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Abstract

We give an overview of our studies of spiral turbulence and spatiotemporal chaos in partial-
differential-equation models for two excitable media: (a) the oxidation of carbon monoxide on
Pt(110); and (b) ventricular fibrillation in mammalian hearts. Our characterization of spiral tur-
bulence and spatiotemporal chaos in these models leads us to an efficient scheme for controlling
such chaos. We discuss this scheme and its application for electrical defibrillation. (©) 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Spiral waves occur in a variety of excitable media. They are found, e.g., in the oxi-
dation of CO on Pt(110) [1] and are believed to be the principal cause of ventricular
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fibrillation (VF) [2], a type of cardiac arrhythmia which is responsible for one out of
every six deaths in the USA. As we discuss below, the mathematical models [3-5]
for these two phenomena are similar. We characterize the spatiotemporal chaos here
and the nonequilibrium statistical steady states associated with the breakup of spiral
waves. We show how to control this spiral turbulence, which is especially important
for ventricular fibrillation. Our control method suggests a defibrillation scheme which
uses low-amplitude voltage pulses [5].

When a mixture of CO and O, both at extremely low partial pressures, is heated to
~ 400 K in a chamber containing a single-crystal wafer of platinum [surface Pt (110)],
these gases adsorb onto the crystal surface and react to form CO,. The concentra-
tion patterns of the adsorbed gases, imaged by photo electron emission microscopy
(PEEM), show target patterns, traveling pulses, states with steadily rotating spiral
waves, and turbulent states with spiral creation and annihilation [1]. In this temper-
ature regime, the system displays excitability, i.e., there is a threshold concentration
of O below which the CO-covered Pt surface is stable against subthreshold increases
in the local O concentration. Superthreshold increases trigger a large transient increase
in the local O concentration and may lead to traveling waves and rotating spirals of
adsorbed O.

The mammalian heart is an electromechanical organ which pumps blood via rhyth-
mic contractions of the atria and ventricles. The heart wall is an excitable medium
that supports the passage of regular contraction waves across it. Cardiac cells become
depolarized when stimulated beyond a certain threshold potential. During the course
of excitation, the cells remain refractory to new stimuli. Upon recovering their resting
potential the cells are ready to be excited again. Each cardiac cell is electrically cou-
pled to its neighbors; hence excitation in one region initiates a wave that propagates
through the entire heart. Irregularities in the spatiotemporal behavior of this system
are manifested as cardiac arrhythmias. Ventricular fibrillation, the most dangerous of
all arrhythmias, results from the emergence of a spiral wave which can spontaneously
degenerate into multiple spirals, a phenomenon termed spiral breakup. Repeated spi-
ral breakup completely obscures the regular pulses from the sinus node, the natural
pacemaker of the heart. Death occurs in a few minutes unless defibrillation is done
immediately. This usually consists of massive electrical shocks applied either to the
chest or to the heart surface in order to depolarize the entire heart, thereby bring-
ing it to a quiescent state from which the sinus node can again take over. Electrical
defibrillation may sometimes damage the heart and occasionally induce another episode
of VF. Thus, methods which can defibrillate with much less damage are of great
interest.

The remaining part of this paper is organized as follows: Section 2 describes the
partial differential equations that are used to model the oxidation of CO on Pt(110)
and ventricular fibrillation; the similarity of these equations brings out the connection
between these widely different problems. Section 3 gives an overview of our principal
results and conclusions.
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2. Models and calculations

The essential connection between the two physical problems we consider here is
that they are described by reaction-diffusion partial differential equations (PDEs). The
parameters in these equations are such that the systems are excitable, i.e., subthresh-
old perturbations of quiescent states decay; however, superthreshold perturbations lead
to a large, transient excursion which lasts for some time during which the system is
refractory, i.e., it does not respond to further perturbations. In the following two sub-
sections, we discuss the PDEs used to model (a) the oxidation of CO on Pt(110) and
(b) ventricular fibrillation and show how a study of the former can be used fruitfully
to develop an understanding of the latter.

We use the model of Ref. [6] for the oxidation of CO on Pt(110) which consists
of the following PDEs in two spatial dimensions X:

W Luu— D= @+ byal L=y o (1)
ot € ot
here the fields u and v are related to CO and O coverages [6], @, b and € are control
parameters related to rate constants, etc., for the chemical reactions involved, ¢ denotes
time, and F(u) =0 if u <%, F(u)=1—6.75u(u — 1)* if 1 <u <1 and F(u) =1
if u > 1. The numerical studies of Ref. [6] have yielded a stability diagram for the
statistical steady states of Eq. (1) in the » — € plane with a = 0.84: As € is increased
from 0, say with & = 0.07, a transition occurs from a state S, with rigidly rotating
spirals, to another state M with meandering spirals; on further increasing &, M evolves
into states T1 and T2 that exhibit spiral turbulence [6]. Our study [4] of model (1)
focuses on the states S, M, T1, and T2 and the transitions between them (Section 3).
Mathematical models for the simulation of cardiac activity [2] are, typically, reaction-
diffusion PDEs involving the transmembrane potential and ionic currents, governed by
voltage-gated ion channels. The details of the ionic currents used set apart one model
from another. We concentrate on the Beeler—Reuter (BR) [7] and Panfilov [8]
models. The reaction-diffusion equations used in models for ventricular fibrillation
are of the form

oV I 5
o + C =DV-TV, (2)
where V is the transmembrane potential, C the capacitance density of the heart wall
(~ 1 uF/em?), I the instantaneous total ionic current, and D the conductivity. The sub-
script BR denotes the Beeler—Reuter model in which /zz comprises a transient outward
potassium current /¢, a time-activated outward current /,, a fast inward sodium current
Iy, and a slow inward calcium current /g (all currents in pA/cm2 and voltages in
mV). These currents depend nonlinearly on V' and 6 time-dependent gating variables,
that describe the opening and closing of the ion channels, given in turn by ordinary
differential equations [7]. The rate constants for two of the gating variables involve a
parameter ¢. It has been shown [7] that if ¢ is varied from 0.5 to 1 there is an onset
of spiral breakup in the BR model; thus we use ¢ =0.7.
The Panfilov model [8] is far simpler than the BR model and considers the activation
variable e, which represents the transmembrane potential of the cells at point x and
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time ¢, and the recovery variable g, which represents the membrane conductance at the
same point. The PDEs for e and g are

defot=V’e— f(e)—g; 0g/ot=c(e,g)(ke —g). 3)

The function f(e), which specifies fast processes (e.g., the initiation of the action
potential), is piecewise linear: f(e)=Ce, for e < e, f(e)=—Cre+a, for e; < e < ey,
and f(e)=Cs(e — 1), for e > e;; the physically appropriate parameter values are [8]
e1 =0.0026, e, =0.837, C; =20, C; =3, C3=15, a=0.06 and k=3; and ¢(e,g), which
determines the dynamics of the recovery variable, is ¢(e,g)=¢; for e < e;, ¢(e,g)=¢;
for e > e;, and &(e,g) = ¢; for e < ey and g < g, with g; = 1.8, ¢; = 1/75, & = 1.0,
and ¢; =0.3.

We solve the PDEs by using the numerical schemes described in Refs. [4,5]. These
schemes discretize the PDEs on a square or cubic grid of points in space, use both
periodic (PBC) and no-flux boundary conditions (NBC) for model (1) and only NBC
for models (2) and (3), and for time integration Cash-Carp or Barkley methods [4]
for model (1) and forward-Euler schemes for models (2) and (3). The spatial grid
consists of L x L points in dimension d =2 and L x L x L, points if d = 3. Suitable
initial conditions must be chosen to obtain states with spirals [4,5]; e.g., a broken plane
wave evolves into a state displaying spiral turbulence in the two models for ventricular
fibrillation.

3. Results and conclusions

Our studies of the oxidation model (1) yield several interesting results: The state
M and the transitions from it to T1 and S depend on the initial conditions [1] and
the boundary conditions. Our initial conditions yield spirals in the statistical steady
state. We study periodic boundary conditions (PBC) and Neumann boundary condi-
tions (NBC). These lead to distinct meandering states MP and MN, respectively. MN
consists of one large meandering spiral (Fig. 1(a)), whereas MP consists of large
meandering spirals coexisting with a finite concentration of small defects (Figs. 1(b)
and 2). The temporal evolution of MN is quasiperiodic [4] and we find indeed that the
largest Lyapunov exponent 4, ~ 0 here. By contrast MP is chaotic since /,, > 0 for it,
principally because of the disorderly motion of the small defects shown in Fig. 1(b).
The MN-T1 transition is first order [4]: e.g., the defect number density jumps discontin-
uously here at € ~ 0.057. The MP-T1 transition is continuous and can be characterized
by an order parameter which can be extracted from S(k) = 1/4n*(| [ d*xe**u(x,)|*)
(angular brackets denote a time average): In a state with large spirals, S(k) displays a
secondary peak at |k| = k., where k! is related to the wavelength of the spiral arm.
This peak rises continuously from 0 as the system moves from the state T1 to the
state MP. The MP-S transition is also continuous; e.g., 4, goes to zero as a power
of (€ — €.), where €, is the critical value at which the state S appears. A detailed
analysis of our results is contained in Ref. [4]. Here we just highlight the qualitative
difference between MP and MN which arises because small spiral defects are absorbed
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(a) (b)

Fig. 1. Gray-scale plots of the u-field in (a) the single-spiral state MN and (b) the inhomogeneous state MP

at € = ﬁ ~ 0.0629. Trajectories of the spiral cores or small-defect cores, superposed in white, indicate

phase separation in MP.

by Neumann boundary conditions. We will use this insight in developing defibrillation
schemes for models (2) and (3).

We turn now to our results for the ventricular-fibrillation models (2) and (3). We
begin with the Panfilov model (3). The onset of spatiotemporal chaos and spiral breakup
is illustrated in Fig. 3. As ¢ decreases, the pitch of the spirals decreases till states
with broken spirals obtain. For example, if 3 = 0.3 and ¢ > 0.02, Eq. (3) displays
rigidly rotating spirals; but if ¢ ~ 0.01 a state containing broken spirals obtains. This
breaking of spirals is associated with the onset of spatiotemporal chaos as can be seen
qualitatively from local phase portraits (plots in the e — g plane of (e(x,1,),g(x,t,)) for
fixed spatial coordinate x and regularly spaced times ¢,). Rigidly rotating spirals lead
to a periodic temporal evolution; so these portraits show all points collapsing onto a
single curve. As spiral breakup occurs these points start to scatter (Fig. 3) indicating the
onset of spatiotemporal chaos. Strictly speaking this chaotic behavior is a transient of
spatially and temporally irregular behavior whose duration t; increases with system size
L. Fig. 4(a) shows the maximum Lyapunov exponent /,, at time ¢ versus ¢ for L=128,
indicating 1,13 ~ 2200. This property is in qualitative accord with the experimental
finding that the hearts of small mammals are less prone to fibrillation than those of
large mammals [9]. For time ¢ > 1;, a quiescent state with e = g = 0 is obtained. In
systems with L > 128, 1, is sufficiently long that a nonequilibrium statistical steady
state, displaying spatiotemporal chaos, is established. We find that there are several
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Fig. 2. Pseudocolor plots of the u-field for € = m ~ 0.0657 (top) and € = ﬁ ~ 0.0641 (bottom) with
configurations (leftmost) prior to a quench from T1 to MP. The second, third and fourth figures are separated
by 50000 time units from each other; the first and second figures in each panel are separated by 200000
time units. The black line shows roughly the interface between the state dominated by large spirals and the

one dominated by point-like defects.
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Fig. 3. Pseudocolor plots (left) of the e field (model (3)) at various values of &, with other parameter
values as given below Eq. (3), and the corresponding local phase portraits (right) reflecting the onset of
spiral breakup and spatiotemporal chaos.

positive Lyapunov exponents A; (averages for /J; are performed for 79 <t < t7, where
79 is the time of decay for initial transients). The number of positive /; increases with
L as does the Kaplan—Yorke dimension Dgy [3,5] [Fig. 4(b)].

It has been suggested [10] that spatiotemporally chaotic states, arising from spiral
breakup such as in model (3), are responsible for VF. The control of the resulting



R. Pandit et al. | Physica A 306 (2002) 211-219 217

0.8 L=128 35

06 30

0.4 °
25
0.2

.
£ 0 & 20 5
-0.2
15
-0.4

10 o
-0.6 o o

-0.8

5
0 500 1000 1500 2000 2500 3000 3500 4000 120 140 160 180 200 220 240 260
t L

Fig. 4. The maximum Lyapunov exponent /A, at time ¢ versus ¢ (left) for Eq. (3) and the parameters
given below it. 4, approaches a positive constant (~ 0.2) and then decays at large times to negative values
indicating a long-lived chaotic transient which finally decays to a quiescent state with e(X,#)=0 and g(x,¢)=0
everywhere. The lifetime of this chaotic transient increases with the size of the system. The Kaplan—Yorke
dimension Dgy (right) in the spatiotemporally chaotic transient versus the linear system size L (fluctuations
of Dky for L < 220 arise because of finite-size effects and the varying rate of convergence of /4; in our
numerical integration with varying L) [3].

spiral turbulence is being studied actively in models of VF [5,11]. We have proposed
an electrical-defibrillation scheme which uses low-amplitude pulses, applied on a coarse
grid, to suppress this turbulence. In the model (3), e.g., our scheme drives the system
to the spatially and temporally homogeneous state ¢ = g = 0 rapidly. Then the natural
pacemaker of the heart should make it recover from the VF episode.

We divide our L x L domain into K? smaller blocks by a mesh of line electrodes
and choose the block size to be small enough that spirals cannot form [5]. If a pulse
is applied to the e field at all points along the mesh for a time 7., then it effectively
simulates Neumann boundary conditions for that time interval for each block in the
mesh. 7. is not large since the individual blocks are of linear size L/K which is so
small that it does not sustain long spatiotemporally chaotic transients. Also K need not
be very large since the transient lifetime, t;, decreases rapidly with decreasing L. For
d=2, L=512, K=8 and 7.,=704 ms suffices for defibrillation (Fig. 5) if we use a pulse
of 250 mV/ms (or 250 pA/cm2 if C=1 uF/cm2 ). Defibrillation can be obtained with
even weaker pulses. We have investigated this systematically [5] for L = 128, where
we show that the minimum pulse amplitude that yields defibrillation is 57.3 uA/cm2 .
This compares favorably with the currents (~ 1 A) delivered by typical defibrillators
to the heart muscle.

Our defibrillation method works for a three-dimensional version of model (3) on a
L x L x L, domain but with the control mesh present only on one L X L face if L, < 4.
A slight modification of this scheme is effective even for L, > 4: Instead of applying
a pulse for a duration 7., we apply a sequence of n pulses separated by a time 1;,
and each of duration t,,. We find that, if L =256 and L. = 8, defibrillation occurs in
~ 2002 ms with 7;, =22 ms, 7, = 0.11 ms, n =30 and a control current density of

573 uA/cmz.
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Fig. 5. Pseudocolor plots of the e-field illustrating defibrillation by our control scheme in model (3) with
L=512. The control mesh shows up clearly in the 7=275 ms panel. A control pulse of amplitude 250 mV/ms
is applied from ¢ =155 to 759 ms to the e-field along this mesh. By ¢ = 1650 ms, spatiotemporal chaos is all
but eliminated (|e|, |g| < 10~7 at all grid points).
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Fig. 6. Pseudocolor plots (left panels) of the membrane potential /' in model (2) with L =200 for times
t=2700 ms (top left), 2720 ms (top right), 2840 ms (bottom left) and 3020 ms (bottom right). Pseudocolor
plots of V' with control (right panels) for the same initial conditions for # = 2700 ms (top left), 2720 ms
(top right), 2840 ms (bottom left) and 3020 ms (bottom right).

We have used our defibrillation scheme to eliminate spiral turbulence in the model
(1) and, more important, for the BR model (2). In the BR model we use an L x L
grid with L = 200 and, by a suitable choice of initial conditions [5], obtain a state
with several spirals (top left plot in Fig. 6) at time ¢ = 2500 ms. We then allow this
state to evolve both without control (4 plots on the left of Fig. 6) and with control
(4 plots on the right of Fig. 6). Our suppression of spiral turbulence is achieved by
using a control pulse of 20 mV/ms (i.e., 20 uA/cm2 if we use a capacitance density
of 1 pF/cmz), applied from ¢# = 2701 to 2820 ms on the coarse mesh that shows up
clearly on the rightmost plots in Fig. 6. Note that, by r=3020 ms defibrillation is more
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or less achieved since the potential J lies in the range —81.5 to —84 mV, which is
very close to —85 mV, the resting membrane potential of cardiac tissue and also that
of the BR model (2). In model (3) this resting potential is taken to be 0.

In summary, then, the formal similarity between the model for the oxidation of CO
on Pt(110) and those for ventricular fibrillation helps us to develop insights about
one of these systems by studying the other. We hope that our study will stimulate
further studies that exploit this correspondence between these physically different but
mathematically similar systems.
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