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“Hits” emerge through self-organized coordination in collective response of free agents
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Individuals in free societies frequently exhibit striking coordination when making independent decisions en
masse. Examples include the regular appearance of hit products or memes with substantially higher popularity
compared to their otherwise equivalent competitors or extreme polarization in public opinion. Such segregation
of events manifests as bimodality in the distribution of collective choices. Here we quantify how apparently
independent choices made by individuals result in a significantly polarized but stable distribution of success
in the context of the box-office performance of movies and show that it is an emergent feature of a system of
noninteracting agents who respond to sequentially arriving signals. The aggregate response exhibits extreme
variability amplifying much smaller differences in individual cost of adoption. Due to self-organization of the
competitive landscape, most events elicit only a muted response but a few stimulate widespread adoption,
emerging as “hits”.
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I. INTRODUCTION

Complex systems often exhibit nontrivial patterns in the
collective (macro) behavior arising from the individual (micro)
actions of many agents [1,2]. Despite the high degree of
variability in the characteristics of the individuals comprising
a group, it is sometimes possible to observe robust empirical
regularities in the system properties [3–5]. The existence of
inequality in individual success, often measured by wealth
or popularity, is one such universal feature [6]. While agents
differ in terms of individual attributes, these can only partly
explain the degree of this inequality [7]. The outcomes often
have a heavy-tailed distribution with a much higher range
of variability than that observed in the intrinsic qualities.
Apart from the well-known Pareto law for income (or wealth)
[8,9], other examples include distributions of popularity for
books [10], electoral candidates [11], online content [12], and
scientific paradigms [13].

Another form of inequality may be observed in distribution
of outcomes having a strongly bimodal character. Here events
are clearly segregated into two distinct classes, e.g., corre-
sponding to successes and failures, respectively. While such
distributions have been reported in many different contexts,
e.g., gene expression [14], species abundance [15,16], wealth
of nations [17], electoral outcomes [18,19], etc., one of the
most robust demonstrations of bimodality is seen in the
distribution of movie box-office success [20]. Here success is
measured in terms of either the gross income GO at the opening
weekend or the total gross GT calculated over the lifetime
(i.e., the entire duration that a movie is shown) at theaters.
Figures 1(a) and 1(b) show that both of these distributions
constructed from publicly available data for movies released
in USA during the period 1997–2012 are described well
by a mixture of two log-normal distributions. Although the
movie industry has changed considerably during this time, the
characteristic properties of the distributions appear to remain
invariant over the successive intervals comprising the period.
The log-normal character can be explained by the probability
of movie success being a product of many independent

chance factors [21], and is indeed observed in the unimodal
distribution of opening income per theater gO [Fig. 1(c)].
However, the clear distinction of movies into two classes in
terms of their box-office performance (as indicated by the
occurrence of two modes in the GO and GT distributions) does
not appear to be simply related to their intrinsic attributes [22].
The fact that bimodality is manifested at the very beginning
of a movie’s life also suggests that the extreme divergence of
outcomes cannot be fully attributed to social learning occurring
over time as a result of diffusion of information about movie
quality [23] (e.g., by word-of-mouth [24]). We also emphasize
that the bimodal behavior is extremely robust and existed even
before the advent of social media, which plays a major role
in word-of-mouth dynamics [25]. Thus, while there have been
theoretical attempts to explain the emergence of bimodality by
assuming specific forms of interactions between agents [26],
it is of interest to see if bimodal popularity distributions can
arise without explicit agent-agent interactions.

In this paper, we present a model for understanding the
collective response of a system of agents to successive external
shocks, where the behavior of each agent is the result of a
decision process independent of other agents. Even in the
absence of explicit interaction among agents, the system
can exhibit remarkable coordination, characterized by the
appearance of a strong bimodality in its response. For the
specific example of box-office success, the bimodal nature
of the gross income distributions appears to be connected to
the fact that movies usually open in either many or very few
theaters. Therefore, we focus on explaining the appearance of
a bimodal distribution for the number of theaters NO in which
movies open [Fig. 1(d)]. Similar to how the observed invariant
properties of financial markets can be reproduced by agents
interacting indirectly through their response to a common
signal (price) [27], our model comprises agents (theaters) that
do not explicitly interact with each other but whose actions
achieve coherence by the regular arrival of a global stimulus,
viz., new movies being introduced in the market. By contrast,
decoherence is induced by the uncertainty under which each
agent independently makes a decision on whether to switch
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FIG. 1. Empirical demonstration of bimodality in movie popu-
larity measured in terms of (a) opening income GO and (b) total
lifetime income GT of movies in theaters over successive intervals
from 1997–2012 (indicated by different symbols). The data are fit
by superposition of two log-normal distributions (broken curve).
The cumulative distribution of the opening income per theater
gO = GO/NO over the same period is shown in (c). A fit with
log-normal distribution is also indicated (broken curve). (d) The
bimodal character of (a) and (b) can be connected to the bimodality
observed in the distribution of the number of opening theaters NO

(i.e., the total number of theaters in which a new movie is released).
The inset shows the distribution of exponents β characterizing the
power-law decay of the weekly income per theater (gt ∼ gOtβ ) for
all movies. Note that all logarithms are to base e.

to exhibiting the new movie or not. We show that these
competing effects can result in the appearance of bimodality in
the distributions of NO , and consequently, GO and GT , where
the success of a particular movie cannot be simply connected
to its perceived quality prior to release nor to its actual
performance on opening. Under a suitable approximation,
we have analytically solved the model and obtained closed
form expressions for the peaks of the resulting multimodal
distribution that match our numerical results. An important
implication of our study is that the box-office performance
of a movie is crucially dependent on whether it is released
close in time to a highly successful one, which supports the
popular wisdom that correctly timing the opening of a movie
determines its fate at box office.

The paper is structured as follows. In the next section, we
discuss the empirical data on movie income and its analysis
in detail, while the model is introduced in Sec. III. Section IV
describes the results, where we also show the robustness of the
bimodality obtained by looking at several variants of the basic
model. In addition, we provide an analytical explanation for
the emergence of bimodality in the model. We conclude with
a discussion of the implications of our findings in Sec. V.

II. DATA ANALYZED

A. Data description

Income distributions are computed from publicly available
data (obtained from The Movie Times website [28]) on box-
office performance of movies released in the United States

TABLE I. Values of log-normal distribution parameters for
different aggregate variables in the empirical data estimated by
maximum likelihood procedure.

Variable Distribution type α μ1 μ2 σ1 σ2

NO Bimodal 0.61 2.91 7.84 1.72 0.29
GO Bimodal 0.57 11.36 16.49 1.24 0.94
GT Bimodal 0.54 13.16 17.55 1.80 1.05
gO Unimodal 8.72 1.02
Nmax Bimodal 0.61 4.01 7.83 1.71 0.27

of America over a span of 16 years (1997–2012). Gross
income over all theaters within the USA are considered
and the data are inflation-adjusted with respect to 2010 as
base year. To determine the time invariance of the nature of
income distribution, the total time period has been divided into
four intervals, viz., 1997–2000, 2001–2004, 2005–2008, and
2009–2012. The total number of movies for which opening
weekend gross income GO data is available in each of these
intervals is 673, 1240, 1444, and 1226, respectively, while total
income GT (i.e., box-office receipts over the entire period that
a movie was shown in theaters) is available for 1160, 1240,
1444, and 1226 movies in each of these intervals, respectively.
Note that a movie is associated with the calendar year in which
it was released in theaters within the USA. Time series of
box-office income has been obtained from The Movie Times
site [28] for a total of 4568 movies over the period July 1998
to July 2012. To obtain opening weekend income per theater
gO , the gross opening income GO is divided by the number
of movie theaters NO in which the movie is released in its
opening week.

B. Fitting procedures and statistical tests

The aggregate variables NO , GO , and GT are fit with
bimodal log-normal distributions, i.e., a mixture of two log-
normal distributions with parameters μ1, σ1 and μ2, σ2, that are
weighted by factors α and 1 − α, respectively. The unimodal
distribution of opening income per theater, gO , has been fit
with a log-normal distribution having parameters μ and σ .
The maximum likelihood estimates (MLE) of the parameters
for the empirical distributions of NO , GO , GT , and gO are
shown in Table I. Hartigan’s dip test [29] for multimodality
has been performed on the data for NO , GO , and GT and
unimodality is rejected at 5% significance level. By contrast,
unimodality for the distribution of gO is not rejected by the
test. The time series of movie income, gt , has been fit to the
general form gt ∼ gOtβ by a regression procedure carried out
over all movies that were shown in theaters for at least 5 weeks.

C. Robustness of empirical features

To see whether the qualitative features of the results of
empirical analysis are robust, we have also looked at variables
other than NO , GO , GT , and gO . For example, if we consider
instead of the opening number of theaters NO , the largest
number of theaters Nmax that a movie is shown simultaneously
at any time following its release, its distribution also shows
a bimodal nature and can be fit by a superposition of two
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log-normal distributions Also, instead of considering only
the opening income per theater gO , we have looked at the
distribution of income per theater of a movie at any given week
following its release, which is seen to be qualitatively similar
to gO and can be fit by a unimodal log-normal distribution.

III. THE MODEL

We consider a system comprising N agents (theaters or
theater chains) subjected to external stimuli (entry of new
movies into the market) that have to choose a response, i.e.,
whether or not to adopt a new movie, displacing the one
being shown. At any time instant t , this decision depends
on a comparison between the perceived performance of the
new movie and the actual performance of the movie being
shown at the theater [Fig. 2(a)]. For simplicity, we assume
that a single new movie is up for release at each time instant t ,
thus allowing each movie to be identified by the corresponding
value of t . Allowing multiple movies to be released together
does not qualitatively change the results. The state of a theater
at any time is indicated by the identity of the movie it screens
at that time [Fig. 2(b)]. The performance of a movie t ′ at
time t can be quantified by the estimated income per theater,
gt , which is related to its opening value gt ′

O by a scaling
relation gt = gt ′

O(t − t ′)βs . This relation is partly inspired by
the empirical observation [Fig. 1(d), inset] that the weekly
income per theater for a movie decays as a power-law function
of the number of weeks after its release, characterized by
exponent β [20]. One can also interpret βs as a subjective
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FIG. 2. (a) Schematic diagram of the stochastic decision process
of agents (theaters i, j , and k) who can either continue with “old”
(movie being shown) or switch to “new” (movie up for release) at
any time instant t . The probability that an agent i will adopt the new
movie, pi,t , depends on a comparison of the perceived performance
of that movie, θt , to the actual performance of the movie being shown
(which is related to its opening income g0,i). (b) Time evolution of a
system comprising N = 50 agents (theaters), the state of each agent
at any time being the movie (colored according to the time of release)
that it is showing. At every time instant, a new movie is available
for release. The variable performance of these movies are indicated
in terms of the number of theaters where they open (NO ) and their
opening income (GO ).

discount factor employed by the agents to estimate the future
income of a movie based on its present income. For simplicity,
most results presented here are for βs = 0. We also show that
other choices of βs yield qualitatively similar results. Note
that the model does not assume any competition for audience
between theaters showing the same movie (i.e., the demand is
perfectly inelastic in terms of theaters) as the empirical data
suggests that the income per theater of a movie is relatively
independent of the number of theaters in which it opens.

A. Information available to agents

As agents are exposed to similar information about a movie
that is up for release, they can have a common perception
about its performance, measured as its predicted opening
income per theater, θt . This is chosen at each time step from a
distribution that is identical to that of gt

O . In fact, if the agents
had perfect foresight, this prediction would be identical to the
actual opening income of the movie gt

O , which would have
resulted in either a movie releasing in all theaters or not being
released in any theater. In general, however, predictions are
rarely accurate [30] and the results shown here are obtained
for the case when the predicted income θt is independent of the
realized income gt

O . We later show that the qualitative behavior
of the model is unchanged even when θt is correlated with gt

O .

B. Dynamics of the adoption process

At any time t , an agent i switches to the new movie if it
decides that this move will result in a sufficiently high net
gain zt (i) = θt − gt (i), measured as the difference between
the predicted income of the new movie up for release and the
income of the currently running movie. As θt is log-normally
distributed with the μ and σ of gO estimated from empirical
data (see Table I), we normalize zt (i) by the mean of the
distribution, viz. exp(μ + σ 2/2). The action of switching (or
not) is implemented by representing the probability of adopting
the new movie as a hyperbolic response function [31] for
positive net gain zt (i):

pi,t [zt (i)] =
{

zt (i)
C+zt (i)

for zt (i) � 0,

0 otherwise,
(1)

where parameter C is the cost of adoption, incurred due to
switching to a new movie. Such a functional form allows us
to model probabilistic decision making under uncertainty by
the agents. At the limit of extremely low adoption cost, i.e.,
C → 0, we recover a more deterministic switching behavior
from Eq. (1), with the probability of adoption behaving as
a step function as it changes from 0 to 1 around z = 0.
Equation (1) allows us to calculate the number of opening
theaters NO for every new movie [Fig. 2(b)]. To obtain the
opening income GO of the movie over all theaters that release
it, NO is multiplied with the opening income per theater that
is chosen from the log-normal distribution of gO referred
to earlier [Fig. 1(c)]. The subsequent decay of income per
theater follows the empirical scaling relation with exponent β

[20]. The total lifetime income of a movie GT is obtained by
aggregating this income for all theaters it is shown in, over
the entire lifespan (i.e., from the time it is released until it is
displaced from all theaters). The first few hundred time steps
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of each simulation realization were considered to be transients
and removed to avoid initial state dependent effects.

IV. RESULTS

A. Reproducing the bimodal distribution of movie income

As seen from Fig. 3, the system of N independent agents
self-organize in the limit of low C to generate a bimodal
distribution in their collective response. A new movie is either
adopted by a majority [corresponding to the upper mode of
the NO distribution shown in Fig. 3(a)] or a small fraction
[lower mode] of the total number of theaters. This translates
into bimodal distributions in the opening income GO and total
lifetime income GT [Figs. 3(b) and 3(c)], which qualitatively
resemble the corresponding empirically obtained distributions
(Fig. 1). To emphasize that bimodality in total income GT is
a consequence of the bimodal nature of the opening income,
we show GT as a function of the lifetime T in Fig. 3(d). We
observe a bifurcation in GT at higher values of T , indicating
that movies having the same lifetime can have very different
total income, a feature that is seen in empirical data (Figs. 4(a)
and 4(b), see also Ref. [32]). Thus, our results suggest that
the nature of box-office income distributions for movies can
be understood as an outcome of the bimodal character of the
distribution for the number of theaters that release a movie
coupled with the unimodal log-normal distribution for the
income per theater.

A verification of our model results with empirical data is
provided by a comparison of the corresponding distributions
of the lifetime of movies, i.e., the duration of their run in
theaters. Figures 4(c) and 4(d) show that the two distributions
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FIG. 4. (a) Total lifetime income GT of movies released during
2000–2008 shown as a function of the number of weeks T that
they were shown in theaters. (b) The average total gross 〈GT 〉
corresponding to each value of T . At large values of T , we observe
a divergence corresponding to a separation of the movies into two
classes. (c) Complementary cumulative distribution of the lifetime T

of movies, i.e., the duration of their run in theaters, for movies released
during 2000–2012. (d) The corresponding distribution generated by
the model system for N = 3000 agents (theaters), cost of adoption
C = 1, and subjective discount factor βs = −0.6. Note that the shape
of the distribution obtained from the model can be varied to an extent
by changing the parameters C (that shifts the distribution along the
horizontal axis) and βs (which alters the slope).

are qualitatively similar. The shape of the lifetime distribution
for the model can be varied to an extent by changing the cost
of adoption C and the subjective discount factor βs .

B. Transition to unimodality with increasing adoption cost

As the cost of adoption C is increased, the two modes
approach each other until, at a large enough value of C,
a transition to unimodal distribution for the quantities is
observed [Figs. 3(a)–3(c)]. With increasing C, theaters are
less likely to switch to a new movie, so that the time interval
between two consecutive movie releases at a theater becomes
extremely long. This weakens temporal correlations between
the performance of movies being shown and that expected
from new movies up for release. Thus, the decision to release
each new movie eventually becomes an independent stochastic
event described by a unimodal distribution.

C. Robustness of bimodality

For most simulations, we have chosen N = 3000, which
accords with the maximum number of theaters in the empirical
data. However, to verify that our results are not sensitively
system-size dependent, we have checked that qualitatively
similar behavior is observed for N up to 106 (Fig. 5).

While for most results reported here the subjective discount
factor βs = 0, we have verified that the results are qualitatively
unchanged if βs has a value different from 0. Figure 6
shows that even if βs = −1, a transition from unimodality
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FIG. 5. Robustness of the model results with respect to variation
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The results are obtained by simulating the system with cost of adop-
tion C = 10−4 for 500 iterations and averaging over 60 realizations.
The bimodal nature of the distributions of (a) the number of opening
theaters NO and (b) opening income GO of movies is evident.

to bimodality occurs as seen earlier for βs = 0, when the cost
of adoption C is decreased.

The empirical data shows that the income per theater of all
movies decay with time having an approximately power-law
form gt ∼ gOtβ (Fig. 7). The value of the exponent β ≈ −1
on average (corresponding to the broken line in Fig. 7), which
governs how the income per theater changes over time. This
motivated our choice of β = −1 in the basic model. Instead of
all movies having exactly identical form of decay in the time
evolution of their income per theater as in the basic model,
we can consider that different movies are characterized by
different values of the exponent β. In particular, we choose the
values of β from a distribution that approximates the empirical
distribution of β shown in Fig. 1(d, inset). Figure 8 shows
that the results of the simulations of this variant model are
qualitatively similar to that of the basic model, including the
transition from unimodality to bimodality.

We have also verified that considering income aggregated
over successive periods (instead of only the opening income)
do not qualitatively change the results reported here. The
model also shows very similar behavior if, instead of Eq. (1),
we use other more complicated functional forms for the
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FIG. 7. The time evolution of the income per theater g of four
movies that were released in theaters at various times during the
period investigated here. The decay of gt with t approximately fits a
power-law form. The broken line corresponding to gt ∼ t−1 is shown
for visual reference.
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approximately as the corresponding empirical distribution shown
in Fig. 1(d, inset). Transition between bimodality and unimodality
with parametric variation of the cost of adoption C is shown for the
distributions of (a) the number of opening theaters NO , (b) opening
income GO , and (c) total lifetime income GT of movies. The results
are obtained by simulating a system with N = 3000 agents for 104

iterations and averaging over 60 realizations. The distribution of β

for different movies for a particular simulation realization is shown in
(d). The values are generated from a normal distribution with the same
mean (μ = −1) and standard deviation (σ = 0.33) as the empirical
distribution of β.
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a different functional form for the adoption rule, viz., having a
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with parametric variation of the cost of adoption C is shown for
the distributions of (a) the number of opening theaters NO and (b)
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are obtained by simulating a system with N = 3000 agents for 104

iterations and averaging over 60 realizations.

which has a sigmoidal profile (Fig. 9). In addition, we have
considered a variant model where the agents can make perfect
prediction about the performance of a movie up for release
so that θt = gt

O . Results are qualitatively similar to the basic
model and bimodality is see over a range of values of the cost
parameter C(Fig. 10).

D. Analytical explanation of the emergence of bimodality

To understand the appearance of multiple peaks in the
distribution of collective response in the limit of low cost of
adoption, we observe that the system dynamics is characterized
by two competing effects: (a) the stochastic decision process
of the individual theaters tend to increasingly decorrelate
their states, while (b) the occasional appearance of movies
having high θ , that are perceived by the agents to be potential
box-office successes, induces high level of coordination in
response as a majority of agents switches to a common
state. This phenomenon of gradual divergence in agent states
interrupted by sporadic “reset” events that largely synchronize
the system allows us to use the following simplification of

0

5

10

10
−3

10
−1

10
1
0

2

4

log N
0C

P
 (

 lo
g 

N
0 )

0

10

20

10
−3

10
−1

10
1
0

1

log G
0C

P
 (

 lo
g 

G
0 )

(a) (b)

FIG. 10. Robustness of the model results when the agents
(theaters) can exactly predict their income from a new movie up for
release, i.e., θ = gO . The distributions of (a) the number of opening
theaters NO and (b) opening income GO are unimodal when the cost
of adoption C is low, as in this situation, a movie will either be adopted
by all theaters or none at all. With increasing C, a distinct bimodal
nature emerges in the distributions. Results are shown for N = 3000
agents for 104 iterations and averaged over 60 realizations.
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FIG. 11. Explaining the emergence of bimodal distribution in
the limit of small cost of adoption (C → 0). The appearance of
bimodality with parametric variation of the probability of adoption p

is shown for the distributions of (a) the number of opening theaters
NO and (b) opening income GO . As p → 1, the approximation to
the C → 0 limit becomes more accurate. The results are obtained
by averaging over 60 realizations with N = 3000 agents. The pair of
thick lines in each figure indicate the theoretically predicted modes
of the distributions (see text). (c–e) The variations of opening income
GO and total lifetime income GT of a movie as functions of the
perceived performance θ and the actual performance (i.e., income
per theater) gO shows that neither θ nor gO completely determine
GO or GT (p = 0.9995).

the model for an analytical explanation. As C → 0, we can
approximate Eq. (1) by pi,t = p for zt (i) � 0, else pi,t = 0,
which becomes accurate in the limit p → 1. Thus, when a
reset event occurs, the decision of each agent is a Bernoulli
trial with probability p, so that the number of theaters that
adopt the new movie follows a binomial distribution with
mean Np and variance Np(1 − p). In the limit p → 1 the
variance becomes negligibly small and the distribution can be
effectively replaced by its mean. This will correspond to a peak
at Nu

O = Np, i.e., the higher mode.
A movie that immediately follows a reset event can result in

different responses from the agents depending on the value of
θ associated with it. If this is larger than gt of all theaters,
it is yet another reset event, the response to which is the
same as above. However, if θ has a lower value that is
nevertheless large enough to cause those theaters [�N (1 − p)]
that had not switched in the previous reset event to adopt
the new movie with probability p, we obtain another peak
at Nl

O = Np(1 − p). This corresponds to the lower mode of
the distribution. As seen from Fig. 11(a), the two peaks of
NO distribution are accurately reproduced by Nu

O and Nl
O .

In principle, the above argument can be extended to show
that a series of peaks at successively smaller values of NO

can exist at Np(1 − p)2, Np(1 − p)3, etc., but these will
not be observed for the system size we consider here. The
bimodal log-normal distribution of opening income GO results
from a convolution of the multipeaked distribution for NO

with the log-normal distribution for gO (having parameters
μ,σ ). The two modes of this distribution are calculated as
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G
u,l
O = exp(μ + log N

u,l
O ), which matches remarkably well

with the numerical simulations of the model [Fig. 11(b)].
While the individual behavior of agents are obviously de-

pendent on the intrinsic properties (such as θ ) associated with
specific stimuli, the collective behavior of the system cannot be
reduced to a simple threshold-like response to external signals.
Figure 11(c) shows that the opening income of different
movies, which are segregated into two distinct clusters, are
not simply determined by their perceived performance θ , as
one can find movies belonging to either cluster for any value of
this quantity. Given that θ is only a prediction of the opening
performance of a movie by the agents, and it need not coincide
with reality, one may argue that the actual performance, i.e.,
the opening income per theater gO , will be the key factor
determining the aggregate income of the movie. However,
Figs. 11(d) and 11(e) show that neither the opening income nor
the total lifetime income (both of which show clear separation
into two clusters) can be explained as a simple function of the
actual opening performance of the movie at a theater.

V. DISCUSSION

Our results explain box-office success as an outcome of
competition between movies, where a new movie seeks to
open at as many theaters as possible by displacing the older
ones. Using an ecological analogy, a movie with high perceived
performance invades and occupies a large number of niches
until it is displaced later by a strong competitor. Thus, highly
successful movies rarely coexist. This also implies that the
response to a movie can be very different depending on
whether or not it is released close to a reset event, i.e.,
the appearance of a highly successful movie (“blockbuster”).
Therefore, our model provides explicit theoretical support to
popular wisdom that timing the release of a movie correctly is
a key determinant of its success at the box office [33].

We also note that the knowledge of the time elapsed from the
last blockbuster may not by itself lead to a successful strategy
for optimally timing the release of a movie. If the entry of a new
movie is delayed to increase the time interval from the previous
reset event so as to increase its chance of doing well at the box
office, a competing movie released before it may become a
“hit” and thereby prevent its success. Thus, there is a tradeoff
between waiting for as long as possible after the last successful
movie but not so long as to get beaten by a competitor. The
critical importance of the launch time holds not only for movies

but also for many other short life-cycle products such as music,
video games, etc., whose opening revenues very often decide
their eventual sales [34]. In fact, empirical data on movies show
that for the dominant majority, the highest gross-earning over
all theaters they are shown in occurs on the opening weekend,
followed by an exponential decay in income [20]. In extremely
few cases does a movie become more successful over time with
its income exhibiting an increasing trend, eventually reaching
a peak before again declining exponentially. To explain such
rare “sleeper hits” [e.g., the movie My Big Fat Greek Wedding
(2002) that achieved its highest gross around 20 weeks after
its release], one may need to consider how agents can directly
influence each other. This suggests that models for generating
bimodal distributions that incorporate explicit interactions
between agents such as in Ref. [26] could complement the
one presented here where an effective external field guides the
actions of the agents who otherwise do not communicate.

To conclude, we have shown that extreme variability in
response, characterized by a bimodal distribution, can arise
in a system even in the absence of explicit interactions
between its components. The observed inequality of outcomes
cannot be explained solely on the basis of variations in
the intrinsic quality of signals driving the system. For a
quantitative validation of the model we have used the explicit
example of movie box-office performance whose bimodal
distribution has been established empirically. The log-normal
nature of the distribution of income per theater suggests
that the underlying mechanism involves sequential stochastic
processes. Our analysis reveals that stochastic decisions on
the basis of comparing effects of the preceding choice and the
estimated impact of the upcoming one gives rise to a surprising
degree of coordination. The presence of bimodality in the
absence of explicit interactions in several social and biological
systems suggests other possible applications of the theoretical
approach presented here. Apart from bimodality, our model
shows that more general multimodal distributions are possible
in principle and empirical verification of this in natural and
social systems will be an exciting development.
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