
Collective behavior of stock price movements in an emerging market

Raj Kumar Pan* and Sitabhra Sinha†

The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600 113, India
�Received 5 April 2007; revised manuscript received 5 July 2007; published 25 October 2007�

To investigate the universality of the structure of interactions in different markets, we analyze the cross-
correlation matrix C of stock price fluctuations in the National Stock Exchange �NSE� of India. We find that
this emerging market exhibits strong correlations in the movement of stock prices compared to developed
markets, such as the New York Stock Exchange �NYSE�. This is shown to be due to the dominant influence of
a common market mode on the stock prices. By comparison, interactions between related stocks, e.g., those
belonging to the same business sector, are much weaker. This lack of distinct sector identity in emerging
markets is explicitly shown by reconstructing the network of mutually interacting stocks. Spectral analysis of
C for NSE reveals that, the few largest eigenvalues deviate from the bulk of the spectrum predicted by random
matrix theory, but they are far fewer in number compared to, e.g., NYSE. We show this to be due to the relative
weakness of intrasector interactions between stocks, compared to the market mode, by modeling stock price
dynamics with a two-factor model. Our results suggest that the emergence of an internal structure comprising
multiple groups of strongly coupled components is a signature of market development.
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I. INTRODUCTION

Financial markets can be considered as complex systems
having many interacting elements and exhibiting large fluc-
tuations in their associated observable properties, such as
stock price or market index �1,2�. The state of the market is
governed by interactions among its components, which can
be either traders or stocks. In addition, market activity is also
influenced significantly by the arrival of external informa-
tion. Statistical properties of stock price fluctuations and cor-
relations between price movements of different stocks have
been analyzed by physicists in order to understand and
model financial market dynamics �3,4�. The fluctuation dis-
tribution of stock prices is found to follow a power law with
exponent ��3, the so-called “inverse cubic law” �5,6�. This
property is quite robust, and has been seen in developed as
well as emerging markets �7�. On the other hand, it is not yet
known whether the cross-correlation behavior between stock
price fluctuations has a similar universal nature. Although the
existence of collective modes have been inferred from the
study of market dynamics, such studies have almost exclu-
sively focused on developed markets, in particular, the New
York Stock Exchange �NYSE�.

To uncover the structure of interactions among the ele-
ments in a financial market, physicists primarily focus on the
spectral properties of the correlation matrix of stock price
movements. Pioneering studies investigated whether the
properties of the empirical correlation matrix differed from
those of a random matrix that would have been obtained had
the price movements been uncorrelated �8,9�. Such devia-
tions from the predictions of random matrix theory �RMT�
can provide clues about the underlying interactions between
various stocks. It was observed that, while the bulk of the
eigenvalue distribution for the correlation matrix of NYSE

and Tokyo Stock Exchange follow the spectrum predicted by
RMT �8–11�, the few largest eigenvalues deviate signifi-
cantly from this. The largest eigenvalue has been identified
as representing the influence of the entire market, common
for all stocks, whereas, the remaining large eigenvalues are
associated with the different business sectors, as indicated by
the composition of their corresponding eigenvectors �10,12�.
The interaction structure of stocks in NYSE have been re-
constructed using filtering techniques implementing matrix
decomposition �13� or maximum likelihood clustering �14�.
Correlation matrix analysis has applications in the area of
financial risk management, as mutually correlated price
movements may indicate the presence of strong interactions
between stocks �15�. Such analyses have been performed us-
ing asset trees and asset graphs to obtain the taxonomy of an
optimal portfolio of stocks �16–18�.

While it is generally believed that stock prices in emerg-
ing markets tend to be relatively more correlated than the
developed ones �19�, there have been very few studies of the
former in terms of analyzing the spectral properties of corre-
lation matrices �20–23�. Most studies of correlated price
movements in emerging markets have looked at the synchro-
nicity which measures the incidence of similar �i.e., up or
down� price movements across stocks �19,24�. Although re-
lated to correlation the two measures are not same, as corre-
lation also gives the relative magnitude of similarity. In this
paper, we analyze the cross-correlations among stocks in the
Indian financial market, one of the largest emerging markets
in the world. Our study spans over 1996–2006, a period
which coincides with the decade of rapid transformation of
the Indian economy after liberalization in the early 1990s.

We find that, in terms of the properties of its collective
modes, the Indian market shows significant deviations from
developed markets. As the fluctuation distribution of stocks
in the Indian market �7,21,25� follows the “inverse cubic
law” seen in NYSE �6,26�, the deviations observed in the
correlation properties should be almost entirely due to differ-
ences in the nature of interaction structure in the two mar-
kets. Our observation of a higher degree of correlation in the
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Indian market compared to developed markets is found to be
the result of a dominant market mode affecting all the stocks,
which is further accentuated by the relative absence of clus-
ters of mutually interacting stocks. This is explicitly shown
by reconstructing the network of interactions within the mar-
ket, using a filtered correlation matrix from which the com-
mon market influence and random noise has been removed.
This procedure give a more accurate representation of the
intra-market structure than the commonly used method of
constructing minimal spanning tree from the unfiltered cor-
relation matrix �13,16,17�. To support the interpretation of
our empirical observations, we present a two-factor model of
market dynamics in Sec. IV. Multi-factor models of market
behavior have been used by other groups for explaining vari-
ous spectral properties of empirical correlation matrices
�27–29�. In this model, we assume the market to consist of
several correlated groups of stocks which are also influenced
by a common external signal, i.e., market mode. By varying
the relative strength of the factor associated with the market
mode to that associated with the groups, we show that de-
creasing the intragroup interactions result in spectral distri-
bution properties similar to that seen for the Indian market.
Our results imply that one of the key features signifying the
transition of a market from emerging to developed status is
the appearance and consolidation of distinct group identities.

II. DATA ANALYZED

The National Stock Exchange �NSE� is the largest stock
market in India. Having commenced operations from Nov
1994, it is already the world’s third largest stock exchange
�after NASDAQ and NYSE� in terms of transactions �30�. It
is thus an excellent source of data for studying the correla-
tion structure of price movements in an emerging market.

We have considered the daily closing price data of 201
stocks �see Table I� traded in NSE from Jan 1996 to May
2006, which corresponds to 2607 days. This data is obtained
from the NSE website �31� and has been manually corrected
by us for stock splitting. The selected stocks were traded
over the entire period 1996–2006 and had the minimum
number of missing data points �i.e., days for which no price
data is available�. If the price value of a stock is missing on
a particular day, a problem common to data from emerging
markets �20�, it is assumed that no trading took place on that
day, i.e., the price remained the same as the preceding day.
For comparison we also consider the daily closing price of
434 stocks of NYSE belonging to the S&P 500 index over
the same period as the Indian data. However, the total num-
ber of working days is slightly different, viz., 2622 days.
This data was obtained from the Yahoo! Finance website
�32�. In all our analysis, while comparing with the NSE data,
we have used multiple random samples of 201 stocks each,
from the set of 434 NYSE stocks. We verified that the results
obtained were independent of the particular sample of 201
stocks chosen.

To ensure that the missing closing prices in the Indian
market data do not result in artifacts leading to spurious di-
vergence from the US market, we have also performed our
analysis on synthetic US market data containing the same

number of missing data points. Multiple sets of such data
were generated from the actual closing price time series by
randomly choosing the required number of data points and
replacing them with the same value as the preceding day.
The resulting analysis showed no significant difference from
the results obtained with the original US data.

III. RETURN CROSS-CORRELATION MATRIX

To observe correlation between the price movements of
different stocks, we first measure the price fluctuations such
that the result is independent of the scale of measurement. If
Pi�t� is price of the stock i=1, . . . ,N at time t, then the �loga-
rithmic� price return of the ith stock over a time interval �t is
defined as

Ri�t,�t� � ln Pi�t + �t� − ln Pi�t� . �1�

As different stocks have varying levels of volatility �mea-
sured by the standard deviation of its returns� we define the
normalized return,

ri�t,�t� �
Ri − �Ri�

�i
, �2�

where �i�	�Ri
2�− �Ri�2, is the standard deviation of Ri and

�¯� represents time average over the period of observation.
We then compute the equal time cross-correlation matrix C,
whose element

Cij � �rirj� �3�

represents the correlation between returns for stocks i and j.
By construction, C is symmetric with Cii=1 and Cij has a
value in the domain �−1,1�. Figure 1 shows that, the corre-
lation among stocks in NSE is larger on the average com-
pared to that among the stocks in NYSE. This supports the
general belief that developing markets tend to be more cor-
related than developed ones. To understand the reason behind
this excess correlation, we perform an eigenvalue analysis of
the correlation matrix.

A. Eigenvalue spectrum of correlation matrix

If the N return time series of length T are mutually uncor-
related, then the resulting random correlation matrix is called
a Wishart matrix, whose statistical properties are well known
�33�. In the limit N→�, T→�, such that Q�T /N�1, the
eigenvalue distribution of this random correlation matrix is
given by

Prm��� =
Q

2�

	��max − ���� − �min�
�

, �4�

for �min	�	�max and 0 otherwise. The bounds of the dis-
tribution are given by �max,min= �1± �1/	Q��2. We now com-
pare this with the statistical properties of the empirical cor-
relation matrix for the NSE. In the NSE data, there are N
=201 stocks each containing T=2606 returns; as a result Q
=12.97. Therefore, it follows that, in the absence of any cor-
relation among the stocks, the distribution should be bound-
ed between �min=0.52 and �max=1.63. As observed in devel-
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TABLE I. The list of 201 stocks of NSE analyzed in this paper.

i Company Sector i Company Sector i Company Sector

1 UCALFUEL Automobiles Transport 68 IBP Energy 135 HIMATSEIDE Industrial

2 MICO Automobiles Transport 69 ESSAROIL Energy 136 BOMDYEING Industrial

3 SHANTIGEAR Automobiles Transport 70 VESUVIUS Energy 137 NAHAREXP Industrial

4 LUMAXIND Automobiles Transport 71 NOCIL Basic materials 138 MAHAVIRSPG Industrial

5 BAJAJAUTO Automobiles Transport 72 GOODLASNER Basic materials 139 MARALOVER Industrial

6 HEROHONDA Automobiles Transport 73 SPIC Basic materials 140 GARDENSILK Industrial

7 MAHSCOOTER Automobiles Transport 74 TIRUMALCHM Basic materials 141 NAHARSPG Industrial

8 ESCORTS Automobiles Transport 75 TATACHEM Basic materials 142 SRF Industrial

9 ASHOKLEY Automobiles Transport 76 GHCL Basic materials 143 CENTENKA Industrial

10 M&M Automobiles Transport 77 GUJALKALI Basic materials 144 GUJAMBCEM Industrial

11 EICHERMOT Automobiles Transport 78 PIDILITIND Basic materials 145 GRASIM Industrial

12 HINDMOTOR Automobiles Transport 79 FOSECOIND Basic materials 146 ACC Industrial

13 PUNJABTRAC Automobiles Transport 80 BASF Basic materials 147 INDIACEM Industrial

14 SWARAJMAZD Automobiles Transport 81 NIPPONDENR Basic materials 148 MADRASCEM Industrial

15 SWARAJENG Automobiles Transport 82 LLOYDSTEEL Basic materials 149 UNITECH Industrial

16 LML Automobiles Transport 83 HINDALC0 Basic materials 150 HINDSANIT Industrial

17 VARUNSHIP Automobiles Transport 84 SAIL Basic materials 151 MYSORECEM Industrial

18 APOLLOTYRE Automobiles Transport 85 TATAMETALI Basic materials 152 HINDCONS Industrial

19 CEAT Automobiles Transport 86 MAHSEAMLES Basic materials 153 CARBORUNIV Industrial

20 GOETZEIND Automobiles Transport 87 SURYAROSNI Basic materials 154 SUPREMEIND Industrial

21 MRF Automobiles Transport 88 BILT Basic materials 155 RUCHISOYA Industrial

22 IDBI Financial 89 TNPL Basic materials 156 BHARATFORG Industrial

23 HDFCBANK Financial 90 ITC Consumer goods 157 GESHIPPING Industrial

24 SBIN Financial 91 VSTIND Consumer goods 158 SUNDRMFAST Industrial

25 ORIENTBANK Financial 92 GODFRYPHLP Consumer goods 159 SHYAMTELE Telecom

26 KARURVYSYA Financial 93 TATATEA Consumer goods 160 ITI Telecom

27 LAKSHVILAS Financial 94 HARRMALAYA Consumer goods 161 HIMACHLFUT Telecom

28 IFCI Financial 95 BALRAMCHIN Consumer goods 162 MTNL Telecom

29 BANKRAJAS Financial 96 RAJSREESUG Consumer goods 163 BIRLAERIC Telecom

30 RELCAPITAL Financial 97 KAKATCEM Consumer goods 164 INDHOTEL Services

31 CHOLAINV Financial 98 SAKHTISUG Consumer goods 165 EIHOTEL Services

32 FIRSTLEASE Financial 99 DHAMPURSUG Consumer goods 166 ASIANHOTEL Services

33 BAJAUTOFIN Financial 100 BRITANNIA Consumer goods 167 HOTELEELA Services

34 SUNDARMFIN Financial 101 SATNAMOVER Consumer goods 168 FLEX Services

35 HDFC Financial 102 INDSHAVING Consumer goods 169 ESSELPACK Services

36 LICHSGFIN Financial 103 MIRCELECTR Consumer Discretionary 170 MAX Services

37 CANFINHOME Financial 104 SURAJDIAMN Consumer Discretionary 171 COSMOFILMS Services

38 GICHSGFIN Financial 105 SAMTEL Consumer Discretionary 172 DABUR Healthcare

39 TFCILTD Financial 106 VDOCONAPPL Consumer Discretionary 173 COLGATE Healthcare

40 TATAELXSI Technology 107 VDOCONINTL Consumer Discretionary 174 GLAXO Healthcare

41 MOSERBAER Technology 108 INGERRAND Consumer Discretionary 175 DRREDDY Healthcare

42 SATYAMCOMP Technology 109 ELGIEQUIP Consumer Discretionary 176 CIPLA Healthcare

43 ROLTA Technology 110 KSBPUMPS Consumer Discretionary 177 RANBAXY Healthcare

44 INFOSYSTCH Technology 111 NIRMA Consumer Discretionary 178 SUNPHARMA Healthcare

45 MASTEK Technology 112 VOLTAS Consumer Discretionary 179 IPCALAB Healthcare

46 WIPRO Technology 113 KECINTL Consumer Discretionary 180 PFIZER Healthcare

47 BEML Technology 114 TUBEINVEST Consumer Discretionary 181 EMERCK Healthcare

48 ALFALAVAL Technology 115 TITAN Consumer Discretionary 182 NICOLASPIR Healthcare

49 RIIL Technology 116 ABB Industrial 183 SHASUNCHEM Healthcare

50 GIPCL Energy 117 BHEL Industrial 184 AUROPHARMA Healthcare

51 CESC Energy 118 THERMAX Industrial 185 NATCOPHARM Healthcare

52 TATAPOWER Energy 119 SIEMENS Industrial 186 HINDLEVER Miscellaneous

53 GUJRATGAS Energy 120 CROMPGREAV Industrial 187 CENTURYTEX Miscellaneous
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oped markets �8–11�, the bulk of the eigenvalue spectrum
P��� for the empirical correlation matrix is in agreement
with the properties of a random correlation matrix spectrum
Prm���, but a few of the largest eigenvalues deviate signifi-
cantly from the RMT bound �Fig. 2�. However, the number
of these deviating eigenvalues are relatively few for NSE
compared to NYSE. To verify that these outliers are not an
artifact of the finite length of the observation period, we have
randomly shuffled the return time series for each stock, and
then recalculated the resulting correlation matrix. The eigen-
value distribution for this surrogate matrix matches exactly
with the random matrix spectrum Prm���, indicating that the
outliers are not due to “measurement noise” but are genuine
indicators of correlated movement among the stocks. There-
fore, by analyzing the deviating eigenvalues, we may be able
to obtain an understanding of the structure of interactions
between the stocks in the market.

B. Properties of the “deviating” eigenvalues

The largest eigenvalue �0 for the NSE cross-correlation
matrix is more than 28 times greater than the maximum pre-
dicted by RMT. This is comparable to NYSE, where �0 is

about 26 times greater than the random matrix upper bound.
Upon testing with synthetic US data containing same number
of missing data points as in the Indian market, we observed
that �0 remains almost unchanged compared to the value
obtained from the original US data. The corresponding ei-
genvector shows a relatively uniform composition, with all
stocks contributing to it and all elements having the same
sign �Fig. 3, top�. As this is indicative of a common factor
that affects all the stocks with the same bias, the largest
eigenvalue is associated with the market mode, i.e., the col-

TABLE I. �Continued.�

i Company Sector i Company Sector i Company Sector

54 GUJFLUORO Energy 121 HEG Industrial 188 EIDPARRY Miscellaneous

55 HINDOILEXP Energy 122 ESABINDIA Industrial 189 KESORAMIND Miscellaneous

56 ONGC Energy 123 BATAINDIA Industrial 190 ADANIEXPO Miscellaneous

57 COCHINREFN Energy 124 ASIANPAINT Industrial 191 ZEETELE Miscellaneous

58 IPCL Energy 125 ICI Industrial 192 FINCABLES Miscellaneous

59 FINPIPE Energy 126 BERGEPAINT Industrial 193 RAMANEWSPR Miscellaneous

60 TNPETRO Energy 127 GNFC Industrial 194 APOLLOHOSP Miscellaneous

61 SUPPETRO Energy 128 NAGARFERT Industrial 195 THOMASCOOK Miscellaneous

62 DCW Energy 129 DEEPAKFERT Industrial 196 POLYPLEX Miscellaneous

63 CHEMPLAST Energy 130 GSFC Industrial 197 BLUEDART Miscellaneous

64 RELIANCE Energy 131 ZUARIAGRO Industrial 198 GTCIND Miscellaneous

65 HINDPETRO Energy 132 GODAVRFERT Industrial 199 TATAVASHIS Miscellaneous

66 BONGAIREFN Energy 133 ARVINDMILL Industrial 200 CRISIL Miscellaneous

67 BPCL Energy 134 RAYMOND Industrial 201 INDRAYON Miscellaneous

FIG. 1. �Color online� The probability density function of the
elements of the correlation matrix C for 201 stocks in the NSE of
India and NYSE for the period Jan 1996–May 2006. The mean
value of elements of C for NSE and NYSE, �Cij�, are 0.22 and 0.20,
respectively.
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FIG. 2. �Color online� The probability density function of the
eigenvalues of the correlation matrix C for NSE �top� and NYSE
�bottom�. For comparison, the theoretical distribution predicted by
Eq. �4� is shown using broken curves, which overlaps with the
distribution obtained from the surrogate correlation matrix gener-
ated by randomly shuffling each time series. In both figures, the
inset shows the largest eigenvalue.
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lective response of the entire market to external information
�8,10�. Of more interest for understanding the market struc-
ture are the intermediate eigenvalues, i.e., those occurring
between the largest eigenvalue and the bulk of the distribu-
tion predicted by RMT. For the NYSE, it was shown that
corresponding eigenvectors of these eigenvalues are local-
ized, i.e., only a small number of stocks, belonging to similar
or related businesses, contribute significantly to each of these
modes �10,12�. However, for NSE, although the Technology
and the IT and Telecom stocks are dominant contributors to
the eigenvector corresponding to the third largest eigenvalue,
a direct inspection of eigenvector composition does not yield
a straightforward interpretation in terms of a related group of
stocks corresponding to any particular eigenvalue �Fig. 3�.

To obtain a quantitative measure of the number of stocks
contributing to a given eigenmode, we calculate the inverse
participation ratio �IPR�, defined for the kth eigenvector as
Ik�
i=1

N �uki�4, where uki are the components of eigenvector

k. An eigenvector having components with equal value, i.e.,
uki=1/	N for all i, has Ik=1/N. We find this to be approxi-
mately true for the eigenvector corresponding to the largest
eigenvalue, which represents the market mode. To see how
different stocks contribute to the remaining eigenvectors, we
note that if a single stock had a dominant contribution in any
eigenvector, e.g., uk1=1 and uki=0 for i�1, then Ik=1 for
that eigenvector. Thus, IPR gives the reciprocal of the num-
ber of eigenvector components �and therefore, stocks� with
significant contribution. On the other hand, the average value
of Ik, for eigenvectors of a random correlation matrix ob-
tained by randomly shuffling the time series of each stock, is
�I�=3/N�1.49
10−2. Figure 4 shows that the eigenvalues
belonging to the bulk of the spectrum indeed have this value
of IPR. But at the lower and higher end of eigenvalues, both
the US and Indian markets show deviations, suggesting the
existence of localized modes. However, these deviations are
much less significant and fewer in number in the latter com-
pared to the former. This implies that distinct groups, whose
members are mutually correlated in their price movement, do
exist in NYSE, while their existence is far less clear in NSE.

C. Filtering the correlation matrix

The above analysis suggests the existence of a market-
induced correlation across all stocks, which makes it difficult
to observe the correlations that might be due to interactions
between stocks belonging to the same sector. Therefore, we
now use a filtering method to remove market mode, as well
as the random noise �13�. The correlation matrix is first de-
composed as

C = 

i=0

N−1

�iuiui
T, �5�

where �i are the eigenvalues of C sorted in descending order
and ui are corresponding eigenvectors. As only the eigenvec-
tors corresponding to the few largest eigenvalues are be-
lieved to contain information on significantly correlated
stock groups, the contribution of the intragroup correlations
to the C matrix can be written as a partial sum of ��u�u�

T,
where � is the index of the corresponding eigenvalue. Thus,
the correlation matrix can be decomposed into three parts,
corresponding to the market, group, and random compo-
nents:
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FIG. 4. �Color online� Inverse participation ratio as a function of
eigenvalue for the correlation matrix C of NSE �top� and NYSE
�bottom�. The broken line indicates the average value of �I�=1.49

10−2 for the eigenvectors of a matrix constructed by randomly
shuffling each of the N time series.
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C = Cmarket + Cgroup + Crandom

= �0u0u0
T + 


i=1

Ng

�iuiui
T + 


i=Ng+1

N−1

�iuiui
T, �6�

where Ng is the number of eigenvalues �other than the largest
one� which deviates from the bulk of the eigenvalue spec-
trum. For NSE we have chosen Ng=5. However, the exact
value of this choice is not crucial as small changes in Ng do
not alter the results, the error involved being limited to the
eigenvalues closest to the bulk that have the smallest contri-
bution to Cgroup. Figure 5 shows the result of decomposing
the correlation matrix into the three components, for both the

Indian and US markets. Compared to the latter, the distribu-
tion of matrix elements of Cgroup in the former shows a sig-
nificantly truncated tail. This indicates that intragroup corre-
lations are not prominent in NSE, whereas they are
comparable with the overall market correlations in NYSE. It
follows that the collective behavior in the Indian market is
dominated by external information that affects all stocks.
Correspondingly, correlations generated by interactions be-
tween stocks, as would be the case for stocks in a given
business sector, are much weaker, and hence such correlated
sectors would be difficult to observe.

We indeed find this to be true when we use the informa-
tion in the group correlation matrix to construct the network
of interacting stocks �13�. The adjacency matrix A of this
network is generated from the group correlation matrix
Cgroup by using a threshold cth such that Aij =1 if Cij

group

�cth, and Aij =0 otherwise. Thus a pair of stocks are con-
nected if the group correlation coefficient Cij

group is larger than
a preassigned threshold value, cth. To determine an appropri-
ate choice of cth=c* we observe the number of isolated clus-
ters �a cluster being defined as a group of connected nodes�
in the network for a given cth �Fig. 6�. We found this number
to be much less in NSE compared to that observed in NYSE
for any value of cth �13�. Figure 7 shows the resultant net-
work for c*=0.09, for which the largest number of isolated
clusters of stocks are obtained. The network has 52 nodes
and 298 links partitioned into three isolated clusters. From
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and the random interaction, Crandom. For NSE �top� Ng=5 whereas
for NYSE �bottom� Ng=10. The short tail for the distribution of the
Cgroup elements in NSE indicates that the correlation generated by
mutual interaction among stocks is relatively weak.
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these clusters, only two business sectors can be properly
identified, namely the technology and the pharmaceutical
sectors. The fact that the majority of the NSE stocks cannot
be arranged into well-segregated groups reflecting business
sectors illustrates our conclusion that intragroup interaction
is much weaker than the market-wide correlation in the In-
dian market.

D. Relating correlation with market evolution

We now compare between two different time intervals in
the NSE data. For convenience we divide the data set into
two nonoverlapping parts corresponding to the periods Jan
1996–Dec 2000 �period I� and Jan 2001–May 2006 �period
II�. The corresponding correlation matrices C are generated
following the same set of steps as for the entire data set. The
average value for the elements of the correlation matrix is
slightly lower for the later period, suggesting a greater ho-
mogeneity between the stocks at the earlier period �Fig. 8�.

Next, we look at the eigenvalue distribution of C for the
two periods �see Fig. 9�. The Q value for period I is 6.21,
while for period II it is 6.77. Thus the bounds for the random
distribution is almost same in the two cases. In contrast, the
largest deviating eigenvalues, �0, are different: 48.56 for pe-
riod I and 45.88 for period II. This implies the relative domi-
nance of the market mode in the earlier period, again sug-
gesting that with time the market has become less
homogeneous. The number of deviating eigenvalues remain
the same for the two periods.

When the interaction networks between stocks are gener-
ated for the two periods, they show less distinction into
clearly defined sectors than was obtained with the data for
the entire period. This is possibly because the shorter data
sets create larger fluctuations in the correlation values,
thereby making it difficult to segregate the existing market
sectors. However, we do observe that, using the same thresh-
old value for generating networks in the two periods yield,
for the later period, isolated clusters that are distinguishable
into distinct subclusters connected to each other via a few
links only, whereas in the earlier period the clusters are much
more homogeneous. This implies that as the Indian market is
evolving, the interactions between stocks are tending to get
arranged into clearly identifiable groups. We propose that
such structural rearrangement in the interactions is a hall-

mark of emerging markets as they evolve into developed
ones.

IV. MODEL OF MARKET DYNAMICS

To understand the relation between the interaction struc-
ture among stocks and the eigenvalues of the correlation ma-
trix, we perform a multivariate time series analysis using a
simple two-factor model of market dynamics. We assume
that the normalized return at time t of the ith stock from the
kth business sector can be decomposed into �i� a market fac-
tor rm�t�, that contains information or signal common to all
stocks, �ii� a sector factor rg

k�t�, representing effects exclusive
to stocks in the kth sector, and �iii� an idiosyncratic term,
�i�t�, which corresponds to random variations unique for that
stock. Thus

ri
k�t� = irm�t� + �i

krg
k�t� + �i�i�t� , �7�

where i, �i
k, and �i represent relative strengths of the three

terms mentioned above, respectively. For simplicity, these
strengths are assumed to be time independent. We choose
rm�t�, rg

k�t�, and �i�t� from a zero mean and unit variance
Gaussian distribution. We further assume that the normalized
returns ri, also follow Gaussian distribution with zero mean
and unit variance. Although the empirically observed return
distributions have power law tails, as these distributions are
not Levy stable, they will converge to Gaussian if the returns
are calculated over sufficiently long intervals. The assump-
tion of unit variance for the returns ensures that the relative
strengths of the three terms will follow the relation:

i
2 + ��i

k�2 + �i
2 = 1. �8�

As a result, for each stock we can assign �i and �i indepen-
dently, and obtain i from Eq. �8�. We choose �i and �i from

FIG. 8. �Color online� The probability density functions of the
elements in the correlation matrix C for NSE during �a� the period
Jan 1996–Dec 2000 and �b� Jan 2001–May 2006. The mean value
of the elements of C for the two periods are 0.23 and 0.21,
respectively.
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FIG. 9. �Color online� The probability density function of the
eigenvalues of the NSE correlation matrix C for the periods �top�
Jan 1996–Dec 2000 and �bottom� Jan 2001–May 2006. For com-
parison, the theoretical distribution predicted by Eq. �4� is shown
using broken curves. In both figures, the inset shows the largest
eigenvalue.
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a uniform distribution having width � and centered about the
mean values � and �, respectively.

We now simulate an artificial market with N stocks be-
longing to K sectors by generating time series of length T for
returns ri

k from the above model. These K sectors are com-
posed of n1 ,n2 , . . . ,nK stocks such that n1+n2+ ¯ +nK=N.
The collective behavior is then analyzed by constructing the
resultant correlation matrix C and obtaining its eigenvalues.
Our aim is to relate the spectral properties of C with the
underlying structure of the market given by the relative
strength of the factors. We first consider the simple case,
where the contribution due to market factor is neglected, i.e.,
i=0 for all i, and the strength of sector factor is equal for all
stocks within a sector, i.e., �i

k=�k, is independent of i. In this
case, the spectrum of the correlation matrix is composed of K
large eigenvalues, 1+ �nj −1��� j�2, where j=1, . . . ,K, and N
−K small eigenvalues, 1− �� j�2, each with degeneracy nj −1,
where j=1, . . . ,K �28�. Now, we consider nonzero market
factor which is equal for all stocks, i.e., i= for all i, and
the strength of sector factor is also same for all stocks, i.e.,
�i

k=� �independent of i and k�. In this case too, there are K
large eigenvalues and N−K small eigenvalues. Our numeri-
cal simulations suggest that the largest and the second largest
eigenvalues are

�0 � N2, �1 � nl�1 − 2� , �9�

respectively, where nl is the size of the largest sector, while
the N−K small degenerate eigenvalues are 1−2−�2. We
now choose the strength �i

k and �i from a uniform distribu-
tion with mean � and �, respectively, and with width �
=0.05. Figure 10 shows the variation of the largest and sec-
ond largest eigenvalues with � and �. The strength of the
market factor is determined from Eq. �8�.

Note that decreasing the strength of the sector factor rela-
tive to the market factor results in decreasing the second
largest eigenvalue �1. As Q=T /N is fixed, the RMT bounds
for the bulk of the eigenvalue distribution, ��min,�max�, re-
main unchanged. Therefore, a decrease in �1 implies that the
large intermediate eigenvalues occur closer to the bulk of the
spectrum predicted by RMT, as is seen in the case of NSE.
The analysis of the model supports our hypothesis that the
spectral properties of the correlation matrix for the NSE are
consistent with a market in which the effect of information
common for all stocks �i.e., the market mode� is dominant,
resulting in all stocks exhibiting a significant degree of cor-
relation.

V. CONCLUSIONS

In conclusion, we demonstrate that the stocks in emerging
market are much more correlated than in developed markets.
Although, the bulk of the eigenvalue spectrum of the corre-
lation matrix of stocks C in emerging market is similar to
that observed for developed markets, the number of eigen-
values deviating from the RMT upper bound are smaller in
number. Further, most of the observed correlation among
stocks is found to be due to effects common to the entire
market, whereas correlation due to interaction between
stocks belonging to the same business sector are weak. This

dominance of the market mode relative to modes arising
through interactions between stocks makes an emerging mar-
ket appear more correlated than developed markets. Using a
simple two-factor model we show that a dominant market
factor, relative to the sector factor, results in spectral proper-
ties similar to that observed empirically for the Indian mar-
ket. Our study helps in understanding the evolution of mar-
kets as complex systems, suggesting that strong interactions
may emerge within groups of stocks as a market evolves
over time. How such self-organization occurs and its relation
to other changes that a market undergoes during its develop-
ment, e.g., large increase in transaction volume, is a question
worth pursuing in the future with the tools available to
econophysicists.

Our paper also makes a significant point regarding the
physical understanding of markets as complex dynamical
systems. In recent times, the role of the interaction structure
within a market in governing its overall dynamical properties
has come under increasing scrutiny. However, such intra-
market interactions affect only very weakly certain market
properties, which is underlined by the observation of identi-
cal fluctuation behavior in markets having very different in-
teraction structures, viz., NYSE and NSE �7,25�. The system
can be considered as a single homogeneous entity respond-
ing only to external signals in explaining these statistical
features, e.g., the price fluctuation distribution. This suggests
that the basic assumption behind the earlier approach of
studying financial markets as essentially executing random
walks in response to independent external shocks �34�, which
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FIG. 10. The variation of the largest �top� and second largest
�bottom� eigenvalues of the correlation matrix of simulated return
in the two-factor model �Eq. �7�� with the model parameters � and
� �corresponding to strength of the sector and idiosyncratic effects,
respectively�. The matrix is constructed for N=200 stocks each with
return time series of length T=2000 days. We assume there to be 10
sectors, each having 20 stocks.
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ignored the internal structure, may still be considered to be
accurate for explaining market fluctuation phenomena. In
other words, complex interacting systems like financial mar-
kets can have simple mean-field-like description for some of
their properties.
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