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• Existence of semi-invariant signature in fluctuation of currency exchange rates.
• Exponents characterizing heavy tails of fluctuations have median value close to 2.
• Deviation of a currency from the inverse square law linked to macroeconomic factors.
• Exchange rate fluctuation of less developed economies show sub-diffusive nature.
• 2008 financial crisis severe enough to disrupt systemic features of currency market.
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a b s t r a c t

Identifying behavior that is relatively invariant under different conditions is a challenging
task in far-from-equilibrium complex systems. As an example of how the existence of
a semi-invariant signature can be masked by the heterogeneity in the properties of the
components comprising such systems, we consider the exchange rate dynamics in the
international currency market. We show that the exponents characterizing the heavy
tails of fluctuation distributions for different currencies systematically diverge from a
putative universal form associated with the median value (≃2) of the exponents. We
relate the degree of deviation of a particular currency from such an ‘‘inverse square law’’
to fundamental macroscopic properties of the corresponding economy, viz., measures
of per capita production output and diversity of export products. We also show that
in contrast to uncorrelated random walks exhibited by the exchange rate dynamics for
currencies belonging to developed economies, those of the less developed economies show
characteristics of sub-diffusive processes which we relate to the anti-correlated nature
of the corresponding fluctuations. Approaches similar to that presented here may help
in identifying invariant features obscured by the heterogeneous nature of components in
other complex systems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The discovery that systems at equilibrium exhibit universality near a phase transition has been a path-breaking
achievement of statistical physics in the previous century [1]. However, despite considerable effort, fluctuation behavior
in biological and socio-economic systems that are far from equilibrium are not yet well understood [2]. Indeed, strong
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evidence for universality of non-equilibrium transitions is still lacking [3]. The large diversity seen in non-equilibrium critical
phenomena poses a major challenge for those trying to uncover general principles underlying the collective dynamics
of complex systems occurring in nature and society. Such systems, apart from comprising a large number of interacting
components, are often characterized by a large degree of heterogeneity in the properties of individual elements. For example,
components of a complex system may exhibit qualitatively distinct dynamics. The local connection density among the
elements in different parts may also greatly differ. It is known that such heterogeneity can result in deviation from universal
behavior expected near phase transitions [4].

A prototypical example of a complex systemwith a highly heterogeneous composition is the de-centralized international
trade in foreign exchange (FOREX) which constitutes the largest financial market in the world in terms of volume [5]. An
advantage of studying its fluctuation behavior over that of other complex systems with many degrees of freedom is the
availability of large quantities of high-resolution digital data that are relatively easily accessible for analysis [6]. The different
currencies that are traded in the market are each subject to multifarious influences, e.g., related to geographical, economic,
political or commercial factors, which can affect them inmany different ways. Such a highly heterogeneous system provides
a stark contrast to the relatively simpler systems having homogeneous composition that have typically been investigated
by physicists. In particular, we can ask whether the components of a heterogeneous complex system can be expected to
show universal features, i.e., phenomena independent of microscopic details, which may potentially be explained using
tools of statistical physics. For the specific case of the FOREX market, establishing any robust empirical regularity will
be an important contribution towards understanding the underlying self-organizing dynamics in such systems. Note that
the domain of microeconomics that is concerned with the dynamics of single markets has seen accumulating evidence
suggestive of universality [7]. The most robust of these relate to the nature of the heavy-tailed distributions of fluctuations
in individual stock prices, as well as, equity market indices [8–11], often referred to as the ‘‘inverse cubic law’’ [12,13]. In
contrast, macroeconomic processes have a relative paucity of such ‘‘stylized facts’’. Although the distribution of fluctuations
in the exchange rates of currencies has been the subject of several earlier investigations [14,15], some of which have indeed
reported heavy tails for different currencies, there is little agreement concerning the values of the power-law exponents
characterizing such tails — not evenwhether they lie outside the Levy-stable regime [16–19]. This suggests that the nature of
the fluctuation distribution for a particular currency could be related to some intrinsic properties of the underlying economy.

In this paper we show that there is indeed a systematic deviation from a putative universal signature – which we refer
to as ‘‘inverse square law’’ – for the fluctuation behavior of different currencies depending on two key macroeconomic
indicators, viz., the gross domestic product (GDP) per capita related to the economic performance, and the Theil index
that measures the diversity of exports of the corresponding countries (see data description for details). Thus, several
underdeveloped (frontier) economies exhibit currency fluctuationswhose distributions appear to be of a Levy-stable nature,
while those ofmost developed economies fall outside this regime. Themedian value of the exponents quantifying the heavy-
tailed nature of the cumulative fluctuation distributions for all the currencies occur close to 2, i.e., at the boundary of the
Levy-stable regime. Our study demonstrates how robust empirical regularities in complex systems can be uncovered when
they are masked by the intrinsic heterogeneity among the individual components. We have also characterized the distinct
nature of the exchange rate dynamics of different currencies by considering their self-similar scaling behavior. Our analysis
reveals that while currencies of developed economies follow uncorrelated random walks, those of emerging and frontier
economies exhibit sub-diffusive (or mean-reverting) dynamics.

2. Data description

The data-set we have analyzed comprises the daily exchange rates with respect to the US Dollar (USD) of N = 75
currencies (see Table 1) for the period October 23, 1995 to April 30, 2012, corresponding to τ = 6035 days. The rate we use
is the midpoint value, i.e., the average of the bid and ask rates for 1 USD against a given currency. The data is obtained from
a publicly accessible archive of historical interbank market rates maintained by the Oanda corporation, an online currency
conversion site [20] that is used bymajor corporations, tax authorities and auditing firmsworldwide. The interbank (or spot)
rate for a currency is the official rate quoted in the media and that apply to large transactions of 106 USD or higher (typically
taking place between banks and financial institutions). For each day, the site records an average value that is calculated
over all rates collected over a 24 h period from frequently updated sources in the global foreign exchange market, including
online currency trading platforms, leadingmarket data vendors, and contributing financial institutions.We have chosen USD
as the base currency for the exchange rate as it is the preferred currency for most international transactions and remains the
reserve currency of choice formost economies [21,22].We have verified that using other base currencies lead to qualitatively
similar fluctuation distributions for exchange rates.

The choice of currencies used in our study is mainly dictated by the exchange rate regime (see Table 1), which is obtained
from the site [20] where we collected the exchange rates data and supplemented by information from the site of another
online FOREX services company [23]. In particular, we have not considered currencies whose exchange rate with respect to
USD is constant over time. Most of the currencies in our database are floating, either freely under the influence of market
forces or managed to an extent with no pre-determined path. Among the remaining currencies, a few are pegged to USD or
some other important currency (such as EUR), but with some variation within a band (which may either be fixed or moving
in time). Note that as the EUR was introduced in January 1, 1999, i.e., within the time interval considered by us, we have
used the exchange rate for the ECU (European Currency Unit) for the period October 23, 1995 to December 31, 1998.
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Table 1
The currencies of developed (1–14), emerging (15–44) and frontier (45–75) economies considered in the study. The columns indicate the currency code
along with the nature of the exchange rate regime (as obtained from Oanda and XE sites), the character of the economy (as categorized by MSCI), the
geographical region, the average GDP per capita (provided by IMF) and the mean Theil index (calculated from data available from MIT OEC) for the
corresponding countries
Sl. no. Currency Code Exchange Rate Regime Market Type Region ⟨g⟩ in USD ⟨T ⟩

(Oanda, XE) (MSCI) (IMF) (MIT)

1 Canadian Dollar CAD Floating Developed Americas 32561.46 1.95
2 Danish Krone DKK Pegged within horizontal band Developed Europe 44617.1 1.49
3 Euro EUR Floating Developed Europe 28200.99 –
4 Great Britain Pound GBP Floating Developed Europe 32126.2 1.54
5 Iceland Krona ISK Floating Developed Europe 39213.54 3.69
6 Norwegian Kroner NOK Floating Developed Europe 59286.29 3.45
7 Swedish Krona SEK Floating Developed Europe 39571.51 1.63
8 Swiss Franc CHF Floating Developed Europe 52059.39 1.96
9 Israeli New Shekel ILS Floating Developed Middle East 22478.26 2.64

10 Australian Dollar AUD Floating Developed Asia-Pacific 35251.16 2.38
11 Hong Kong Dollar HKD Fixed peg Developed Asia-Pacific 27406.74 1.98
12 Japanese Yen JPY Floating Developed Asia-Pacific 36942.47 1.95
13 New Zealand Dollar NZD Floating Developed Asia-Pacific 23459.35 2.14
14 Singapore Dollar SGD Floating Developed Asia-Pacific 30538.39 2.65
15 Bolivian Boliviano BOB Crawling peg Emerging Americas 1287.16 3.65
16 Brazilian Real BRL Floating Emerging Americas 6254.18 1.93
17 Chilean Peso CLP Floating Emerging Americas 7563.51 3.23
18 Colombian Peso COP Floating Emerging Americas 3864.52 3.01
19 Dominican Republic Peso DOP Floating Emerging Americas 3509.27 2.84
20 Mexican Peso MXN Floating Emerging Americas 7556.32 2.15
21 Peruvian Nuevo Sol PEN Floating Emerging Americas 3243.22 2.99
22 Venezuelan Bolivar VEB Fixed peg Emerging Americas 6302.1 4.85
23 Albanian Lek ALL Floating Emerging Europe 2319.21 2.77
24 Czech Koruna CZK Floating Emerging Europe 11701.17 1.44
25 Hungarian Forint HUF Pegged within horizontal band Emerging Europe 9151.13 1.87
26 Polish Zloty PLN Floating Emerging Europe 7866.73 1.41
27 Russian Rouble RUB Floating Emerging Europe 5791.06 3.23
28 Turkish Lira TRY Floating Emerging Europe 6451.81 1.58
29 Algerian Dinar DZD Floating Emerging Africa 2890.28 5.17
30 Cape Verde Escudo CVE Fixed peg Emerging Africa 2130.76 3.71
31 Egyptian Pound EGP Floating Emerging Africa 1727.67 2.73
32 Ethiopian Birr ETB Floating Emerging Africa 208.91 4.33
33 Mauritius Rupee MUR Floating Emerging Africa 5432.83 3.39
34 Moroccan Dirham MAD Fixed peg Emerging Africa 1997.64 2.54
35 South African Rand ZAR Floating Emerging Africa 4751.66 2.14
36 Tanzanian Shilling TZS Floating Emerging Africa 361.18 3.17
37 Chinese Yuan Renminbi CNY Fixed peg Emerging Asia 2173.96 1.55
38 Indian Rupee INR Floating Emerging Asia 774.57 1.74
39 Indonesian Rupiah IDR Floating Emerging Asia 1630.89 1.99
40 Papua New Guinea Kina PGK Floating Emerging Asia 1014.91 4.34
41 Philippine Peso PHP Floating Emerging Asia 1440.56 3.05
42 South Korean Won KRW Floating Emerging Asia 15655 2.11
43 Taiwan Dollar TWD Floating Emerging Asia 15707.7 –
44 Thai Baht THB Floating Emerging Asia 3194.12 1.78
45 Guatemalan Quetzal GTQ Floating Frontier Americas 2134.53 2.54
46 Honduran Lempira HNL Crawling peg Frontier Americas 1380.32 3.23
47 Jamaican Dollar JMD Floating Frontier Americas 4042.29 4.25
48 Paraguay Guarani PYG Floating Frontier Americas 1892.51 3.81
49 Trinidad Tobago Dollar TTD Floating Frontier Americas 12983.73 4.21
50 Croatian Kuna HRK Floating Frontier Europe 9166.72 1.75
51 Kazakhstan Tenge KZT Floating Frontier Europe 4399.18 3.97
52 Latvian Lats LVL Fixed peg Frontier Europe 6912.26 2.35
53 Botswana Pula BWP Crawling peg Frontier Africa 5447.23 5.45
54 Comoros Franc KMF Fixed peg Frontier Africa 609.64 5.05
55 Gambian Dalasi GMD Floating Frontier Africa 513.84 4.27
56 Ghanaian Cedi GHC Floating Frontier Africa 871.99 4.11
57 Guinea Franc GNF Fixed peg Frontier Africa 419.31 5.03
58 Kenyan Shilling KES Floating Frontier Africa 586 2.95
59 Malawi Kwacha MWK Floating Frontier Africa 226.69 4.5
60 Mauritanian Ouguiya MRO Floating Frontier Africa 752.88 4.96
61 Mozambique Metical MZM Floating Frontier Africa 330.54 4.28
62 Nigerian Naira NGN Floating Frontier Africa 782.49 6.02
63 Sao Tome and Principe Dobra STD Fixed peg Frontier Africa 864.42 4.15
64 Zambian Kwacha ZMK Floating Frontier Africa 677.53 4.67

(continued on next page)
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Table 1 (continued)

Sl. no. Currency Code Exchange Rate Regime Market Type Region ⟨g⟩ in USD ⟨T ⟩

(Oanda, XE) (MSCI) (IMF) (MIT)

65 Jordanian Dinar JOD Fixed peg Frontier Middle East 2617.85 3
66 Kuwaiti Dinar KWD Fixed peg Frontier Middle East 25554.56 5.49
67 Syrian Pound SYP Fixed peg Frontier Middle East 1732.47 4.21
68 Brunei Dollar BND Fixed peg Frontier Asia 23516.1 5.45
69 Bangladeshi Taka BDT Floating Frontier Asia 436.09 3.63
70 Cambodian Riel KHR Floating Frontier Asia 498.85 3.85
71 Fiji Dollar FJD Fixed peg Frontier Asia 3052.58 3.37
72 Lao Kip LAK Floating Frontier Asia 577.82 3.66
73 Pakistan Rupee PKR Floating Frontier Asia 756.7 2.87
74 Samoan Tala WST Fixed peg Frontier Asia 2215.73 4.63
75 Sri Lankan Rupee LKR Floating Frontier Asia 1438.09 2.65

To ensure that the observed differences in the nature of the fluctuation distributions of currencies is not just a trivial
outcome of the different exchange rate regimes, we have performed a two-sample Kolmogorov–Smirnov test [24] with the
null hypothesis that the pegged and floating currencies are sampled from the same continuous distribution. A measured
p-value of 0.39 indicates that the null hypothesis cannot be rejected at 5% level of significance. We also carried out a
Wilcoxon rank sum test [25] with the null hypothesis that both pegged and floating currencies are sampled from continuous
distributions with equal medians. We obtained a p-value of 0.27, again indicating that there is not enough evidence to reject
the null hypothesis at 5% level of significance. We thus conclude that the distinct behavior of the currencies in terms of the
distribution of their exchange rate returns cannot be simply explained away as being related to their pegged or floating
nature.

In order to explore whether the nature of the fluctuation distribution of a particular currency could be related to the
characteristics of the underlying economy, the countries to which these currencies belong are grouped into three categories,
viz., developed, emerging and frontier markets, as per the Morgan Stanley Capital International (MSCI) market classification
framework [26]. This is done on the basis of several criteria such as, the sustainability of economic development, number
of companies meeting certain size and liquidity criteria, ease of capital flow, as well as, efficiency and stability of the
institutional framework.

To make more explicit the connection between deviation from universality and the heterogeneity of the constituents
of the FOREX market, we have examined in detail certain macro-economic factors characterizing a national economy for
the role they may play in determining the nature of the fluctuation dynamics of a currency. In particular, we find that a
prominent role is played by (a) the GDP per capita g , as well as, (b) the Theil index T of export products, which we define
below.

The GDP per capita of a country is obtained by dividing the annual economic output, i.e., the aggregate value of all final
goods and services produced in it during a year, by the total population. It is one of the primary indicators of the economic
performance of a country, with higher GDP per capita indicating a higher standard of living for the people living in it [27].
The annual GDP per capita of the countries whose currencies have been included in our study are obtained from publicly
accessible data available in the website of the International Monetary Fund (IMF) [28]. We have averaged the data over the
18 year period (1995–2012) considered in our study to obtain the mean GDP per capita ⟨g⟩.

The Theil index measures the diversity of the export products of a country [29] and is defined as T =
1
M

∑M
i=1(

xi
x̄ ln xi

x̄ ),
where xi is the total value (in USD) of the ith export product of a country, x̄ is the average value of all export products andM is
the total number of different products that are exported. A high value of T corresponds to large heterogeneity in the values
of the different exported products, indicating that a few products dominate the export trade. By contrast, low T implies
that a country has a highly diversified portfolio of export products and therefore, relatively protected from the vagaries of
fluctuations in the demand for any single product. To compute the Theil index we have used the annual export product data
of different countries available from the Observatory of Economic Complexity (OEC) at MIT [30]. We have used the four digit
level of the Standard International Trade Classification for categorizing different products which corresponds to M = 777
distinct export products in the data set. We have averaged the annual Theil indices over the period 1995–2012 to obtain the
mean Theil index ⟨T ⟩ for each country.

3. Results

We have measured the fluctuations in the exchange rates of 75 currencies (see data description for details) with respect
to the US Dollar over the period 1995–2012. To ensure that the result is independent of the unit of measurement, we have
quantified the variation in the exchange rate Pi(t) of the ith currency (i = 1, . . . ,N) at time t by its logarithmic return defined
over a time-interval ∆t as Ri(t, ∆t) = ln Pi(t + ∆t) − ln Pi(t). As explained in the data description, our data comprises daily
exchange rates and we therefore consider ∆t = 1 day. Different currencies can vary in terms of the intensity of fluctuations
in their exchange rates (volatility) as can be measured by the standard deviation σ of the returns. Thus, to compare the
return distributions of the different currencies, we normalize the returns of each currency i by subtracting the mean value
⟨Ri⟩ = Στ−1

t=1 Ri(t)/(τ − 1) and dividing by the standard deviation σi(t) =

√
1

τ−2Σt ′ ̸=t [Ri(t ′) − ⟨Ri⟩]
2 (removing the self

contribution from the measure of volatility), obtaining the normalized return, ri(t) = (Ri(t) − ⟨Ri⟩)/σi(t).
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Fig. 1. Heavy tailed behavior in the distribution of currency exchange rate fluctuations. The time-series of normalized log returns r(t) for currencies of
developed economies, e.g., SEK (a), shows relatively lower amplitude variations compared to that of currencies of frontier economies, e.g., TTD (b), in general
(note the different scales in the ordinate of the two panels). However, the probability density functions of r for all currencies show a heavy-tailed nature,
shown in (c) for currencies from a developed economy, SEK (black, circles), an emerging economy, INR (red, squares), and a frontier economy, TTD (blue,
triangles). For comparison, the standard normal distribution is shown using a solid curve.

3.1. The ‘‘inverse square law" of the distribution of fluctuations for currency exchange rates

As can be seen from Fig. 1(a–b), the returns quantifying the fluctuations in the exchange rate of currencies can appear
extremely different even though they have been normalized by their volatilities. The temporal variation of r(t) for SEK
[shown in Fig. 1(a)], the currency of a developed economy, is mostly bounded between a narrow interval around 0 with the
fluctuations never exceeding 6 standard deviations from themean value. By contrast, Fig. 1(b) shows that TTD, belonging to a
frontier economy, frequently exhibits extremely large fluctuations that can occasionally exceed even 20 standard deviations
— an event extremely unlikely to have been observed had the distribution been of a Gaussian nature.1 These observations
suggest that the distributions of the exchange rate fluctuations have long tails and that different currencies may have
significantly different nature of heavy-tailed behavior. As shown in Fig. 1(c), where the distributions of r for SEK, TTD and
an emerging economy currency, INR, is displayed, this is indeed the case.

The nature of the tails of the return distributions is established quantitatively by fitting them to a power-law decay for
the probability distribution having the functional form P(r) ∼ r−γ through maximum likelihood estimation (MLE) [31].
Uncertainty in estimating the optimal value of γ is calculated by performing MLE of exponents from 100 surrogate data-
sets for each currency. These are constructed by random sampling with replacement from the original return time-series
data [31]. While both the positive and negative returns show heavy tails, we note that the exponents characterizing them
need not be identical for a currency, such that the corresponding return distribution is asymmetric or skewed. The scatter
plot in Fig. 2(a) shows how the positive and negative tail exponents, γ+ and γ− respectively, are related to each other for the
different currencies. Currencies that occur closer to the diagonal line γ+ = γ− have similar nature of upward and downward
exchange rate movements. However, currencies which occur much above the diagonal (i.e., γ+ < γ−) will tend to have a
higher probability of extreme positive returns compared to negative ones, while those below the diagonal are more likely
to exhibit very large negative returns. We note in passing that the skewness depends, to some extent, on the state of the
economy of the country to which a currency belongs, with return distributions of developed economies being the least

1 Exchange rates of currencies of highly developed economies may on rare occasions show an extremely large deviation, e.g., that exhibited by CHF
following its depegging with EUR in January 2015. However, the resulting increase in the kurtosis (e.g., for CHF, from 9.0 for the period 1995–2012 to 31.3
when the period up to 2016 is considered) is still relatively small compared to the kurtosis observed for currencies of frontier economies.
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Fig. 2. (a–c) Deviation from universality for exchange rate fluctuations. The probability distribution of the power law exponents γ+ (b) and γ− (c) obtained
by maximum likelihood estimation (MLE) for the positive and negative tails, respectively, of the individual return distributions for the 75 currencies, show
a peak around 3 with median values of 3.11 (for γ+) and 3.28 (for γ−). Error bars indicate the uncertainty in the estimated values and are obtained by a
non-parametric bootstrap technique. Points lying closer to the diagonal (γ+ = γ− , indicated by a broken line) in (a) imply a higher degree of symmetry in the
distribution of r for the corresponding currency, i.e., positive and negative fluctuations of similar magnitude are equally probable. The heavy-tailed nature
of the distributions characterized by the tail-exponents correspond closely to their peakednessmeasured using the kurtosis α4 , as shown by the scatter plot
between (d) α4 and γ+ and (e) α4 and γ− for the currencies. The best log-linear fits, indicated by broken lines, correspond to α4 = exp[(γ±/A±)−β± ] with
A+ = 5.8, β+ = 2.4 (d) and A− = 5.6, β− = 2.8 (e). The Pearson correlation coefficient between log(log(α4)) and log(γ±) are ρ = −0.67 (p = 10−11) for
(d) and ρ = −0.59 (p = 10−8) for (e). Different symbols and colors are used to indicate currencies from developed (black, circles), emerging (red, squares)
and frontier (blue, triangles) economies, while symbol size is proportional to log(⟨g⟩) of the corresponding countries.

asymmetric in general, having mean skewness 0.52 ± 1.28, while those of emerging and frontier economies are relatively
much higher, being 6.54 ± 15.24 and 6.60 ± 18.04, respectively.

The distribution of the exponents characterizing the power-law nature of the exchange-rate returns shown in Fig. 2(b–c)
peaks around 3 for both the positive and negative tails. As a probability distribution functionwith a power law characterized
by exponent value γ ≃ 3 implies that the corresponding CCDF also has a power-law form but with exponent value
α = γ − 1 ≃ 2 [32], this result suggests an ‘‘inverse square law’’ governing the nature of fluctuations in the currency
market in contrast to the ‘‘inverse cubic law’’ that has been proposed as governing the price and index fluctuations in several
financialmarkets [8,9,12,10,11,13]. However, as is the case here, such a ‘‘law’’ is onlymanifested on the average, as the return
distributions for individual assets can have quite distinct exponents [11]. Here, we observe that the different currencies can
have exponents as low as 2 and as high as 6. Moreover, there appears to be a strong correlation between the nature of the
tail and the state of the underlying economy to which the currency belongs. Thus, developed economy currencies tend to
have the largest exponents, while most of the lowest values of exponents belong to currencies from the frontier economies.
This suggests an intriguing relation between the nature of currency fluctuations and the state of the underlying economy,
that could possibly be quantified by one or more macroeconomic indicators. This theme is explored in detail below.

In order to verify that the nature of fluctuations in exchange rates does not change drastically depending on the specific
choice of base currency, we have re-calculated the exponents γ characterizing return distributions of different currencies
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Fig. 3. Distribution of fluctuations for currency exchange rates with respect to different base currencies display an ‘‘inverse square law’’ on average. (a)
The ensemble of distributions of power-law exponents γ+ for the positive return distributions of 75 currencies calculated with respect to each of 75 base
currencies that are arranged according to the mean GDP per capita ⟨g⟩ of the corresponding economy (of the base currency). (b) The mean values of the
exponents γ+ (circles) obtained using each of the base currencies are almost all clustered around the value of 3, indicating an ‘‘inverse square law’’ behavior
of the heavy tails of return distributions that is relatively stable against the choice of different bases for measuring the fluctuation. Error bars indicated
represent the standard deviation in the estimated values of γ+ for different currencies for a given base currency. The broken line represents the grand
average (⟨⟨γ+⟩⟩ = 3.21) of the values for the exponent γ+ , taken over all currencies and bases.

that are obtained using each of the 75 currencies as the base. Fig. 3 shows that for all base currencies used in our study,
the exponents γ+ are distributed about mean values that fluctuate around ⟨⟨γ+⟩⟩ ∼ 3 (a similar behavior is seen for the
exponents of the negative returns distributions, γ−). This suggests that the ‘‘inverse square law’’ form for the heavy tails of
return distributions is valid on average relatively independent of the base currency used to calculate the exchange rates.

The character of the heavy tails of the returns r is closely related to the peaked nature of the distribution that can be
quantified by its kurtosis which is defined as α4 = E(r − µ)4/σ 4, where E() is the expectation while µ and σ are the
mean and standard deviation, respectively, of r . Fig. 2(d–e) shows the relation between the kurtosis and the exponents for
the tails of the return distributions of the different currencies. The fitted curve shown qualitatively follows the theoretical
relation between the twowhich can be derived by assuming that the distribution is Pareto, i.e., follows a power law (although
for such a situation, the kurtosis is finite only for exponent values γ > 5). We observe that the relation between the
exponents and kurtosis suggested by the scatter plots can be approximately fit by the function α4 ∼ exp[(γ±/A±)−β± ]

with β+ = 2.4, A+ = 5.8 for the positive tail and β− = 2.8, A− = 5.6 for the negative tail [Fig. 2(d) and (e), respectively].
The strong correlation between the peakedness of the distribution and the character of the heavy tails can be quantified by
the Pearson correlation coefficients between log(γ±) and log(log(α4)), viz., ρ = −0.67 (p = 10−11) for the positive returns
and ρ = −0.59 (p = 10−8) for the negative returns. Thus, instead of using two different exponent values (corresponding
to the positive and negative tails) for each return distribution, we shall henceforth focus on the single kurtosis value that
characterizes the distribution.

3.2. Deviation from universality related to macroeconomic factors

Given the variation in the nature of fluctuation distribution of different currencies from a single universal form, we ask
whether the deviations are systematic in nature. Note that, the currencies belong to countries having very diverse economies,
that trade in a variety of products & services with other countries and which may have contrasting economic performances.
An intuitive approach would be to relate the differences in the return distributions with metrics which capture important
aspects of the economies as a whole. Fig. 4 shows that there is indeed a significant correlation between the kurtosis of the
return distributions for the currencies and two macroeconomic indicators of the underlying economies, viz., the mean GDP
per capita, ⟨g⟩, and the mean Theil index, ⟨T ⟩, that describe the overall prosperity and the diversity of export products,
respectively (see data description for details).

Fig. 4(a) shows that the scatter of kurtosisα4 against ⟨g⟩ can be approximately fit by a power lawof the form:α4 ∼ ⟨g⟩
−2.2.

The Pearson correlation coefficient between the logarithms of the two quantities is ρ = −0.55 (p = 10−7). Thus, in general,
currencies of countries having higher GDP per capita tend to be more stable, in the sense of having low probability of
extremely large fluctuations. However, there are exceptions where currencies exhibit high kurtosis even when they belong
to countries with high GDP per capita (e.g., HKD and ISK which are indicated in the figure). In these cases, the peakedness
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Fig. 4. Variation of the kurtosis α4 of exchange rate fluctuation distributions of different currencies with (a) annual GDP per capita, ⟨g⟩ (in USD) and (b)
annual Theil index of the export products, ⟨T ⟩, for the corresponding countries, averaged over the period 1995–2012. The Pearson correlation coefficient
between log(⟨g⟩) and log(α4) is ρ = −0.55 (p = 10−7), the best-fit functional relation between the two being α4 ∼ ⟨g⟩

−2.2 . Currencies of developed
economies that are outliers from this general trend, viz., ISK and HKD that have high kurtosis despite having high GDP per capita, are explicitly indicated
in (a). A similar analysis shows that the Pearson correlation coefficient between log(⟨T ⟩) and log(α4) is ρ = 0.53 (p = 10−6), with the best-fit functional
relation being α4 ∼ ⟨T ⟩

9.1 . Different symbols are used to indicate currencies from developed (black, circles), emerging (red, squares) and frontier (blue,
triangles) economies, while symbol size is proportional to log(⟨g⟩) of the corresponding countries. Error bars represent the standard deviation of the annual
values of g and T over the period 1995–2012 for the countries corresponding to each currency.

of the distribution may reflect underlying economic crises, e.g., the 2008 Icelandic financial crisis in the case of ISK and the
2003 SARS crisis for HKD. Furthermore, we observe that currencies belonging to high GDP per capita economies that are
dependent on international trade of a few key resources – such as, crude oil – also exhibit high kurtosis (e.g., KWD and
BND). This suggests a dependence of the nature of the fluctuation distribution on the diversity of their exports, which is
indeed shown in Fig. 4(b). The dependence of the kurtosis on T (which is a measure of the variegated nature of trade) of the
corresponding economy is approximately described by a power-law relation:α4 ∼ ⟨T ⟩

9.1. The Pearson correlation coefficient
between the logarithms of the two quantities is ρ = 0.53 (p = 10−6). This implies that, in general, currencies of countries
having low ⟨T ⟩, i.e., having well-diversified export profile, tend to be more stable.

Note that the fluctuations of the currencies depend on both of these above macroeconomic factors, and the differences
in their nature cannot be explained exclusively by any one of them. It is therefore meaningful to perform a multi-linear
regression of α4 as a function of both GDP per capita and Theil index using an equation of the form: log(α4) = b0 + b1
log(⟨g⟩)+b2 log(⟨T ⟩), where the constants b0(=6.74), b1(=−0.48) and b2(=1.69) are the best-fit regression coefficients. The
coefficient of determination R2, which measures how well the data fits the statistical model, is found to be 0.39 (p ≃ 10−8).
This indicates that together the macroeconomic factors of GDP per capita (related to the overall economic performance) and
Theil index (related to the international trade of the country) explain over 39% of the variation between the nature of the
return distributions of the different currencies.

One of the assumptions of multi-linear regression analysis is that the explanatory variables [viz., log(⟨g⟩) and log(⟨T ⟩)]
are not highly correlated with each other. Thus we need to explicitly test for the absence of significant collinearity, i.e., linear
dependence of one explanatory variable on the other variables. A commonly used indicator of collinearity is the variance
inflation factor (VIF ) [33]. When the variation of a specific explanatory variable (referred to as a predictor) is largely
explained by a linear combination of the other predictors, VIF for that predictor is correspondingly large. Complete absence
of collinearity corresponds to the case VIF = 1 and the inflation is measured relative to this reference value. VIF have been
shown to correspond to the diagonal elements of the inverse of the matrix of correlations between the predictors [33] and
using this method we obtain VIF = 1.28 for both the macroeconomic factors considered by us. As commonly collinearity is
considered to be a cause for concern only if VIF values are higher than 5, GDP per capita and Theil index can be reasonably
treated as independent explanatory variables in our analysis. We have also investigated the possible dependence of the
nature of the fluctuation distribution on other economic factors, such as the foreign direct investment (FDI) net inflow, but
none of these appear to be independent of the two factors considered above.

To investigate the reason for the strong relation between the kurtosis of the return distribution for a currency and
the corresponding underlying macroeconomic factors, we need to delve deeper into the nature of the dynamics of the
exchange rate fluctuations. For this we first look into the self-similar scaling behavior of the time-series of exchange rate of a
currency P(t) using the detrended fluctuation analysis (DFA) technique suitable for analyzing non-stationary processes with
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Fig. 5. Variation of (a) the long-range auto-correlation scaling exponent γDFA obtained using detrended fluctuation analysis of the exchange rate time
series, and (b) the variance ratio (VR) of the exchange rate fluctuations calculated using lag l (=10 days), with the kurtosis α4 of the normalized logarithmic
return distributions of different currencies. Different symbols are used to indicate currencies from developed (black, circles), emerging (red, squares) and
frontier (blue, triangles) economies, while symbol size is proportional to log(⟨g⟩) of the corresponding countries. The broken lines in (a) and (b) indicate the
values of γDFA(=0.5) and VR(=1) corresponding to an uncorrelated random walk. Currencies of developed economies that are outliers, viz., ISK and HKD
that have much higher kurtosis than others in the group, are explicitly indicated.

long-range memory [34]. Here, a time-series is de-trended over different temporal windows of sizes s using least-square
fitting with a linear function. The residual fluctuations F (s) of the resulting sequence, measured in terms of the standard
deviation, is seen to scale as F (s) ∼ sγDFA , where γDFA is referred to as the DFA exponent. The numerical value of this exponent
(lying between 0 and 1) provides information about the nature of the fractional Brownianmotion undertaken by the system.
For γDFA ≃ 1/2, the process is said to be equivalent to a random walk subject to white noise, while γDFA > 1/2 (<1/2)
implies that the time-series is correlated (anti-correlated). As seen from Fig. 5(a), the DFA exponents of currencies for most
developed economies – which also have the lowest kurtosis – are close to 0.5, indicating that these currencies are following
uncorrelated random walk [35]. In contrast, currencies of the emerging and frontier economies, possessing higher values of
kurtosis, typically have γDFA < 0.5 indicating sub-diffusive dynamics.

To understand the reason for this sub-diffusive behavior we have analyzed the exchange rate time-series using the
variance ratio (VR) test. This technique, based on the ratio of variance estimates for the returns calculated using different
temporal lags, is often used to find how close a given time-series is to a randomwalk [36]. For a sequence of log returns {Rt},
the variance ratio for a lag l is defined as:

VR(l) =

∑τ

k=l(
∑k−1

t=k−l Rt − lµR)2

σ 2
R l(τ − l + 1)(1 − [l/τ ])

, (1)

where µR = ⟨Rt⟩ and σ 2
R = ⟨(Rt − µR)2⟩ are the mean and variance of the {Rt} sequence. An uncorrelated random walk is

characterized by a VR value close to 1. If VR > 1, it indicatesmean aversion in the time-series, i.e., the variable has a tendency
to follow a trend where successive changes are in the same direction. In contrast, VR < 1 suggests a mean-reverting series
where changes in a given direction are likely to be followed by changes in the opposite direction preventing the system from
moving very far from its mean value. Fig. 5(b) shows the VR values for different currencies, calculated using lag l = 10 days,
as a function of their kurtosis. Consistent with the DFA results reported above, it is seen that for currencies of developed
economies the VR is close to 1, indicating uncorrelated Brownian diffusion as the nature of their exchange rate dynamics.
However, for most frontier and a few emerging economy currencies, the VR value is substantially smaller than 1, implying
that their trajectories have a mean-reverting nature. As in Fig. 4, we note that HKD and ISK appear as outliers in Fig. 5 in
that, although belonging to the group of countries having high GDP per capita, they share the characteristics shown bymost
emerging and frontier economies.

We can now understand the sub-diffusive nature of the dynamics of these currencies as arising from the anti-correlated
nature of their successive fluctuations which prevents excursions far from the average value. Thus, when we consider
the time-series of all currencies after normalizing their variance, the fluctuations of the emerging and frontier economy
currencies mostly remain in the neighborhood of the average value with rare, occasional deviations that are very large
compared to developed economy currencies. This accounts for the much heavier tails of the return distributions of the
former and the corresponding high value of kurtosis. It is intriguing to consider whether the difference in the nature of
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Fig. 6. Temporal evolution of the statistical properties of exchange rate fluctuation distributions of different currencies. The variation of (a–c) the kurtosis
α4 of the distributions with annual GDP per capita, g (in USD) and that of (d–f) the variance ratio (VR) of the different normalized fluctuations time series
with kurtosis α4 , are shown for three different periods, viz., Period I: Oct 23, 1995–Apr 25, 2001 (a & d), Period II: Apr 26, 2001–Oct 28, 2006 (b & e) and
Period III: Oct 29, 2006–Apr 30, 2012 (c & f), which divide the duration under study into three equal, non-overlapping segments. The GDP per capita of
the different countries for each period are obtained by averaging the annual values over the corresponding periods. The Pearson correlation coefficients
between log(⟨g⟩) and log(α4) for the three periods are ρI = −0.60 (p-value = 10−8), ρII = −0.57 (p-value = 10−8) and ρIII = −0.28 (p-value = 10−2). For
the first two periods, the best-fit functional relation between the two is α4 ∼ 1/⟨g⟩

2 , while for the third period, the dependence of α4 on ⟨g⟩ shows a strong
deviation from the inverse square relation seen in the other two periods. Comparing the variance ratio values for the three different periods show a higher
degree of mean aversion in the third period. Period III, during which the major economic crisis of 2008–09 occurred, is distinguished by large deviation
from the trends seen in the other two periods. Different symbols are used to indicate currencies from developed (black, circles), emerging (red, squares)
and frontier (blue, triangles) economies, while symbol size is proportional to log(⟨g⟩) of the corresponding countries.

the movement of exchange rates of the currencies could be possibly related to the role played by speculation in the trading
of these currencies [37]. We also note that these results are in broad agreement with the fact that efficient markets follow
uncorrelated random walks and the notion that the markets of developed economies are far more efficient than those of
emerging and frontier ones. A temporally resolved analysis of the nature of the distributions at different periods shows
strong disruption of the otherwise regular pattern of systematic deviation during the severe crisis of 2008–09, indicating its
deep-rooted nature affecting the real economy.

3.3. Temporal evolution of system properties

In the analysis presented above we have considered the entire temporal duration which our data-set spans. However, as
theworld economy underwent significant changes during this period, most notably, the global financial crisis of 2008, it is of
interest to see how the properties we investigate have evolved with time. For this purpose we divide the data-set into three
equal non-overlapping periods each comprising 2011 days, corresponding to Period I: Oct 23, 1995–Apr 25, 2001, Period II:
Apr 26, 2001–Oct 28, 2006 and Period III: Oct 29, 2006–Apr 30, 2012. Note that the last period corresponds to the crisis of
the global economy spanning 2007–2009. For each of these, we carry out the same procedures as described earlier in the
context of the entire data-set. As seen from Fig. 6, the behavior in the first two intervals appear to be quite similar in terms
of the various properties that have been measured, but large deviations are seen in the third interval. This is apparent both
for the relation between kurtosis and mean GDP per capita [Fig. 6(a–c)], as well as that between kurtosis and mean Theil
index (figure not shown). The dependence of the nature of the fluctuation distribution on the properties of the underlying
economy seem to have weakened in Period III. For example, while there is significant strong negative correlation between
log(⟨g⟩) and log(α4) for the first two intervals, viz., ρ = −0.60 (p = 10−8) and −0.57 (p = 10−8), respectively, it decreases
to only ρ = −0.28 (p = 10−2) for the third interval. Furthermore, the first two intervals show a 1/⟨g⟩

2 dependence of
the kurtosis α4, same as that seen for the entire period that we have reported above. However, this is not true for the last
interval where the best fit for the dependence of α4 on ⟨g⟩ shows a strong deviation from the behavior seen in other periods.
Similarly, we have found significant high correlation between log(⟨T ⟩) and log(α4), corresponding to Pearson coefficients
ρ = 0.50 (p = 10−6) and ρ = 0.46 (p = 10−5), respectively, for the first two intervals. In contrast, for the third interval we
observe a relatively smaller correlation ρ = 0.35 (p = 10−2). In addition, the relation between the variance ratio and the
kurtosis of the returns [Fig. 6(d–f)], as well as that between the DFA exponent and the kurtosis (figure not shown), are seen
to be similar in the first two intervals but very different in the third — in part because the VR for the developed and some
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emerging economies have adopted values > 1 (i.e., exhibiting mean aversion) in this last interval, while earlier they were
close to 1 (i.e., similar to a randomwalk). While Periods I and II had their share of economic booms and busts, it is instructive
to note that the 2008 crisis was severe enough to disrupt systemic features that were otherwise maintained over time.

4. Discussion and conclusion

The work we report here underscores the importance of studying economic systems, especially financial markets,
for gaining an understanding of the collective dynamics of heterogeneous complex systems. At the largest scale, such a
system encompasses the entire world where the relevant entities are the different national economies interacting with
each other through international trade and the foreign exchange market. The far-from-equilibrium behavior of this highly
heterogeneous complex systemhas been investigated here by focusing on the fluctuations of exchange rates of the respective
currencies. Understanding the overall features of this dynamics is crucially important in view of the human and social cost
associated with large-scale disruptions in the system, as was seen during the recent 2008 world-wide economic crisis.

Our results suggest a putative invariant signature in the dynamics of exchange rates, possibly the first such seen in
macroeconomic phenomena. This is in contrast to microeconomic systems like individual financial markets where robust
stylized facts such as the ‘‘inverse cubic law" has been established for some time. The ‘‘inverse square law" thatwe report here
also has a fundamental distinction in that distributions characterized by CCDF exponents α ≤ 2 belong to the Levy-stable
regime. By contrast, the logarithmic return distributions of equities and indices of financial markets that have exponent
values around 3 are expected to converge to a Gaussian form at longer time scales [13,38]. It suggests that extreme events
corresponding to sudden large changes in exchange rates, in particular for currencies belonging to emerging and frontier
economies, should be expected far more often compared to other financial markets. The ‘‘inverse square law’’ has recently
been also reported in at least one other market, viz., that of Bitcoins in the initial period following its inception [39]. We note
that agent-basedmodeling ofmarkets suggest that such a distribution can arise ifmarket players are relatively homogeneous
in their risk propensity [40,41].

To conclude, the results of our study help in revealing a hidden pattern indicative of relative invariance in a highly
heterogeneous complex system, viz., the FOREX market. The robust empirical feature that we identify here is a power
law characterizing the heavy-tailed nature of the fluctuation distributions of exchange rates for different currencies. The
systematic deviation of individual currencies from the universal form (the ‘‘inverse square law’’), quantified in terms of
their kurtosis measuring the peakedness of the return distributions, can be linked to metrics of the economic performance
and degree of diversification of export products of the respective countries. By doing detrended fluctuation analysis, the
distinct behavior of currencies corresponding to developed, emerging and frontier markets can be linked to the different
scaling behaviors of the random walks undertaken by these currencies. Our work shows how robust empirical regularities
among the components of a complex system can be uncovered even when the system is characterized by a large number
of heterogeneous interacting elements exhibiting distinct local dynamics. Similar approaches may be used for identifying
invariances in other biological and socio-economic systems.
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