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Abstract. Several networks occurring in real life have modular structures that are
arranged in a hierarchical fashion. In this paper, we have proposed a model for such
networks, using a stochastic generation method. Using this model we show that, the scal-
ing relation between the clustering and degree of the nodes is not a necessary property of
hierarchical modular networks, as had previously been suggested on the basis of a deter-
ministically constructed model. We also look at dynamics on such networks, in particular,
the stability of equilibria of network dynamics and of synchronized activity in the net-
work. For both of these, we find that, increasing modularity or the number of hierarchical
levels tends to increase the probability of instability. As both hierarchy and modularity
are seen in natural systems, which necessarily have to be robust against environmental
fluctuations, we conclude that additional constraints are necessary for the emergence of
hierarchical structure, similar to the occurrence of modularity through multi-constraint
optimization as shown by us previously.
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1. Introduction

Structural patterns in complex networks occurring in biological, social and tech-
nological context have been a focus of study by physicists for a decade, since the
groundbreaking discovery of small-world property [1] and scale-free degree distrib-
ution [2] for many networks. One of the common features seen in many networks
is the occurrence of modules, namely, subnetworks whose members are highly in-
terconnected but have few links to nodes outside the module. Many networks have
also been seen to have hierarchical organization, i.e., they are composed of succes-
sive interconnected layers or inter-nested communities. In the literature, often the
terms hierarchy and modularity have been used almost interchangeably, although,
as shown in figure 1, they represent distinct properties of the network. However, it
is interesting to note that these two properties have been found to coexist in many
networks occurring in real life [3–6], including the Internet [7,8] and the network of
cortical areas in the cat brain [9].
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Most of the complex systems seen in real life also have associated dynamics [10],
and the structural properties of such networks have been sought to be linked with
their dynamical behaviour [11,12]. In this respect, one of the questions of obvi-
ous significance is whether there is a relation between the stability of the dynamics
against small perturbations in the dynamical variables and the specific arrangement
of the network’s connections. If the perturbation decays quickly, so that it is unable
to spread to the rest of the network, the network is said to be stable. Such a prop-
erty is necessary if networks are to survive the noisy environment that characterizes
the real world. It has sometimes been argued that, networks with larger number
of nodes, links and stronger interconnections are more stable. Such assertions are
partly based on empirical observations, e.g., in ecology, where it has been found
that more diverse and strongly connected ecosystems are more robust than their
smaller, weakly connected counterparts [13]. On the other hand, theoretical work
on the stability of model networks has suggested the opposite conclusion. In partic-
ular, according to the May–Wigner theorem [14] for random networks, increasing
the complexity (as measured by the number of nodes, density of connections and
dispersion of interaction strengths) always leads to decreased stability. However,
this result is based on the study of networks whose connection topology shows
none of the structures that are seen in real life networks, in particular, modularity
and hierarchy. Therefore, it is of interest to see whether introducing hierarchical
organization and modular structures can result in refutation of the May–Wigner
theorem. Early work on the stability of simple, structured model networks [15]
seemed to indicate that such structures indeed promote stability, and this was also
seen under certain conditions for hierarchically organized networks [16]. However,
a later study of hierarchical, as well as, modular networks, concluded that these are
less stable than the corresponding random networks [17]. We revisit this problem
in the present paper, by proposing a network model that exhibits both modular
structure and hierarchical organization. In addition to looking at the stability of
equilibria of the network dynamics, we also consider the stability of synchronization
over the network. Although these two stability phenomena are superficially similar,
they involve looking at different properties of the network. The issue of network
synchronization, in particular, has assumed importance in recent years, owing to
its connection with, e.g., brain dynamics [9].

An alternative model for hierarchical modular networks has been earlier pro-
posed by Ravasz and Barabási (RB) [18]. This model generates a set of internested
modules in a hierarchical fashion using a deterministic procedure that has both
high clustering (because of the modular nature of the network at the most fun-
damental level) and a scale-free degree distribution. These two properties do not
always co-occur in other network models that have been proposed in the literature.
In particular, the Barabási–Albert (BA) network model [2] allows generation of
a network with scale-free degree distribution through the preferential attachment
mechanism, but the average clustering coefficient of its nodes decays with system
size N . Further, in the RB model, a scaling relation is observed between the clus-
tering coefficient of a node C and its number of connections (i.e., degree) k:

C(k) ∼ k−1. (1)

Similar relations were also observed in several real networks, such as the web of
semantic connections between two English words which are synonyms [18]. This
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Figure 1. Schematic diagrams of (left) a modular network, with modules
demarcated by broken circles and (right) a hierarchical network with four
levels, each indicated by a level number l.

occurrence of the scaling relation between clustering and degree of the nodes in
a network has often been taken as a signature for the existence of hierarchical
modular structure in that network. Recently, this scaling relation was shown to be
actually an outcome of degree-correlation bias in the usual definition of clustering
coefficient [19].

However, it can be easily seen that this scaling relation is not a necessary indicator
for the existence of either modularity or hierarchy. For example, consider a modular
network consisting of N nodes and m modules of equal size. Let each node has
degree k, with the links initially occurring exclusively between nodes belonging to
the same module (i.e., the modules are isolated from each other). To make the
network connected we rewire a small fraction of the links keeping the degree of
each node fixed. Plotting clustering as a function of degree for this network will
only show vertical spread of points at a single node degree value. Let us consider
another example, this time a hierarchical structure, viz., the Cayley tree with b
branches at each vertex. Again, it is easy to see that the clustering vs. degree curve
will not show the characteristic scaling seen for the RB model. In fact, in the next
section, we show that even for networks where both hierarchy and modularity are
present, it is not necessary that this scaling relation between clustering and node
degree will hold.

The paper is organized as follows. In the next section we introduce a simple
model of a modular network with hierarchical organization. In §3 we introduce
the formalism to analyse the stability of dynamical equilibria and synchronized
states of a network. The proposed model allows a detailed study of the relation
between dynamical stability and hierarchical modular organization of the network.
We observe that both of these structural properties actually increase the instability
compared to an equivalent random network. This may appear counter-intuitive as
both modularity and hierarchy are observed in networks occurring in nature, which
necessarily have to be robust to survive environmental fluctuations. However, the
emergence of modular structures can be understood as a response to multiple (and
often conflicting) constraints imposed on such networks [20]. We conclude with a
discussion about how these observations can possibly be extended to explain the
emergence of hierarchical organization.
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Figure 2. Schematic diagram of the hierarchical modular network model
(left) with the modules occurring at the various hierarchical levels (l) indicated
by broken lines, and the corresponding adjacency matrix (right) where ρ1

indicates the density of connections within and, ρl+1, between the different
modules at each level l.

2. Model of hierarchical modular network

Here we propose a general model for networks having modular as well as hierarchical
structure. Let us begin with a modular network consisting of m modules, each
containing n nodes. The connectivity (i.e., the probability of a link between any
pair of nodes) within each module is ρ1, while the connectivity between modules is
ρ2 (≤ρ1). We now introduce hierarchy by adding another set of m modules (each
having n nodes) with the same ρ1 and ρ2. The nodes belonging to these two different
sets of modules are now connected, but with a probability ρ3 (≤ρ2). The resulting
network has 2nm nodes and l = 2 hierarchical levels (figure 2). To increase the
number of hierarchical levels to l = 3, we add a similar network with 2nm nodes
to the existing network and, as above, add links between these two networks with
a probability ρ4 (≤ρ3). Thus, to get a network with l = h hierarchical levels, the
above procedure is repeated h − 1 times. The final network contains M = 2h−1m
number of modules. Note that, all connections between nodes are made randomly.
To reduce the number of model parameters, we assume that the connectivities
ρ1, . . . , ρh+1 are related as

ρ2

ρ1
=

ρ3

ρ2
= · · · = ρh+1

ρh
= r, (2)

where 0 ≤ r ≤ 1, the ratio of intermodular connections between two successive
hierarchical levels, is a control parameter. By varying r, one can switch between
isolated modular (r = 0) and homogeneous random (r = 1) networks, with inter-
mediate values of r giving hierarchical modular networks. We compare between
networks having different number of hierarchical levels h, keeping the total number
of modules M and average degree 〈k〉 fixed.

To consider the effect of hierarchy in isolation, while keeping modularity fixed
(e.g., as measured by the Newman modularity measure Q [21]), we use a variant of
the above model, where ρ1 = constant, while other connectivities are still related
by

ρ3

ρ2
= · · · = ρh+1

ρh
= r. (3)
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Figure 3. Clustering coefficient Ci of the ith node as a function of its degree
ki for the hierarchical modular network model proposed here, where each
module at l = 1 is (left) a random ER network and (right) a scale-free BA
network. The different symbols indicate networks with differing total number
of hierarchical levels, h. For both types of networks, the total number of
nodes N = 8192 with average intramodular degree, 〈kintra〉 = 10, intermodular
degree, 〈kinter〉 = 5, and the ratio of intermodular connections between two
successive hierarchical levels, r = 0.1. Note that, in neither case is a scaling
relation observed between Ci and ki, although the modules are arranged in a
hierarchical manner by construction.

This implies that the average number of intramodular (〈kintra〉) and intermodular
(〈kinter〉) connections per node are also constant [21a].

The stochastic construction procedure of this network, along with the ability
to vary modularity (by changing r) independently of the number of hierarchical
levels (h), makes it an extremely general model. In addition, as it is hierarchical
by construction, we can show that the criterion suggested in ref. [18], namely, the
scaling relation between clustering and degree, is not a necessary condition for the
existence of hierarchical modularity. As shown in figure 3 (left), when the modules
are random networks, the scaling relation is clearly absent for our model network.
To counter the possible argument that this failure of the relation is due to the
non-scale-free degree distribution, we have also considered the case where each of
the modules is a BA network. Although the intermodular connections are made
randomly, the network degree distribution is still scale-free. Even for this case, a
clear scaling relation between clustering and degree is absent (figure 3, right).

3. Dynamics on hierarchical networks

3.1 Linear stability of equilibria

To look at the effect of hierarchy on network dynamics, we consider the linear
stability of an arbitrarily chosen equilibrium state for a set of coupled differential
equations defining the time-evolution of the system. For a network of N nodes,
a dynamical variable xi is associated with each node i. The state of the system,
x, can be characterized by ẋ = f(x), where f is a general nonlinear function. To
investigate the stability around an arbitrary fixed point x∗ (i.e., f(x)|x∗ = 0), we
check whether a small perturbation δx about x∗ grows or decays with time. This
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perturbation evolves as
˙δx = Jx, (4)

where J is the Jacobian matrix representing the interactions among the nodes: Jij =
∂fi/∂xj |x∗ . As we are interested in the instability induced through the connections
of the network, rather than the intrinsic instability of individual unconnected nodes,
we can (without much loss of generality) set the diagonal element Jii = −1. This
implies that, in the absence of any connections, the nodes are self-regulating, i.e.,
the fixed point x∗ is stable. The behaviour of the perturbation is determined by
the largest real part, λmax, of the eigenvalues of J. If λmax > 0, an initially small
perturbation will grow exponentially with time, and the system will be rapidly
dislodged from the equilibrium state x∗.

The relation between the dynamical properties and the static structure of the
network is provided by its adjacency matrix A (with Aij = 1, if nodes i and j are
connected, and 0 otherwise). There is a direct correspondence between the nature of
the matrices J (specifying the dynamical behaviour of perturbation) and A (which
determines the structure of the underlying directed network), because Aij = 0
implies Jij = 0. In our model, we have generated Jij by randomly choosing the
non-zero elements from a Gaussian distribution with zero mean and variance σ2. For
Erdos–Renyi (ER) random networks, J is an unstructured random matrix and the
largest real part of its eigenvalues, λmax ∼

√
Nρσ2− 1, where ρ is the connectivity

of the network, and σ measures the dispersion of interaction strengths [14]. When
any of the parameters, N , ρ, or σ, is increased, there is a transition from stability
to instability. The critical value at which the transition to instability occurs is
σc ∼ 1/

√
Nρ. This result, implying that complexity promotes instability, has been

shown to be remarkably robust with respect to various generalizations [22–25].
Here, using the above formalism, we examine the effect of hierarchy on the stabil-

ity of equilibria when one of the network parameters (namely, σ) is varied. We study
the critical value at which the transition to instability occurs, σc, as a function of
the total number of hierarchical levels, h, keeping the total number of modules M
fixed. We find that, with increasing h, the distribution of λmax shifts towards more
positive values (figure 4, left). As the system becomes unstable when λmax > 0, it
follows that the probability of stability for the network decreases with increasing
number of hierarchical levels (figure 4, right).

3.2 Synchronization

It is of interest to look not only at the stability of equilibria for network dynamics,
but also at the stability of synchronized activity in networks. Let us consider a
network of N identical oscillators. The time-evolution of this coupled dynamical
system is described by

ẋi = F (xi) + ε

n∑

j=1

LijH(xj). (5)

Here, xi is a variable associated with node i; F and H are evolution and output
functions, respectively; ε is the strength of coupling; and L is the Laplacian matrix,
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Figure 4. (Left) Probability distribution for the largest real part of the
eigenvalues of the Jacobian J, as a function of total number of hierarchical
levels, h (the interaction strength parameter, σ2 = 0.05). (Right) Probability
of stability for a hierarchical modular network as a function of σ2, with dif-
ferent symbols corresponding to differing total number of hierarchical levels
h. Link weights are chosen from a normal (0, σ2) distribution. For all cases,
the network consists of N = 256 nodes with average intramodular degree,
〈kintra〉 = 10, intermodular degree, 〈kinter〉 = 5, and the ratio of intermodular
connections between two successive hierarchical levels, r = 0.1. At all hierar-
chical levels l > 1, the network is split into two subnetworks. At l = 1, each
subnetwork is split into m modules (l = 0). Thus, N = 256 nodes are divided
equally among 2h−1m = 16 modules, with the four curves corresponding to
(2) h = 4, m = 2, (5) h = 3, m = 4, (¦) h = 2, m = 8, and (◦) h = 1,
m = 16. Note that, increasing h causes the transition to instability to occur at
a smaller value of σ2, implying that increasing hierarchy increases instability.

defined as: the diagonal elements Lii = ki, the degree of node i, while the off-
diagonal elements Lij = −1 if nodes i and j are connected and Lij = 0, otherwise.
It has been shown that the linear stability of the synchronized state xs (=x1 = · · · =
xN ) can be determined by diagonalizing the variational equation (eq. (5)) into N
blocks of the form, ẏi = [DF (s) + ελiDH(s)]yi, where yi represent different modes
of perturbation from the synchronized state. This is also referred to as the master
stability equation [12]. These equations have the same form but different effective
couplings αi = ελi. The synchronized state is stable, i.e., the maximum Lyapunov
exponent is in general negative, only within a bounded interval [αA, αB ] [26]. Let
the eigenvalues of the Laplacian matrix be arranged as 0 = λ1 < λ2 ≤ · · · ≤ λn.
Then, requiring all effective couplings to lie within the interval αA < ελ2 ≤ · · · ≤
ελN < αB , implies that a synchronized state is linearly stable, if and only if,
λN/λ2 < αB/αA. Thus, a network having a smaller eigenratio λN/λ2, is more
likely to show stable synchronized activity.

Here, we obtain the eigenvalues of the Laplacian L for a hierarchical modular
network (figure 5, left) and observe the eigenratio λN/λ2 as a function of ratio of
the intermodular connections between two successive hierarchical levels, r, and the
total number of hierarchical levels, h. First, keeping the number of hierarchical
levels fixed, we vary the parameter r. We find that with decreasing r, i.e., as
the number of connections between two successive hierarchical levels decrease, the
instability of the synchronized state increases. Next, keeping the total number of
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Figure 5. (Left) Probability distribution of eigenvalues of the Laplacian L,
as a function of the total number of hierarchical levels, h (r = 0.1). (Right)
The ratio of the largest eigenvalue (λN ) to the second smallest eigenvalue (λ2)
as a function of r, the ratio of intermodular connections between two succes-
sive hierarchical levels, with different symbols corresponding to different total
number of hierarchical levels h. For all cases, the network consists of N = 256
nodes with average intramodular degree, 〈kintra〉 = 10 and intermodular de-
gree, 〈kinter〉 = 5. At all hierarchical levels l > 1, the network is split into two
subnetworks. At l = 1, each subnetwork is split into m modules (l = 0). Thus,
N = 256 nodes are divided equally among 2h−1m = 16 modules, with the four
curves corresponding to (2) h = 4, m = 2, (5) h = 3, m = 4, (¦) h = 2,
m = 8, and (◦) h = 1, m = 16. Note that, increasing the number of hierarchi-
cal levels leads to divergence of the eigenratio, implying that synchronization
becomes harder to achieve.

modules fixed we increase the number of hierarchical levels (h) in the network.
Figure 5 (right) shows that as the number of hierarchical levels of the network is
increased, λ2 decreases, resulting in an increasing eigenratio. Thus, arranging the
modules of a network in a hierarchical fashion also makes a network difficult to
synchronize.

4. Discussion and conclusion

In previously published work [20], we have shown that increased modularity in
random networks leads to higher probability of instability for the equilibria of the
network dynamics. Thus, the work presented here is an extension and generaliza-
tion of the above result, demonstrating that increased number of hierarchical levels
also tend to destabilize these equilibria, and moreover, the same phenomenon is
observed for the stability of synchronized activity in a network with respect to in-
creased modularity and hierarchy. This raises the question as to how systems with
hierarchical modular structures can be seen in nature at all, where they have to
be robust enough to survive constant environmental fluctuations. An answer to
this can be fashioned along the lines of our recent work showing that additional
natural constraints operating on networks in real life, such as the minimization of
(a) resource cost for maintaining each link and (b) the time required for communi-
cating between nodes, in addition to linear stability of equilibria, will make modular
networks the optimal configuration (figure 6) [20]. We find such stable, modular
networks to possess multiple hubs and a heterogeneous degree distribution. Many
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Figure 6. Schematic diagram indicating the different types of optimal net-
works obtained by satisfying different constraints. Each vertex represents
networks obtained by satisfying a pair of constraints. Note that, modular
networks emerge by optimizing all three constraints, viz., cost, efficiency and
stability, indicated by the three arms of the triangle.

types of networks, including scale-free networks [2], can be seen as special cases
of this general criterion. Therefore, we can understand the large-scale occurrence
of such networks in nature as a response to co-existing structural and dynamical
constraints.

One can ask, what will be the effect of introducing constraints other than the
ones mentioned here. For example, replacing the criterion for linear stability by one
demanding robustness with respect to removal of links (selected by using a com-
bination of random and targeted attack strategies) does not qualitatively change
our results. It turns out that this criterion is satisfied by networks with bimodal
degree distribution, a property that our optimal modular networks possess. How-
ever, while this can explain the ubiquity of modularity, it does not answer the
question as to why hierarchical organization is so common in nature. The fact
that tree-like networks with extensive ramifications occur so often in the context
of resource transport (e.g., the circulatory system in plants and animals) suggest
that additional constraints related to flow maximization may be at work in this
case. Another possible candidate for such a constraint may be the need to mini-
mize wiring cost, i.e., the total link length [27]. This is applicable when the network
is embedded on a geographic (as opposed to topological) space, so that the wiring
cost can be defined as the sum of the Euclidean distances between all connected
pairs of nodes. As many of the networks showing hierarchical organization (such
as the internet and the network of cortical areas in the brain) are indeed defined in
metric space, this is a possibility that needs to be analysed in detail.
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