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Modular structure is ubiquitous among complex networks. We note that most such systems are subject to
multiple structural and functional constraints, e.g., minimizing the average path length and the total number of
links, while maximizing robustness against perturbations in node activity. We show that the optimal networks
satisfying these three constraints are characterized by the existence of multiple subnetworks �modules� sparsely
connected to each other. In addition, these modules have distinct hubs, resulting in an overall heterogeneous
degree distribution.
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Complex networks have recently become a focus of sci-
entific attention, with many natural, social, and technological
networks seen to share certain universal structural features
�1,2�. These networks often exhibit topological characteris-
tics that are far from random. For instance, they show a
significant presence of hubs, i.e., nodes with a large degree
or number of connections to other nodes. Indeed, hubs are
crucial for linking the nodes in real networks, which have
extremely sparse connectivity, with the probability of con-
nection between any pair of nodes, C, varying between 10−1

and 10−8 �1�. By contrast, random networks with such small
C are almost always disconnected. The hubs also lead to the
“small-world” effect �3� by reducing the average path length
of the network. Another property observed in many networks
is the existence of a modular structure. We define a network
to be modular if it exhibits significantly more intramodular
connections compared to intermodular connections. Such
networks can be decomposed into distinct subnetworks or
modules by removing a few links. Modular networks ob-
served in empirical studies span a wide range from cellular
networks involved in metabolism and signaling �4�, to corti-
cal networks �5�, social networks �6�, food webs �7�, and the
internet �8�. Many of these networks also exhibit a large
number of hubs, which often have the role of interconnecting
different modules �9�.

The majority of previous studies on modular networks
have been concerned with methods to identify community
structure �10�. There have been relatively few attempts to
explain the potentially more interesting questions of how and
why modularity emerges in complex networks. Most such
attempts are based on the notion of evolutionary pressure,
where a system is driven by the need for adapting to a chang-
ing environment �11,12�. However, such explanations in-
volve complicated adaptive mechanisms, in which the envi-
ronment itself is assumed to change in a modular fashion.
Further, adaptation might lead to decrease in connectivity
through biased selection of sparse networks, which eventu-
ally results in disruption of the network with the modules
being isolated nodes �11� or disconnected parts �13�. More
recently, a social network model has shown the emergence of
isolated communities through the rearrangement of links to
form groups with homogeneous opinion �14�.

A crucial limitation of these above studies is that they
almost always focus on a single performance parameter.
However, in reality, most networks have to optimize between

several, often conflicting, constraints. While structural con-
straints, such as path length, had been the focus of initial
work by network researchers, there has been a growing real-
ization that most networks have dynamics associated with
their nodes �15�. The robustness of network behavior is often
vital to the efficient functioning of many systems, and also
imposes an important constraint on networks. Therefore, the
role played by dynamical considerations in determining the
topological properties of a network is a challenging and im-
portant question that opens up new possibilities for explain-
ing observed features of complex networks �16�. In this
Rapid Communication, we propose a simple mechanism for
the emergence of modularity in networks as an optimal so-
lution for satisfying a minimal set of structural and func-
tional constraints. These essentially involve �i� reducing the
average path length � of a network by �ii� using a minimum
number of total links L, while �iii� decreasing the instability
of dynamical states associated with the network.

We investigate the dynamical stability of a network com-
posed of N nodes, which are self-regulating when isolated,
by measuring the growth rate of a small perturbation x about
an equilibrium state of the network dynamics. Although the
system can be nonlinear in general, the dynamics of such
perturbations are described by a linear system of coupled
differential equations xi=� j=1

N Jijxj. The stability of the equi-
librium is then determined by the largest real part �max of the
eigenvalues for the matrix J representing the interactions
among the nodes. The perturbation decays if �max�0, and
increases otherwise, at a rate proportional to ��max�. Thus,
minimizing �max makes the equilibrium less unstable, which
is important for many systems including ecological networks
�17�. Here Jii=−1∀ i such that we only consider instability
induced through network interactions. The off-diagonal ma-
trix elements Jij ��AijWij� include information about both
the topological structure of the network, given by the adja-
cency matrix A �Aij is 1 if nodes i , j are connected, and 0
otherwise; Aii=0∀ i�, as well as the distribution of interac-
tion strengths Wij between nodes. In our simulations, Wij has
a Gaussian distribution with zero mean and variance �2;
however, a nonzero mean does not qualitatively change our
results. For an Erdös-Renyi �ER� random network, J is a
sparse random matrix, with �max��NC�2−1, according to
the May-Wigner theorem �17�. Therefore, increasing the sys-
tem size N, connectivity C, or interaction strength � results
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in instability of the network. This result has been shown to
be remarkably robust with respect to various generalizations
�18�. Further, for uniform coupling strength, �max is inversely
related to the epidemic propagation threshold for the network
�19�, and hence minimizing �max also makes the network
more robust against spreading of infection.

Networks are also subject to certain structural constraints.
One of them is the need to save resources, manifested in
minimizing link cost, i.e., the cost involved in building and
maintaining each link in a network �20�. This results in the
network having a small total number of links, L. However,
such a procedure runs counter to another important consid-
eration of reducing the average path length �, which im-
proves the network efficiency by increasing communication
speed among the nodes �21�. The conflict between these two
criteria can be illustrated through the example of airline
transportation networks. Although fastest communication
�i.e., small �� will be achieved if every airport is connected
to every other through direct flights, such a system is pro-
hibitively expensive as every route involves some cost in
maintaining it. In reality, therefore, one observes the exis-
tence of airline hubs, which act as transit points for passen-
gers arriving from and going to other airports.

For ER random networks, although � is low, L is high
because of the requirement to ensure that the network is con-
nected: L�N ln N �22�. Introducing the constraint of link
cost �i.e., minimizing L� while requiring low average path
length � leads to a starlike connection topology �Fig. 1�c��. A
star network has a single hub to which all other nodes are
connected, there being no other links. Its average degree
	k
�2 is nonextensive with system size, and is much smaller
than that of a connected random network, where 	k
� ln N.
However, such starlike networks are extremely unstable with
respect to dynamical perturbations in the activity of their

nodes. The probability of dynamical instability in random
networks increases only with average degree ��max��	k
,
since 	k
=NC�, while for star networks it increases with the
largest degree, and hence the size of the network itself
��max��N�. To extend this for the case of weighted net-
works, we look at the largest eigenvalue of J, �max=−1
+��i=2

N J1iJi1, the hub being labeled as node 1. The stability
of the weighted star network is governed by �i=2

N J1iJi1, which
is the displacement due to a one-dimensional random walk of
N−1 steps whose lengths are products of pairs of random
numbers chosen from a normal �0,�2� distribution.

To obtain networks that satisfy the dynamical as well as
the structural constraints, we perform optimization using
simulated annealing, with a network having N nodes and N
−1 unweighted links �the smallest number that keeps the
network connected�. Having fixed L, the energy function to
be minimized is defined as

E��� = �� + �1 − ���max,

where the parameter �� �0,1� denotes the relative impor-
tance of the path length constraint over the condition for
reducing dynamical instability. Rewiring is attempted at each
step and is �i� rejected if the updated network is discon-
nected, �ii� accepted if �E=Efinal−Einitial�0, and �iii� if �E
�0, then accepted with probability p=exp�−�E /T�, where T
is the “temperature.” The initial temperature was chosen in
such a way that energetically unfavorable moves had 80%
chance of being accepted. After each Monte Carlo step �N
updates� the temperature was reduced by 1% and iterated till
there was no change in the energy for 20 successive Monte
Carlo steps. For each value of �, the optimized network with
lowest E was obtained from 100 realizations.

As can be seen from Fig. 1, modularity emerges when the
system tries to satisfy the twin constraints of minimizing � as
well as �max. When � is very high ��0.8� such that the
instability criterion becomes less important, the system
shows a transition to a starlike configuration with a single
hub. However, as � is decreased, the instability of the hub
makes the star network less preferable and for intermediate
values of �, the optimal network gets divided into modules,
as seen from the measure of network modularity Q �23�. This
is defined as Q=�s��Ls /L�− �ds /2L�2�, where Ls is the num-
ber of links between nodes within a module s, and ds is the
sum of the degrees of the nodes in s. To obtain a robust
partitioning of the network, we consider modules to be com-
munities defined in the strong sense, i.e., each node i belong-
ing to a community has more connections with nodes within
the community than with the rest of the network �24�. The
resulting modularity measure Qs is high for a modular net-
work, whereas for homogeneous as well as for starlike net-
works, Qs=0. To determine the communities, we �1� com-
pute the betweenness measure for all edges and remove the
one with highest score; �2a� if it results in splitting the net-
work �or subnetwork� into communities in the strong sense,
then the resulting Qs is computed; �2b� if not, we go back to
step 1 and remove the edge with the next highest score. The
process is carried out iteratively until all edges of the net-
work have been considered. Note that, in step 2a, checking
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FIG. 1. Optimized network structures for a system with N=64
nodes and L=N−1, at different values of �: �a� 0.4, �b� 0.775, and
�c� 1. For �=0 the optimal network is a one-dimensional chain.
�Bottom� The modularity Qs of the optimized network for different
�, when each module is a community defined in the strong sense.
The transition to the star configuration occurs around ��0.8, as
observed in the variation of degree entropy H with �.
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whether the splitting results in communities in the strong
sense is considered with respect to the full network. We veri-
fied these results by also calculating Qs with the network
modules determined through stochastic extremal optimiza-
tion �25�. The transition between modular and star structures
is further emphasized in the behavior of the degree entropy
H=−�kpk ln pk, where pk is the probability of a node having
degree k. The emergence of a dominant hub at a critical
value of � is marked by H being reduced to a low value.

To understand why modular networks emerge on simulta-
neous optimization of structural and functional constraints,
we look at the change in stability that occurs when a star
network is split into m modules, the modules being con-
nected through links between their hubs. The largest eigen-
value for the entire system of N nodes is the same as that for
each isolated module, �max��N /m, as the additional effect
of the few intermodular links is negligible. At the same time,
the increase in the average path length � with m is almost
insignificant. Therefore, by dividing the network into a con-
nected set of small modules, each of which is a star subnet-
work, the instability of the entire network decreases signifi-
cantly while it still satisfies the structural constraints.

The above results were obtained for a specific value of L
�=N−1�. We now relax the constraint on link cost and allow
a larger number of links than that strictly necessary to keep
the network connected. The larger L is manifested as random
links between nonhub nodes, resulting in higher clustering
within the network. Even for such clustered star networks,
�max increases with size as �N, and, therefore, their instabil-
ity is reduced by imposing a modular structure �Fig. 2�. The
effect of increasing the number of modules, m, on the dy-
namical stability of a network can be observed from the
stability-instability transition that occurs on increasing the
network parameter � keeping N ,C fixed. The critical value at
which the transition to instability occurs, �c, increases with
m �Fig. 2, inset� while � does not change significantly. This
signifies that, even for large L, networks satisfy the structural
and functional constraints by adopting a modular configura-
tion.

As L is increased, we observe that the additional links in

the optimized network occur between modules, in preference
to between nodes in the same module. To see why the net-
work prefers the former configuration, we consider three dif-
ferent types of intermodular connections: �A� only the hub
nodes of different modules are connected, �B� nonhub nodes
of one module can connect to the hub of another module, and
�C� nonhub nodes of different modules are connected. In ar-
rangement �B�, intermodular connections that link to hubs of
other modules actually increase the maximum degree in the
modules, making this arrangement more unstable than �A�.
On the other hand, �C� connections between nonhub nodes of
different modules not only decrease the instability �Fig. 3�,
but also reduce �. As a result, the optimal network will al-
ways prefer this arrangement �C� of a large number of ran-
dom intermodular connections over other topologies for
large L.

Our observation that both structural and dynamical con-
straints are necessary for modularity to emerge runs counter
to the general belief that modularity necessarily follows from
the requirement of robustness alone, as modules are thought
to limit the effects of local perturbations in a network. To
further demonstrate that the three constraints are the minimal
required for a network to adopt a modular configuration, we
remove the hub from a clustered star while ensuring that the
network is still connected. This corresponds to the absence of
the link cost constraint altogether, and the optimal graph is
now essentially a random network. To see why modularity is
no longer observed in this case, we consider the stability of
an ER random network on which a modular structure has
been imposed. A network of N nodes is divided into m mod-
ules, connected to each other with a few intermodular links.
We then consider the stability-instability transition of net-
works for increasing m, with the average degree 	k
 kept
fixed. Although from the May-Wigner theorem, it may be
naively expected that �c�1/�	k
 is constant with respect to
m, we actually observe that increasing m decreases stability
�Fig. 4�. This is because, when a network of size N is split
into m modules, the stability of the entire network is decided
by that of the most unstable module, ignoring the small ad-
ditional effect of intermodular connections. Thus, the stabil-
ity of the entire network is decided by randomly drawing m
values from the distribution of �max for the modules. There-
fore, for modular networks it is more likely that a positive
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FIG. 2. Probability distribution of �max for a clustered star net-

work �N=256,L=15N� with different numbers of modules, m.
Modules of equal size are connected by a single link between re-
spective hubs. Link weights Wij follow a normal �0,�2� distribution
with �2=0.018. �Inset� Probability of stability �P��max�0�� vary-
ing with �2. Increasing m results in the transition to instability
occurring at higher �2, implying that network stability increases
with modularity.
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FIG. 3. �Color online� Probability distribution of �max for clus-
tered star networks �N=256,L=15N� having four modules with dif-
ferent types of inter-modular connectivities �A�, �B� and �C�, which
are represented schematically here. Link weights Wij have a normal
�0,�2� distribution with �2=0.018.
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�max will occur, than for the case of a homogeneous random
network of size N �26�. The decrease of stability with modu-
larity for random networks shows that, in general, it is not
necessary that modularity is always stabilizing and results in

a robust network, as has sometimes been claimed �11�.
In this paper we have shown that modules of intercon-

nected nodes can arise as a result of optimizing between
multiple structural and functional constraints. In particular,
we show that, by minimizing link cost as well as path length,
while at the same time increasing robustness to dynamical
perturbations, a network will evolve to a configuration hav-
ing multiple modules characterized by hubs that are con-
nected to each other. At the limit of extremely small L, this
results in networks with bimodal degree distribution, which
has been previously shown to be robust with respect to both
targeted and random removal of nodes �27�. Therefore, not
only are such modular networks dynamically less unstable,
but they are also robust with respect to structural perturba-
tions. In general, on allowing larger L, the optimized net-
works show heterogeneous degree distribution, which has
been observed in a large class of networks occurring in the
natural and social world, including those termed as scale-free
networks �2�. Our results provide a glimpse into how the
topological structure of complex networks can be related to
functional and evolutionary considerations.
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FIG. 4. Probability distribution of �max for random networks
�N=256,L=15N� as a function of the number of modules, m, which
are connected to each other by single links. Link weights Wij follow
normal �0,�2� distribution with �2=0.03. The inset shows the prob-
ability of stability �P��max�0�� varying with �2. Increasing m re-
sults in transition to instability at lower �2, indicating that increas-
ing modularity decreases stability for random networks.
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