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Abstract – Modular organization characterizes many complex networks occurring in nature,
including the brain. In this paper we show that modular structure may be responsible for increasing
the robustness of certain dynamical states of such systems. In a network of threshold-activated
binary elements, we observe that the basins of attractors, corresponding to patterns that have
been embedded using a learning rule, occupy maximum volume in phase space at an optimal
modularity. Simultaneously, the convergence time to these attractors decreases as a result of
cooperative dynamics between the modules. The role of modularity in increasing global stability
of certain desirable attractors of a system may provide a clue to its evolution and ubiquity in
natural systems.

Copyright c© EPLA, 2011

An ubiquitous property of complex systems is their
modular organization [1], characterized by communities
of densely connected elements with sparser connections
between the different communities [2]. In the biological
world, modules are seen to occur across many length
scales, from the intra-cellular networks of protein-protein
interactions [3,4] and signaling pathways [5] to food webs
comprising multiple species populations [6]. Although
such groupings are primarily defined in terms of the
structural features of the network topology, in several
instances distinct modules have also been associated with
specific functions. Indeed, in the case of the brain, modu-
lar organization at the anatomical level has long been
thought to be paralleled at the functional level of cogni-
tion [7]. By observing the effects of isolating or discon-
necting different brain areas on the behavior of subjects,
the functional specializations of spatially distinct modules
have been established at different length scales [8] —from
hemispheric specialization to minicolumns comprising a
few hundred cells which have been proposed as the basic
information processing units of the cerebral cortex [9,10].
More recently, the analysis of neurobiological data using
graph theoretic techniques [11] has further established

(a)E-mail: sitabhra@imsc.res.in

the modular nature of inter-connections between different
areas of the mammalian cortex. The structural modules
revealed by tracing the anatomical connections in
mammalian brains [12,13] are complemented by the
observation of functionally defined networks having
modular character [14,15]. Such functional networks have
been reconstructed from MRI and fMRI experiments
on both human [16] and non-human [17] subjects, by
considering two brain areas to be connected if they
are simultaneously active when the subject performs a
specific behavioral task.
The wide-spread occurrence of modularity prompts the

question as to why this structural organization is so ubiq-
uitous [18]. One possible reason is that it enhances commu-
nication efficiency by decreasing the average network path
length while allowing high clustering to help localize
signals within sub-networks [19]. However, of more inter-
est is the possibility that modularity may play a crucial
role in the principal function of the system, viz., infor-
mation processing in the case of brain networks. This
possibility has been investigated in detail for the somatic
nervous system of the nematode C. elegans [20]. It is
therefore intriguing to speculate whether modularity is
responsible for efficient information processing in brains
of more evolved organisms, the mammalian cortex in
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particular. To explore this idea further we can study the
effect of modular structure on the dynamics of attrac-
tor network models with threshold-activated nodes, which
exhibit multiple stable states or “memories” [21,22]. These
models were originally developed to understand how the
nervous system communicates among its component parts
and learns associations between different stimuli so that
a memorized pattern can be retrieved in its entirety from
a small part or a noise-corrupted version of it given as
input (“associative memory”). Indeed, recent experiments
indicate that the spatiotemporal activation dynamics in
neocortical networks converge to one of several different
persistent, stable patterns which resemble the behavior
observed in such models [23]. However, the properties
of attractor networks are of more general interest and
have been used to understand systems outside the domain
of neurobiology, as for example, the network involved
in intracellular signaling where communication between
molecules within a cell take place through multiple inter-
acting pathways [24,25]. In the attractor networks, desired
patterns are stored by using a learning rule to determine
the connection weights between the nodes. This ensures
that the update (or recall) dynamics of the network makes
it converge to these pre-specified dynamical states when
an input initial state of the system is transformed into an
output state defined over the same set of nodes by the
collective dynamics of the network. Using such simplified
models has the advantage of making the observed phenom-
ena simpler to analyze and also to obtain results that are
independent of specific biological details of different types
of neurons and synaptic connections.
In this paper we show that if we want to store p (say)

patterns in a network with a given number of nodes and
links, then the convergence to an attractor corresponding
to any of the stored patterns (i.e., recall) will be most
efficient when the network has an optimal modular
structure, provided the number of patterns is not too
large (p < pmax). If the degree of modularity is increased
or decreased from the optimum value, the reliability with
which the patterns are recalled decreases. This optimal
efficiency of recall originates from the network dynamics
itself. Some of the modules converge quickly to attractors
corresponding to parts of stored patterns and then help
other modules to reach the attractor corresponding to
the entire stored pattern through interactions via inter-
modular links. If the modularity is increased (i.e., if the
number of intra-modular links is increased while reducing
the number of inter-modular links to keep the average
degree fixed), the modules cannot interact with each other
strongly enough due to fewer intermodular links and
the performance of the network is less efficient. On the
other hand, if the modularity is decreased, the modules
themselves become sparsely connected and cannot reach
an attractor rapidly. Also, if we try to store too many
patterns (p� pmax), the advantage of modularity disap-
pears because of the generation of a large number of
spin-glass states which correspond to spurious patterns.

(a) r = 0

(d) 

(b) r = 0.1 (c) r = 1

Fig. 1: (Colour on-line) (a)–(c) Adjacency matrices A defin-
ing the network connections at different values of the modu-
larity parameter r for N = 256 nodes arranged into nm = 4
modules (average degree 〈k〉= 60). Starting from a system of
isolated clusters ((a), r= 0), by increasing r we obtain modular
networks ((b), r= 0.1) eventually arriving at a homogeneous
network ((c), r= 1). The connection structure of modular
networks in the intermediate range 0< r < 1 is shown schemat-
ically in (d). The connection weights have different magnitudes
and signs.

The attractor network model we have used to inves-
tigate the role of modularity is constructed such that
the N nodes comprising it are divided into nm modules,
each having n(=N/nm) nodes [19]. Most of the simula-
tion results reported in this paper are for N = 1024 and
nm = 8; we have verified that our results are not sensi-
tively dependent on the system size by also considering
networks with N ranging from 512 to 2048, and having
different numbers of modules. The connection probability
between a pair of nodes belonging to the same module
is ρi, while that between nodes belonging to different
modules is ρo. The modular nature of the network can be
varied continuously by altering the ratio of inter- to intra-
modular connectivity, r= ρo

ρi
∈ [0, 1], keeping the average

degree 〈k〉 fixed (fig. 1). For r= 0, the network is frag-
mented into nm isolated clusters, whereas at r= 1, it is a
homogeneous or Erdős-Rényi random network. We ensure
that the resulting adjacency matrix A (i.e., Aij = 1 if i, j
are connected, and 0, otherwise) is symmetric. We have
explicitly verified that the results reported below do not
change appreciably if A is non-symmetric (corresponding
to a directed network).
The time evolution of the system is governed by the

dynamics of the variables associated with each node of
the network. An Ising spin σi =±1 is placed at each node
which may represent any binary state variable, such as a
two-state neuron (firing = 1, inactive =−1). The state of
the spins are evaluated at discrete time-steps using asyn-
chronous (random sequential) updating1 according to the
following deterministic (or zero-temperature) dynamics:

σi(t+1) = sign(ΣjAijWijσj(t)), (1)

1Using parallel updating, i.e., where all spins update their states
at the same time, does not qualitatively change our results.
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where Wij is the connection strength between neurons i
and j. The function sign(z) = 1, if z > 0, =−1, if z < 0 and
randomly chosen to be ±1 if z = 0. The weight associated
with each link is evaluated using the Hebbian learning
rule [22] for storing p random patterns in an associative
network:

Wij =
1

〈k〉
Σµξ

µ
i ξ
µ
j , Wii = 0, (2)

ξµi being the i-th component of the µ-th pattern vector
(µ= 1, . . . p). Each of the stored patterns are generated
randomly by choosing each component to be +1 or −1
with equal probability. Starting from an arbitrary initial
state, the network eventually converges to a time-invariant
stable state or attractor. The overlap of an attractor of
the network dynamics S∗ = {σ∗i } with any of the stored
patterns can be measured as mµ =

1
N
Σiσ

∗

i ξ
µ
i . As we are

interested in the set of all the attractors of stored patterns
rather than one specific pattern, we focus our attention
on the maximum overlap with the stored patterns, m=
maxµ|mµ|. To examine the global stability of the attractors
corresponding to the stored patterns, we use random
strings as the initial state of the network which should
have almost no overlap with any of the stored patterns, on
average. The probability vg ≡ 〈Prob(m>mo)〉 that such a
random initial state eventually almost converges to one of
the stored patterns, gives an estimate of the overall volume
that the basins of attraction of stored patterns occupy
in the N -dimensional network configuration space {S}.
Here mo is a threshold for the overlap of the asymptotic
stable state above which the network can be considered
to have recalled a pattern successfully and 〈. . .〉 indicates
averaging over many different network configurations A,
as well as, pattern ensembles {ξ} and initial states. The
value of the threshold mo has been taken to be 0.95
for most of the analysis presented here; we have verified
that varying it over a small range does not alter our
results. In a similar way, we can define the overlap for
each module, mµ(α) =

1
n
Σiσ

∗

i (α)ξ
µ
i (α) where the sum is

over all spins in the α-th module with α= 1, . . . , nm
being an index running over the different modules. The
relative size of the basins of attraction at the modular
scale is characterized by the quantity vm = 〈〈Prob(m(α)>
mo)〉α〉, where m(α) =maxµ|mµ(α)| and 〈. . .〉α indicates
averaging over all the modules.
We first look at how the total volume of the config-

uration space occupied by the basins of attraction for
stored patterns ξµ changes as the modular character of the
network is altered by varying r for a fixed 〈k〉. Figure 2
shows the combined fractional volume of the phase space
occupied by the basins of attraction of the stored patterns
for the entire network (vg) as well as for the correspond-
ing sub-patterns in a single module (vm). Different curves
indicate various numbers of stored patterns p. We imme-
diately notice that while vm has finite values over the
entire range of r, vg is zero at low values of r where a
module is connected to the rest of the network by very
few links, if at all. The value of r at which vg starts
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Fig. 2: (Colour on-line) Fractional volume of phase space
occupied by the basins of attraction of the stored patterns in
a single module (vm) and the entire random modular network
(vg). Note that, when the number of stored patterns is within a
critical range (pmin = 2< p< pmax = 9), these quantities show
a non-monotonic variation with r, having a peak around rc ≃
1/(nm− 1)∼ 0.14. Results are shown for N = 1024, nm = 8 and
〈k〉= 120. Different numbers of stored patterns p are indicated
using various symbols.

rising from 0 appears to be independent of the number
of stored patterns p. Below this value of r, the connec-
tivity between the modules is insufficient to recall the
entire stored pattern, even though individual modules
may have complete overlap with different stored patterns.
To explain the situation, we can decompose each stored
pattern in terms of nm sub-patterns defined over the
different modules, viz., ξµ = {ξµ(α)}, where α= 1, . . . , nm.
Starting from a random initial state, a module α may
converge to an attractor corresponding to any of the nm
different sub-patterns ξµ(α). As the recall dynamics within
each module is nearly independent of the other modules
for low r, they may each converge to sub-parts of differ-
ent patterns, i.e., the value of µ would not be identi-
cal for the attractors of all the nm modules. Thus, the
resulting attractor for the entire network corresponds to a
“chimera” memory state, {ξµ1(1), . . . , ξµnm (nm)}, i.e., a
spurious pattern comprising fragments of different stored
patterns [26,27].
From the perspective of enhanced robustness of the

dynamical attractors of the entire network, even more
interesting is the behavior of vg and vm when r is
increased further after the modules have become inter-
connected appreciably. Over an intermediate range of
pmin < p< pmax, we notice a non-monotonic variation of
both vg and vm with respect to r. Figure 2 shows that
both curves attain a maximum around rc ∼

n−1
N−n

≃ 1
nm−1

,
where a neuron has the same number of connections with
nodes belonging to its own module as it has with neurons
belonging to different modules. When the relative number
of inter-modular connections is increased beyond rc,
the fractional volume of configuration space occupied
by the attractors corresponding to the stored patterns
tends to decrease. This implies that the homogeneous
network (r= 1) is actually less robust than its modular
counterpart (r≃ rc) in terms of global stability of the
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stored attractors. As p increases beyond pmax, both vg and
vm decrease at the resulting high loading fraction p/〈k〉
through the generation of a large number of spin-glass
states corresponding to spurious attractors that have
little or no overlap with any of the stored patterns [22].
We have explicitly verified that the maximum number of
stored patterns pmax beyond which the non-monotonic
nature of the variation is lost, increases when the total
number of neurons N is increased, keeping the overall
density of connections, 〈k〉/(N − 1), and the number of
modules, nm, fixed

2.
For low values of p, i.e., p� pmin, both vg and vm

increase with r eventually reaching 1 and becoming inde-
pendent of r once the connectivity between the modules
becomes appreciable. We find from our numerical results
that pmin = 2, independent of the system size N or other
model parameters. This observation helps in identifying
the key mechanism for the non-monotonic variation of vg
with r. While at low r, vg is small because the low connec-
tivity among modules favors the chimera states, at very
large r the attractors corresponding to the stored patterns
have to compete withmixed states. Mixed states are spuri-
ous attractors that correspond to symmetric combinations
of an odd number of stored patterns (e.g., ξ1+ ξ2+ ξ3)
which exist for all p > 2. This is explicitly shown by
the distribution of the overlap, m, of the attractors of
a network with any of the p stored patterns (shown in
fig. 3 for p= 4). For low values of r, the dominance of
chimera states results in low overlap values. When the
modules become highly inter-connected as r→ 1, most
randomly chosen initial strings will converge to a stored
pattern resulting in a large peak at m= 1 in the over-
lap distribution. However, we also notice a smaller peak
around m≃ 0.5, which corresponds to 3-pattern mixed
states (which have overlap of 0.5 with each of the three
constituent stored patterns). Note that as r is gradually
decreased from 1, about r≃ rc the m distribution shows
a sharp dip for overlaps around 0.5. This corresponds to
an increase in the phase space volume occupied by the
attractors of the stored patterns at the expense of the
mixed states. A similar dip in the distribution is also
observed for the corresponding overlap around 0.5 for each
module (figure not shown). Thus, the cooperative interac-
tions between the different modules not only affect the
recall dynamics at the global level, but also locally within
each module.
Figure 3(b) shows explicitly that the attractors not

corresponding to any of the stored patterns, belong almost
exclusively to mixed states at high r. In principle, these
combinations can be of the same sign (e.g., ξ1+ ξ2+ ξ3)
or different signs (e.g., ξ1− ξ2+ ξ3). The curves corre-
sponding to each of these show that although the latter
has a higher number of possible combinations, it is the
attractors corresponding to the same sign combinations

2For example, pmax increases from 6 for N = 512 to 9 for N =
1024 and 12 for N = 2048 when 〈k〉/(N − 1)≃ 0.117 and nm = 8.
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Fig. 3: (Colour on-line) (a) Distribution of the overlap of the
attractors of the network dynamics with the stored patterns
in a random modular network, at different values of the
modularity parameter r. P (m) is the probability of having
overlap m. Complete overlap with the stored patterns (m= 1)
becomes more probable as r becomes larger than a threshold
value. However, at large values of r, there is a secondary peak
around mg ∼ 0.5 corresponding to mixed states (i.e., linear
combination of an odd number of stored patterns). This peak
shows a dip at rc ≃ 1/(nm− 1)∼ 0.14. (b) The variation, as
a function of r, of the fraction of total number of spurious
attractors that are mixed states, fmix. For r > rc, the mixed
states account for almost all the attractors not corresponding
to any of the stored patterns. They can be either combinations
having the same sign (square) or different signs (diamond).
Results shown for N = 1024, nm = 8, 〈k〉= 120 and number of
stored patterns, p= 4.

which occupy a larger portion of the phase space. This is a
consequence of the Hebbian learning rule, which provides
a bias for the same-sign combinations in preference to the
different sign combinations.
So far we have discussed the long-time asymptotic prop-

erties of the system. The dynamical aspect represented
by the time required to reach equilibrium also exhibits
unexpected properties. Figure 4 shows that the network
converges faster to attractors corresponding to stored
patterns as compared to mixed states (and other attrac-
tors that do not have significant overlap with any of the
stored patterns), at both the modular and the network
level. Moreover, this difference is slightly enhanced close
to rc, the modular configuration where the basins of
the stored patterns cover the largest fraction of the
configuration space. The non-monotonic variation of the
convergence time with decreasing modularity arises as a
result of two competing effects: increasing r decreases the
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Fig. 4: (Colour on-line) (a) The average convergence time τ
to different attractors in a random modular network, shown
for individual modules (〈τm〉, circles) and the entire network
(〈τg〉, squares). It is measured in terms of Monte Carlo (MC)
steps required to reach a time-invariant state starting from
a random initial configuration. (b) The difference in the
average convergence times (in MC steps) to an attractor not
corresponding to a stored pattern (m< 0.95) and to one of
the stored patterns, Δτ . The difference is shown for both
an individual module (Δτm, circles) and the entire network
(Δτg, squares). The peak close to rc ∼ 0.14 corresponds to a
significantly faster convergence to the stored patterns relative
to the other attractors. Results shown for N = 1024, nm = 8,
〈k〉= 120 and p= 4.

intra-modular connectivity, resulting in increasing time for
each module to relax to an attractor; on the other hand,
this is accompanied by an increase in the connections
between modules, that eventually causes the entire system
to relax faster to attractors. This dynamical picture
provides us with a possible clue as to the enhanced global
stability of the attractors corresponding to stored patterns
close to rc. As there is a distinct time scale separation
between the convergence dynamics at the modular (or
local) and at the global scale for such networks [19,28],
the state of a specific module may evolve to reach a
sub-pattern corresponding to a part of one of the stored
patterns much faster than the network can converge to
an attractor. Once this happens, this module biases the
convergence of the other modules connected to it (via
Hebbian inter-modular links) to the pattern to which it
has converged. This increases the likelihood of convergence
of the entire network to a particular pattern through coop-
erative behavior among the modules, something that is
absent when the modules are disconnected or the network
is homogeneous.
In this paper we have shown that modular organization

in the connection structure of a network of threshold-
activated elements can result in increased robustness of
dynamical attractors associated with certain pre-specified
states. These states may represent solutions to computa-
tional tasks or implement memorized patterns of activity.

The modularity of the network allows these states to
cover the maximum volume of its phase space with their
basins, an outcome of cooperative behavior between the
convergence or recall dynamics in the different modules.
Our results have special relevance to the question of how
cognitive states arise from interactions between a large
number of brain regions, each comprising many neurons.
Neurobiological evidence suggests that cortical activity
consists of rapid integration of signals across brain regions
that are in spatially distinct locations and which occurs
in a self-organized manner through interactions between
the elements of the network of brain areas [29]. The
empirical observation of modular cortical organization
and the occurrence of distinct, persistent activity patterns
corresponding to attractor dynamics raises the intriguing
possibility that evolution may have selected modularity
because of the robustness it imparts to the underlying
system. Future extensions of the work reported here may
involve considering the effect of noise, i.e., investigating
the recall dynamics at a finite temperature. Another
possibility is to investigate the role of hierarchical
arrangement of modules that have recently been reported
in different biological systems [30,31], including the
brain [32,33]. Our results may also potentially be used
to understand why attractor networks with small-world
connection topology show a small increase in global
stability relative to random networks, although the local
stability of stored patterns is unaffected [34–37].
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