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Abstract 

Neurobiological studies have indicated that rapid transitions between chaotic and relatively more 
ordered states may be the key towards understanding how the brain performs cognitive tasks. This 
immediately suggests that methods of controlling chaos put forward by Ott et al. and Hunt may be 
used to study similar phenomena in neural network models. In the work described in this paper, an 
oscillatory neural network that can exhibit chaos under certain conditions was used for controlling 
purpose. On imposition of control, transition of the network behavior from chaos to periodicity was 
observed. This has implications for both the explanation of observed neurobiological phenomena 
(e.g., during epileptic seizures) as well as a more dynamic interpretation of associative recall 
performed by neural network models. 

1. Introduction 

Neural network models of computation have been enjoying a period of revival for 
quite some time now, from the perspective of both theory and applications [ 1 ]. These 
models comprise of networks of large numbers of simple processing dements, usually 
having continuously varying activation values and stochastic threshold dynamics. The 
activity of  these elements, xi ( i  = 1, 2 . . . . .  N )  are determined by the temporal evolution 
equation: 

X i ---- F ( ~ r ~ j W i j x j  - -  Oi) , ( | )  

where 0i is an internal threshold (usually taken as zero), Wij is the connection weight 
from element j to element i, and F is a nonlinear function. Often, this function has the 
following sigmoid form: 
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a being the slope. For a = 0, F is a "hard limiting" or step function, 

xi = sgn(~j Wijxj  - Oi). 

Different neural network models are specified by 

- network topology, i.e. the pattern of connections between the elements comprising the 
network; 

- characteristics of the processing element, e.g. the explicit form of the nonlinear func- 

tion F, and the value of the threshold, 0; 
- learning rule, i.e. the rules for computing the connection weights Wij appropriate for 

a given task. 

Some networks have been shown to be capable of associative memory and learning. 

However, one of the limitations of most models of associative memory at present is 

that they basically store a small number of single patterns, i.e. to say, once a pattern 

has been recalled, the network remains in that state, until the arrival of new external 
input. In contrast, real neural networks show a preponderance of sequential memories. 

Once we recall a memory, our minds are not stuck to it, but also recall other associated 
memories without being prompted by any additional external stimulus. This ability to 

' jump' from one memory to another in the absence of appropriate stimuli is one of the 

hallmarks of the brain. It is an ability which one should try to recreate in a network 
model if it is ever to come close to human-like performance in intellectual tasks. 

In this paper it is argued that the insights of chaos theory into the behavior of 
dynamical systems can help us in approaching the above problem of storing a large 

number of dynamic spatio-temporal patterns in a network and making it spontaneously 
recall associated patterns in a sequence on the arrival of some external stimulus. Section 

2 discusses the identification of chaotic activity in neurobiological systems and its 
relevance to brain function. Section 3 reviews the technique of chaos control which can 
drive a system from chaotic to more periodic behavior. Section 4 describes a model for 
simulating the chaotic dynamics observed in the brain to which control is applied, while 
in Section 5 the relevance of this type of research to cognitive theory, clinical practice 
and practical neural net applications is discussed. Finally, some observations on the 

connection of this work with research on coupled lattice maps and possible directions 
of future research are made in the conclusion. 

2 .  C h a o s  i n  n e u r o b i o l o g y  

Evidence of deterministic chaos in the brain and associated neuronal apparatus were 
found within a very short time of the emergence of the field of chaotic dynamics. 
Hayashi et al. [2] investigated the nonperiodic behavior in self-sustained oscillation 
of the internodal cell of Nitella under sinusoidal stimulation. The analysis of the non- 
periodic oscillations of the excitable biological membrane revealed chaotic behavior. 
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Another group of researchers [ 3] studied the self-sustained oscillation of action poten- 
tials in an axon immersed in calcium-deficient sea water. The oscillations were analyzed 
by stroboscopic plots revealing both periodic and chaotic behavior, determined by the 
amplitude and the frequency of the stimulating current. The results corroborated similar 
studies carried out previously in squid giant axons. The group of Glass and Guevara [4] 
showed that recurrent inhibition and periodic forcing of neural oscillators can produce 
chaos and explored its implications in modeling normal and abnormal function in neuro- 
physiology. However, these experiments were concerned solely with the microstructure 
of the nervous system and did not answer the issue of whether chaos played any role in 
the overall cognitive functioning of the brain. 

The empirical evidence indicating the possible relevance of chaos to brain function 
was first obtained by Walter J. Freeman, through his work on the large-scale collective 
behaviour of neurons in the perception of olfactory stimuli [5,6]. Olfactory stimuli are 
detected by receptor neurons in the nasal passage. The number of receptors excited 
by a smell is a measure of the intensity of the stimulus, while the spatial pattern of 
activated receptors is dependent on the nature of the scent. On trapping molecules 
carrying specific odors these receptors fire action potentials which are transmitted to 
the olfactory bulb in the cortex. The bulb then transmits signals to the olfactory cortex 
which, in its turn, sends information to many regions of the brain. The test animals used 
by Freeman were trained to recognize several different odors and were then subjected 
to smells, both familiar and unfamiliar. EEG data was recorded by a gridlike array of 
64 electrodes placed over the surface of the olfactory bulb. Most of the time, the EEGs 
showed irregular oscillations. However, when an animal inhaled, a "burst" occurred in 
each EEG tracing as all the waves in the array became more regular for a brief period 
until the animal exhaled. These waves, named gamma waves, had a higher amplitude 
and frequency than usual and varied in frequency from 20 to 90 hertz, mostly occurring 
in the neighborhood of 40 hertz. Each set of burst recordings had a common carrier 
waveform, although the average amplitude of the different recordings varied widely. It 
was inferred that, as the carrier waveform changed during each inhalation, even for the 
same stimulus, the information about a particular scent was not encoded in the shape of 
the waveform but rather in the spatial pattern of the carrier-wave amplitudes across the 
bulb, which remained invariant over trials. On plotting the different amplitudes of the 
carrier waves in different regions of a surface representing the locations in the gridlike 
array over the olfactory bulb from which they were obtained, a contour diagram was 
produced. This remained the same for a specific scent throughout the testing period. 
However, if the reinforcement associated with a scent was altered, then the amplitude 
contour map representing it also changed. This indicated that the olfactory bulb is 
involved in the assigning of meaning to stimuli. One of the early pointers to chaotic 
activity was the aperiodicity of the common carrier wave in the bulb both during and 
between bursts. Another clue was the sudden transitions of neuronal networks in the 
bulb and the cortex from a nonburst to an active, bursting state. These factors prompted 
Freeman to develop a model for the olfactory system having cells in a network connected 
by both excitatory and inhibitory synapses. Computer simulations of the model showed 



436 S. Sinha/Physica A 224 (1996) 433-446 

that it recreated all the observed behavior of the olfactory system and, thus, was an 

accurate representation of it. The network was then made to produce EEGs of extended 

bursts and of interburst activity for a longer period than is possible in actual EEGs. 
The attractor of the underlying dynamics, reconstructed from the EEG data using the 
delay-coordinate technique was found to be chaotic in nature. The primary findings 

suggested that a separate chaotic attractor is maintained for each stimulus and the act 
of perception consists of a transition of the system from the domain of influence of 

one attractor to another. Later findings led Freeman to hypothesize that each brain area 

(rather than each stimulus) has a chaotic attractor. A specific sensory stimulus drives 
the system into a localized region within the attractor, which can be identified with the 
appearance of specific spatial patterns of carrier waveform amplitudes, associated with a 
specific stimulus. Further, the attractors themselves would have to change as a result of 

new experience and continued development of the brain. Thus, according to this picture, 
chaotic activity is fundamental to the general process of perception. 

3. Chaos control 

One of the distinguishing features of chaotic attractors is that they have an infinite 
number of  periodic attractors embedded within them. If  the system state exists at any 
time on a region belonging to one of the periodic attractors then it will remain within 
it. However, as the attractors are unstable, when perturbed by noise, the system diverges 

away from the periodic orbit at an exponential rate. In a chaotic attractor, the system 

state may be, at any given time, infinitesimally close to any one of the infinite periodic 

attractors but due to the highly unstable nature of the periodic orbits, the periodicity is 
never manifested over a measurable period of time. 

Edward Ott, Celso Grebogi and James A. Yorke have used this feature of chaotic at- 
tractors to construct a general method of controlling chaos, i.e. to convert the chaotic be- 
havior of a system to a time-periodic one [7]. Their method (referred to as OGY method 

henceforth) achieves this control by making small, carefully chosen time-dependent per- 
turbations of one of the parameters of the system. To obtain a periodic orbit, a local 
map around the desired attractor is constructed by the method of delay-coordinate em- 
bedding. In this method, the experimentally obtained time-series of some variable x( t )  
is obtained, with a delay T. The measured values are then used to construct an (n + 1 )- 
dimensional delay-coordinate vector 

X(t) = [x( t ) ,  x ( t -  T), x ( t -  2T) . . . . .  x ( t -  nT)], (3) 

whose time-evolution can be plotted to give a 3-dimensional projection of the trajectory. 
It has been mathematically demonstrated that such a projection is a good approximation 
of the dynamical attractor of the relevant system in ( n +  1 )-dimensional space [ 8,9]. The 
OGY control method relies upon the identification of saddle instabilities, i.e., unstable 
periodic points located on a surface having both stable and unstable directions. The 
system approaches the periodic point along a stable direction and diverges away from 
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it along an unstable one. When the chaotic system state is in the neighborhood of 

the desired attractor, a perturbation is applied to a system parameter such that on the 
next iteration the system state falls on the stable direction. The state will then move 
towards the attractor in successive iterations. Using this principle, many physical systems 
exhibiting chaotic behavior have been subjected to control. However, one drawback of 
this method is that only low-period orbits can be stabilized, since, because of the 
exponential error magnification in chaotic systems, high-period orbits are impossible to 
achieve by making only one correction in the long period. 

The OGY method has been used to control chaos in a biological neural network 
prepared from a hippocampai slice of a rat brain [ 10]. The brain slice was induced 
to exhibit chaos by immersing it in an artificial K+-enriched cerebrospinal fluid. Syn- 
chronous bursts were recorded and the interburst interval times, T, were plotted as points 
on a first-return map (i.e., To vs. Tn+l plot). A period-1 interburst interval was mani- 
fested as a single point lying on the diagonal of the return map. The neighborhood of 
these points showed both a stable direction along which the distance of the point from 
the diagonal decreased with iterations, and an unstable one, along which the distance 
increased. Using precisely timed electrical stimulation of the brain slice, the system was 
perturbed such that a trajectory coincided with a stable direction in the neighborhood 
of a periodic attractor. Thereafter the point moved towards the attractor with successive 
iterations and the resulting trajectories became periodic. In a similar way, anticontrol 
was achieved by perturbing a stable orbit, so that the next iteration falls close to the 
unstable direction, with a corresponding transition from periodic to chaotic behavior. 

A modified method of controlling chaos has been proposed by E.R. Hunt [ 11 ], which 
allows stabilization of orbits of periods longer than that is possible through the OGY 
method. As higher period orbits visit most regions of the attractor, which correspond 
to different physical states of the system, it is desirable to have high-period orbits if 
one wishes to sample as many of the states as possible. In the Hunt method, occasional 
proportional feedback is used to amplitude modulate the driving agency of the system. 
Specifically, deviations of a chaotic variable within a specified window centered about a 
specified value of a chosen system variable are fed back to perturb the controlling drive. 
By varying the specified variable value, the window and the amplitude of the feedback, 
different periodic orbits may be made to lock in (i.e., stabilized). This method was 
used by Hunt to control the chaotic behavior found in a diode resonator driven with 
sinusoidal voltage, where the chaotic variable was the peak forward current through 
the diode. Orbits with periods up to 23 drive cycles could be stabilized. In the work 
described later in this paper a variation of the Hunt method, suitably adapted for the 
given purpose, was used to stabilize periodic attractors in a neural network model 
exhibiting chaotic behavior. 
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Hebbian synaptic connections Wij  
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) 
inhibitory connection ~ excitatory connection 

Fig. 1. The oscillatory neural network model. Excitatory and inhibitory cells are labeled as x and y, respectively. 
Wij represents the connection weights between the excitatory cells. Kei is the strength of inhibitory connection 
from y to x and K/e is the strength of excitatory connection from x to y. 

4. Chaotic neural network model 

One of the ways of studying the relevance of chaos to brain activity is through the 
construction of specific neural network models that can give rise to chaotic activity. One 
such model, utilizing mutual excitatory-inhibitory synaptic connections giving rise to 
oscillatory behavior has been recently proposed by Hayashi [ 12]. The present work was 
done on a modified version of the Hayashi network. The model consists of N excitatory 
and N inhibitory elements, denoted by xi and Yi, respectively (Fig. 1). The cells update 
their states in the (n + 1)th iteration, according to the following transformations: 

xi(n+l)=G(~'~Wijxj(n)-KElYi(n)+li ( to)) j=l  ( 4 )  

and 

yi(n + 1) = G(KiExi (n)  + l i ( to+ 6 ) ) ,  (5) 

where l ( to)  is an external periodic input or bias, 8 is a phase difference between the 
inputs to xi and yi and the function G is defined as 

2 
G( z ) = -- arctan( z / a ) ,  (6) 71" 
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a being the slope of the function. This parameter is analogous to 'temperature' in a 
physical system. 

Thus, while excitatory cells are all connected to each other, inhibitory cells are 
connected only to the corresponding excitatory cells - KtE being the weightage of the 
excitatory connection from xi to Yi and Ket being the inhibitory connection weightage 
from Yi to xi. It is evident that xi and Yi vary between + 1 and -1 .  The activation values 
of the excitatory cells at time t, x i ( t ) ,  are taken as the output of the network at that 
instant of time. 

The synaptic connection weights Wij between the excitatory cells, xi, are evaluated 
by a modification of the standard Hebb rule, 

1 
+ ij, (7) 

/z 

where s¢~ is the ith component of the/zth pattern vector being stored in the network 
and t~/j is the Kronecker delta function. 

It is easily seen that the pair of first-order difference equations (4) , (5)  is equivalent 
to the second-order difference equation: 

xi(n--b 1) = G  Wijxj(n) - K e t G ( K , e x i ( n -  1) --t-fi(to-[-t~)) --}-li(to) , 

(8) 

which resembles a Hopfield-like model with delay-dynamics. 

4.1. Stability analysis 

The stability of the fixed points of a single excitatory-inhibitory pair is investigated 
in this section. Let z* denote a fixed point of the pair of evolution equations for xi and 
yi. The Jacobian in the neighborhood of the fixed point in the absence of any external 
input is given by 

G'(z)lz=z*Wii G'(z)lz=z*Ket 
J = , (9) 

G'(z)lz=z*K,e 0 

where G'(z)  is the derivative of G(z)  w.r.t.z. 
The eigenvalues are given by the solution of the equation 

Det IJ - a I I  = 0, (10) 

where I is the identity matrix. This equation can be reduced to 

A 2 - T r JA + D e t J .  (11) 

Thus, 

T r J  -4- x / (Tr  J)  2 - 4De t J  (12) 
AI'2 = 2 
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For (TrJ )  2 - 4 D e t J  >_ 0 the solutions eventually converge to the fixed point, which is 

thus stable. Evaluating J, TrJ  = Gt(z)lz=z.Wii and DetJ  = (Gl(z)lz=z.)2KleK~t.  As 
Gt(z )  = 2a/~r(a 2 + z2), the eigenvalues are given by 

) /~1,2 -- q.r(a2 -~ Z . 2 )  Wii :k WiZi - 4KetKte • (13) 

According to (7),  Wii = 2. Therefore, the condition for stability of the fixed point is 

KetKle _< 1. I f  this condition is not satisfied, all the fixed points of the second-order 
difference equation become unstable giving rise to periodic orbits. 

4.2. Simulation results 

For the present work, a network with N = 3 was used for carrying out computer 
simulations. The number of cells was kept low for ease of graphical analysis. The 

pattern vectors chosen for storage in the network were 

s cl = (  1 1 1 ), s c2---( 1 - 1  - 1  ), ~:3=( - 1  - 1  1 ). 

The memory patterns are, therefore, vertices of a cube, - 1  < xi _< 1 (i = l, 2, 3). 
After evaluating the weight matrix, the network was made to evolve from a randomly 

chosen initial value. The initial states were taken as xi(O) = li and yi(O) = O. As 
pointed out above the condition for oscillations in a single excitatory-inhibitory pair is 

KetKIE _> 1. The system thus corresponds to three oscillators weakly coupled together 
through connection strengths ~ (.9(l/N). If  these three oscillators have independent 

periods of oscillations then, according to the results of Li and Yorke [ 13], the system 

is capable of chaotic behaviour. 

The simulation was carried out for the following set of parameters: Ket = 2.0, K1e = 
2.0 and a = 0.1. An external sinusoidal input which completed one period every 300 
iterations of the network with 6 = 0 was used to stimulate the network. The system 
showed chaotic activity when the input pattern vector was far from any of the stored 

pattern vectors. The 3-dimensional plot of the trajectory of the network state in state 

space is shown in Fig. 2, while Fig. 3 shows the variation of the average activation 
of the excitatory cells with iteration number along with the corresponding logarithmic 
spectral density. Another performance parameter to be noted is the overlap of the output 
of the network at a given time with each of the stored patterns. This is defined for the 
/zth pattern vector at the nth iteration as 

1 ~-~x~(n)l~i~. (14) m~ ( n) = -~ 
i=1 

In Fig. 4 the overlap values are plotted against the number of iterations, for each of the 

three sC~s. 
This chaotic system was then subjected to control by modulating the amplitude of the 

external periodic input in accordance with Hunt's method described above. The resulting 
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Fig. 2. Trajectory of the network output in the chaotic state (Kei = 2.0, Kie = 2.0). The activation values 
for the cells x [ 1 ], x [ 2] and x [ 3 ] are plotted along the three axes. The circles represent the locations of the 
stored patterns and the plus sign indicates the location of the input pattern. 

system starting from the same initial conditions as in the previous chaotic case and with 

the network parameters unchanged, showed a time-series repeating every 15 iterations, 
after the initial transients had died away. The trajectory of  the system state over time 

in Fig. 5 shows a simple periodic orbit. Regular periodic behavior is clearly manifested 
in the plot of  the average excitatory cell activation and the corresponding logarithmic 

spectral density curve in Fig. 6. The overlap vs. iterations diagram in Fig. 7 shows 
that the network periodically comes close to each of  the three stored patterns. Thus, on 
imposing control, the system state exhibits periodicity quite clearly. 

5. Implications 

The modeling of  neurobiological chaos and its subsequent control to produce periodic 
behavior, points out several possible avenues for research aimed at understanding how 
the brain works. As Freeman has already pointed out [5,6],  Chaos is omnipresent in 
the brain - demonstrably so in the somatosensory and the olfactory cortices. It has been 
suggested that the quiescent state of  the brain is chaos, while during perception, i.e. when 
attention is focused on any sensory stimulus, brain activity becomes more periodic. From 
this perspective, the periodic orbits observed in the controlled state of  the network model 
can be interpreted as specific memories. I f  the different spatio-temporal patterns stored 
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Fig. 3. Temporal evolution of the average activation value of the excitatory cells in the chaotic state and the 
corresponding logarithmic spectral density. 
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Fig. 4. Temporal evolution of  the overlap of  the network output with the stored patterns in the chaotic state. 
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Fig. 5. Trajectory of  the network output in the controlled state for the same set of  network parameters and 
input pattern as in Fig. 2. 

in memory are identified with the infinite number of unstable periodic attractors that 
are embedded in the attractor, then the transition from quiescence to attention can be 
interpreted as the controlling of chaos to give rise to periodic behavior, culminating in 
the identification of the sensory stimulus that has been received. This control, of course, 
is not imposed by any external agency, but is an emergent property of the brain. 

This identification is also indirectly supported by the clinical observations of hal- 
lucinations that are prevalent during sensory epileptic seizures [ 14]. Complex visual 
hallucinations are usually due to an epileptic focus in the posterior part of the temporal 
lobe, near its junction with the occipital lobe. Often the hallucinatory visual images are 
distorted, being too small or too large or unnaturally arranged. More striking is the case 
of olfactory hallucinations, that are often associated with disease of the inferior and 
medial parts of the temporal lobe, usually in the region of the hippocampal convolution. 
Usually the hallucinatory smell is thought by the subjects to come from some place in 
the environment and is described as disagreeable or foul, although otherwise unidentifi- 
able. This can be explained in terms of the proposed picture of brain function by noting 
that during epilepsy, undesired control of the chaotic activity of the brain occurs as a 
result of the highly synchronized electrical stimulation of large parts of the brain. The 
stabilizing of an undesired periodic attractor results in the erroneous recognition of a 
sensory stimulus even when such a stimulus is absent from the immediate environment 
of the epileptic subject. 
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Fig. 6. Temporal evolution of the average activation value of the excitatory cells in the controlled state and 

the corresponding logarithmic spectral density. 
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Fig. 7. Temporal evolution of the overlap of the network output with the stored patterns in the controlled state. 
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The use of chaos control can also benefit fields which require the practical imple- 
mentation of neural network models. The possibility of embedding an enormous amount 
of dynamic patterns (e.g., moving images, pieces of music, etc.) in a chaotic neural 
network and their systematic recognition will widen the scope of applications of neuro- 
computers. Temporal sequences can be associated with the unstable periodic attractors 
by suitable learning rules and then recalled on presentation of suitable stimuli as input 
to the network. The convergence to the stored patterns will be extremely rapid owing 
to the chaotic dynamics governing the network. Neural networks implementing delay 
dynamics, which closely resembles the above model (as mentioned above), have already 
been shown to perform better than standard models in tasks such as associative memory 
(in terms of storage capacity) and combinatorial optimisation [ 15]. However, further 
work on finding suitable architectures and learning algorithms will be necessary before 
this promise is fully realized. 

6. Conclusion 

The network used here has simple Boolean processing dements with a nonlinear 
transition function. Biological neurons however are far more complicated and are better 
modeled by the Bonhoeffer-Van der Pol (BVP) equations. Single BVP oscillators 
undergoing forced oscillations have been shown to exhibit chaotic behaviour [16]. 
Future work is therefore planned on studying the large-scale collective behaviour of a 
network of BVP oscillators coupled to each other through Hebbian connections. 

Another possible avenue of further work has been opened by the relation of the above 
model to coupled lattice maps, i.e. networks where the evolution of each dement is 
governed by a chaotic difference equation (e.g., the logistic map). The elements are 
coupled to their nearest neighbors. Depending on the strength and nature of these cou- 
plings, such systems show a remarkable variety of behaviour, including synchronization. 
It is hoped that the theoretical apparatus developed for studying such lattices can be 
used fruitfully for the detailed analysis of the chaotic neural network model. In this 
context, it is interesting to note that Pecora and Carroll [ 17] who have worked on syn- 
chronizing certain subsystems of chaotic systems by linking them with common signals 
have suggested that the concept of synchronization can be extended to some neural pro- 
cesses. According to them, the process of synchronization can be viewed as a response 
system that "knows" what brain state (attractor) to go to when driven (stimulated) by 
a particular stimulus. 

The traditional neural network paradigm has always seen the phenomena of associative 
memory as being due to a multitude of fixed-point attractors [ 18 ]. Each such attractor 
was identified with a specific pattern which was desired to be stored and recalled 
associatively. But limitations of neural networks designed according to this prescription 
as well as recent neurobiological research is now forcing this "fixed-point" approach to 
be replaced by a more dynamic interpretation of how associative recall may actually be 
performed in the brain. It is hoped that the work presented in this paper shows to some 
extent the promise of "chaotic-attractor" neural networks. 
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