment of a pinned wave from the obstacle
boundary, where the core radius of a free spiral in the me-
dium is made larger than Robst by diminishing the excitability
of the system.

The possibility of unpinning the wave in Fig. 2 can be
traced to the following fact: the collision between S0 and the
pacing wave branch 1b occurs a small distance away from
the obstacle boundary and does not result in complete anni-
hilation of both waves. A small fragment 1c survives in the
spatial interval between the collision point and the obstacle
�Fig. 2�d��. If the tip of S0 is close to the obstacle, the frag-
ment 1c is small and rapidly shrinks and disappears. How-
ever, if the gap between the reentrant wave tip and the ob-

stacle is large at the collision point, such that the size of 1c is
larger than a critical value ln, the fragment can survive. As 1c
propagates further away, it collides with the pacing wave 1a
and forms a new broken wave S1 that is completely detached
from the obstacle. Interaction with successive pacing waves
progressively pushes the vortex further away from the ob-
stacle and eventually from a finite medium. The difference
between the number of spirals rotating counterclockwise and
clockwise around the obstacle changes from 1 initially �Fig.
2�a�� to 0 in Fig. 2�e� contrary to what happens for a larger
obstacle �Fig. 1�. The absence of topological charge conser-
vation for waves rotating around a smaller obstacle under-
lines the breakdown of the fundamental assumption behind
the WR argument for why pacing cannot detach pinned
waves. The unpinned wave is subsequently driven outside
the system boundaries by pacing �Fig. 2�f��, thus, eventually
also reducing the total topological charge of the finite me-
dium to 0.

The relative size of the obstacle, compared to the free
spiral core, is the key parameter that decides whether a
pinned reentrant wave can be removed or not. Indeed, the
radius of the free spiral core in the successful case, RFS
=9.05 �Fig. 2� is significantly larger than in the unsuccessful
one, RFS=5.80 �Fig. 1�. It is further confirmed by a detailed
numerical study of the interaction between a pacing wave
train and a pinned spiral over the �a ,b� parameter space of
the Barkley model. As shown in Fig. 3�a�, the rotating wave
anchored to the obstacle can be removed by pacing only in
the neighborhood of the subexcitable �SE� region �using the
terminology of Ref. �23��, where RFS diverges �Fig. 3�b��.
This is explained by noting that in the SE regime, the tan-
gential velocity of a broken wave front is negative thus caus-
ing the front to shrink and not form a spiral. As we approach
the regime where spiral waves are persistent �SW�, the tan-
gential velocity of the wave break gradually increases to zero
and becomes positive on crossing the SE-SW boundary, so
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FIG. 1. �Color online� �a� Wave S0, pinned to an obstacle
�shaded�, rotates counterclockwise; wave 1 is the first pacing wave.
�b� Wave 1 hits the obstacle and separates into a wave rotating
counterclockwise �1a� and a wave rotating clockwise �1b�. �c�
Waves S0 and 1b collide and merge leaving only one rotating wave
1a denoted S1 hereafter. �d� The wave resulting from the merging of
S0 and 1b leaves the system. The interaction between the following
pacing wave, 2 and S1, is similar to that shown in �a�–�c�. Thus, the
pinned vortex persists. Numerical simulation of the Barkley model
with parameters: a=0.9, b=0.17; the pacing period is Tp=6.7 and
the radius of the obstacle is R=6.5.
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FIG. 2. �Color online� Lowering excitability results in success-
ful detachment of pinned vortex by pacing. S0 is a rotating wave
whose core �dashed line� is larger than the pinning center �shaded�.
�a�–�c� are topologically as in Fig. 1. �d� A wavelet 1c is produced
after collision of waves S0 and 1b in contrast with Fig. 1�d�. �e� The
wavelet 1c collides with 1a and the resulting wave S1 is displaced
away from the obstacle. �f� Subsequent pacing induces drift of the
spiral wave S1 to the boundary eventually removing it from the
medium. The parameters are as in Fig. 1, except for a=0.895 and
b=0.1725, resulting in increasing the vortex core size.

PUMIR et al. PHYSICAL REVIEW E 81, 010901�R� �2010�

RAPID COMMUNICATIONS

010901-2



that the broken wave front can now evolve into a spiral. As
RFS increases with decreasing tangential velocity of the wave
front, the spiral core becomes large close to the SE region
resulting in successful pacing-induced termination of pinned
reentry.

We observe that there is a maximum radius of the obstacle
�Robst

max� close to RFS above which pacing is unsuccessful in
detaching the anchored spiral wave �Fig. 3�b��. Figure 4�a�
shows that the pacing period for successful unpinning from
the obstacle is bounded by the refractory period �Tref� and a
maximum value Tp

max that is independent of Robst for small
obstacles. As we approach Robst

max, the upper bound sharply
decreases, becoming equal to the refractory time at Robst

max,
which indicates that pacing will be unsuccessful in unpin-
ning waves attached to obstacles of radii larger than Robst

max.
Thus, the results shown in Figs. 3�b� and 4�a� demonstrate
our earlier assertion that pacing-induced removal of an-
chored waves will be possible only when the obstacle is
smaller than the core radius of the free spiral wave in the
medium.

Our numerical results indicate that the maximum pacing
period necessary for detaching a pinned spiral wave is a de-
creasing function of the obstacle size �Fig. 4�a��. This can be
explained semiquantitatively by the following geometric ar-
gument, valid when the size of the obstacle is small com-
pared to the core size of the spiral, and supported by the
simulations shown in Figs. 4�c�–4�f�. The tip of the spiral S
moves along its circular trajectory, shown by the broken line
in Fig. 4�b�, and interacts with the pacing wave coming from
the top represented by a solid line. The part 1b of the pacing
wave collides with S at the point C characterized by an angle
� that the spiral tip makes with the symmetry axis �i.e., the
line joining the centers of the obstacle and spiral core�;

the resulting wave eventually leaves the system �Fig. 4�d��.
The remaining section of the pacing wave splits into two
waves, 1a and 1c, propagating along either side of the ob-
stacle. The wave tip moves approximately in a straight line
from C, so that the length of the wave 1c at the symmetry
axis is l=RFS�1+cos ��−2Robst. When the fragment 1c is
larger than the nucleation size ln, it expands into a wave front
that reconnects with wave 1a. This results in a displacement
of the wave 1a away from the obstacle leading to unpinning
�as in Fig. 2�. For l� ln, 1c shrinks and eventually disappears
resulting in unsuccessful pacing.

Thus, the condition for detachment is l� ln. The length
l is a decreasing function of the angle �, which in turn is
a decreasing function of the pacing period, Tp, as explained
below. The relation between Tp and � can be established
by estimating the time interval for two successive collisions
of the spiral with the pacing waves. From the point of col-
lision C, the pacing wave reaches the obstacle after time
T1= �RFS sin �−Robst� /v and the symmetry axis after time
T2=T1+ �RobstTFS /4RFS�. From the symmetry axis, the new
reentrant wave S moves by an angle ��+�� to arrive at C at
time T3=T2+ �TFS��+�� /2��, where it collides with the next
pacing wave. Noting that T3=Tp allows us to implicitly
express Tp as a function of �, and thereby, l. The maximum
pacing period leading to detachment is obtained when l= ln
as
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FIG. 3. �Color online� �a� Parameter space of the Barkley
model. Unpinning is possible in the shaded portion of the SW re-
gion, which exhibits persistent spiral waves. The thick line indicates
the boundary with the SE region, where spirals cannot form. The
domain where unpinning is possible shrinks with increasing size of
the pinning center, the three dashed lines corresponding to Robst

=0, i.e., no obstacle �square�, Robst=1.25 �plus�, and Robst=6.5 �dia-
mond�. �b� Radius RFS of the free spiral and the maximum obstacle
radius Robst

max from which wave trains can unpin vortices, as a func-
tion of the distance d from the SE-SW boundary, along the dot-
dashed line indicated in �a�. Note that RFS�Robst

max and both increase
with decreasing d. �In �a�, NW �BI� indicates the parameters for
which steady waves are absent �the medium is bistable�.�

0 2 4 6
5

10

15

20

25

Radius of obstacle, R
obst

M
ax

im
u

m
P

ac
in

g
P

er
io

d
,T

m
ax

p

T
FS Rmax

obst

T
ref

( a )

θ

1a 1c

l

1

S

C
( b )

( c )

S

1

( d )

S
1a

1b

C

( e )

1c1a

( f )

1a
1c

FIG. 4. �Color online� �a� The maximum pacing period Tp
max at

which unpinning is possible as a function of the obstacle radius
Robst. For the parameters a=1.1323, b=0.2459 that we have used,
the maximum radius of obstacle from which depinning can occur
is Robst

max=4. TFS is the period of a free spiral wave and Tref is the
refractory period. The dashed line indicates the prediction from
Eq. �2�. �b� The wavelet formation mechanism leading to the de-
tachment of the pinned vortex �schematic�. �c�–�f� Numerical simu-
lation of the Barkley model. S collides with wave 1 at point C at
an angle �. The part 1b of the pacing wave merges with S, moving
out of the system. The remaining part of the pacing wave collides
with the obstacle �shaded� separating into 1a and a small wavelet
1c. When the length l of wavelet 1c is larger than the critical nucle-
ation length, 1c survives and collides with S. This results in unpin-
ning of S.
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Tp
max =

RFS

v
�sin �c − fR� +

fRTFS

4
+

TFS��c + ��
2�

, �2�

where �c=arccos�2fR−1+ �ln /RFS�� and fR=Robst /RFS. When
Robst�Robst

max =RFS− �ln /2�, Tp
max has complex values indicat-

ing that for larger obstacles the fragment is too small to
survive. The nucleation length ln can thus be estimated from
Robst

max, which allows us, in turn, to determine the dependence
of Tp

max as a function of Robst from Eq. �2�. Figure 4�a� shows
this to be in fair agreement with our numerical simulations.

We stress that the arguments used here are model inde-
pendent and are based only on the property that waves in
excitable media annihilate on collision. We verified numeri-
cally �24� that wave-train-induced unpinning is observed also
in a more detailed and realistic description of cardiac tissue,
the Luo-Rudy model �25� under conditions of reduced excit-
ability. Meandering, which occurs in the Barkley model at
low a ,b values �Fig. 3�a��, does not affect the physical effect
discussed here. Note that the proposed unpinning mechanism
is for the case of an obstacle smaller than the vortex core. It
is possible under certain circumstances to unpin waves from
obstacles larger than the core because of other effects such as

the presence of slow conduction regions �26� and nonlinear
wave propagation �alternans� �27�.

Our results thus predict that in cardiac tissue, the removal
of spiral waves pinned to a small obstacle by high-frequency
wave trains is facilitated by decreasing the excitability of the
medium. This is consistent with previous experimental re-
sults on cardiac preparations using Na-channel blockers �17�
and our prediction could be directly tested in a similar ex-
perimental setup �12,17�.

In conclusion, we have shown that for a pinned vortex
interacting with a pacing wave train, unpinning is possible
when the size of the obstacle is smaller than that of the spiral
core. The minimum wave-train frequency necessary for un-
pinning in the presence of an inexcitable obstacle is higher
than that for inducing drift in a free vortex toward the bound-
aries, and it increases with the size of the pinning center. Our
results suggest that lowering the excitability of the medium
makes it easier to unpin vortices by pacing.
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