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Abstract. Analysis of dynamical phenomena in financial markets have revealed the
existence of several features that appear to be invariant with respect to details of the
specific markets being considered. While some of these “stylized facts”, such as the
inverse cubic law distribution of price returns indeed seem to be universal, there is
less consensus about other phenomena. In particular, there has been a long-running
debate in the literature about whether the distributions of trading volume V�t and
the number of trades N�t occurring in a given time interval �t , are universal, and
whether the volume distribution is Levy-stable. In this article, we analyse data from
the National Stock Exchange of India, both daily and high frequency tick-by-tick,
to answer the above questions. We observe that it is difficult to fit the V�t and
N�t distributions for all stocks using the same theoretical curve, e.g., one having
a power-law form. Instead, we use the concept of the stability of a distribution under
temporal aggregation of data to show that both these distributions converge towards
a Gaussian when considered at a time-scale of �t D 10 days. This appears to rule
out the possibility that either of these distributions could be Levy-stable and at least
for the Indian market, the claim for universality of the volume distribution does not
hold.

1 Introduction

A financial market comprising a large number of interacting components, viz.,
agents involved in trading assets whose prices fluctuate with time as a result of
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the constant stream of external news and other information affecting the actions
of the traders, is a paradigmatic example of a complex system. However, despite
such inherent complexity, markets appear to exhibit several statistically regular fea-
tures which make them amenable to a rigorous analysis by techniques based on the
statistical mechanics of physical systems, a discipline that is often referred to as
econophysics [1–3]. Indeed, many of the empirical relations obtained by such anal-
ysis appear to be statistically invariant or universalwith respect to different markets,
periods of observations and the type of assets being considered. These stylized facts
of the market (as they are often referred to in the economic literature) include the
celebrated inverse cubic law for the distribution of price (or index) fluctuations as
measured by their logarithmic returns [4]. First observed in the developed markets
of advanced economies [5], it has later been reported also in emergingmarkets at all
stages of their development [6, 7]. Another robust feature characterizing financial
markets is volatility clustering, i.e., the occurrence of long-range temporal corre-
lations in the magnitude of price fluctuations [8]. Thus, periods marked by large
fluctuations (i.e., high volatility) often tend to be persistent, as is seen across many
different markets.
There have also been claims that other quantifiers of market activity, such as

the distributions for order size q (i.e., the number of shares traded in a particular
transaction), trading volume Vt (i.e., the total number of shares traded in a given
period) and the number of trades Nt over a specific time interval, possess universal
forms [9, 10]. However, the evidence for the invariance of these distributions seems
less unequivocal. Note that the three distributions are not completely independent of
each other, as the volume Vt;�t over a particular time interval Œt; t C�t� is related
to the number of trades Nt;�t and the sizes of each trade qi that takes place in the
interval as

Vt;�t D
Nt;�tX
iD1

qi : (1)

For US markets, the Nt cumulative distribution appears to follow an approximately
“inverse cubic” form, i.e., P.Nt > x/ � x�ˇ with ˇ ' 3:4 [9]. Both the trade
size and volume cumulative distributions have been claimed to be Levy-stable with
exponents �q ' 1:53 (the so-called “inverse half-cubic law”) and �V ' 1:7, respec-
tively [11]. However, not only has the universality of these exponents been chal-
lenged, even the power-law form of the distributions appear to be dependent on
the type of stock and the market being considered. For example, an early study of
the volume distribution of several stocks in the London Stock Exchange (LSE) did
not show any evidence of power-law scaling [12], but it was pointed out later that
this depended on whether one was considering the downstairs or upstairs market in
LSE. As splitting a large order into several smaller parts is regularly practised in the
downstairs market (but rare in the upstairs market) it is probably not surprising that
long tails can only be seen when the trades in the upstairs market are included in
the volume data [13]. A re-analysis of the US stock data complicated the issue fur-
ther by showing that the cumulative distribution of trading volume over 15-minute
intervals has a tail exponent of around 2.2, i.e., outside the Levy-stable regime [14].
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More recent work on emerging markets such as the Korean [15] and Chinese [16]
exchanges have also revealed significant deviations from the Levy-stable power-law
tails of volume distribution reported for the developed markets of US, London and
Paris [17] (see also [18, 19]). There have also been related studies that try to fit the
entire distribution of trading volume rather than focusing only on the tail, e.g., by
using the q-Gamma distribution [20, 21].
The reason that the universality (or otherwise) of the distributions for q, Vt and

Nt is of interest to the econophysics community is because this may provide in-
sights towards understanding the statistical relationship between price returns and
market activity. It is frequently said that it takes volume to move prices, implying
that the dynamics of price fluctuations (measured by the log-returns) can be un-
derstood in terms of the distributions of trade size, number of trades and trading
volume. Indeed, the price impact function, that measures how the volume of shares
traded affects the price movement, tries to quantify such a relation. By assuming
a square-root functional form for the impact (based on empirical analysis of US
markets), Gabaix et al. [22] have developed a theory of market movements where
the long-tailed return distribution arises as a consequence of the long-tailed volume
distribution. The square-root relation between price and volume leads to the result
that the price return distribution exponent (' 3) is twice the volume distribution ex-
ponent (� 1.5), thereby connecting the inverse cubic and half-cubic laws. However,
we have recently shown that the occurrence of power-law tailed distributions for
price and volume with their characteristic exponents do not critically depend on the
assumption of a square-root price impact function [23], nor does the existence of the
inverse cubic law for returns necessarily imply an exponent of around 3=2, or even
a power-law nature, for the distribution of trading volume [24]1.
It is in this context that we report our analysis of the data for market activity

in the National Stock Exchange (NSE) of India in this article. As this market has
already been shown to exhibit the inverse cubic law of returns [6, 7], the absence of
a Levy-stable nature for the volume distribution would appear to argue against the
theoretical work relating the return and volume distribution exponents on the basis
of a square-root form for the price impact function. While our earlier work on the
trade and volume distributions in this market had also shown the absence of a clear
power-law functional form for either [25], here we use an alternative procedure to
show that the two distributions do not have the same behavior as that reported for
the developedmarkets. In particular, we use the concept of stability of a distribution
under temporal aggregation of data to show that both the quantities converge to
a Gaussian distribution at a time-scale of �t D 10 days. This evidence against the
Levy-stable nature of the volume distribution (even though the return distribution
follows the inverse cubic law) suggests that the theoretical framework of [23, 24]
can better explain the market dynamics than arguments based on square-root price
impact function whose predictions about the relations between return and volume is
not matched by the empirical data. It is of course possible that the deviation from the

1 In fact, our numerical results show that even a log-normal distribution of trading volume can
result in a power-law tailed return distribution.
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Levy-stable nature for volume and trade size distributions is a result of the emerging
nature of the market which is yet to evolve into a completely developed form. Just as
the network representing the relations between price movements of different stocks
(measured by the cross-correlation between returns) has been suggested to change
over time from being homogeneous to one having a clustered organization as the
market matures [26], the volume distribution could, in principle, become more and
more heavy tailed as market activity increases, eventually becoming Levy-stable at
a certain stage of market development.

2 The Indian Financial Market

There are 23 different stock markets in India. The largest of these is the National
Stock Exchange (NSE) which accounted for more than half of the entire combined
turnover for all Indian financial markets in 2003–04 [27], although its market cap-
italization was comparable to that of the second largest market, the Bombay Stock
Exchange. The NSE is considerably younger than most other Indianmarkets, having
commenced operations in the capital (equities) market from Nov 1994. However, by
as early as 2004 it had become the world’s third largest stock exchange (after NAS-
DAQ and NYSE) in terms of transactions [27]. It is thus an excellent source of data
for studying the trading frequency and volume statistics in an emerging market.

Description of the data set. The low-frequency data that we analyze consists of
the daily volume and number of trades for the entire NSE market, as well as, for
individual stocks, available from the exchange web-site [28]. The period we have
considered begins at March 1994 (for the entire market) or the date from which
data for a particular stock has been recorded in the NSE database (for individual
stocks) and ends at May 2010. For the market data, this corresponds to 3910working
days. We also consider high-frequency tick-by-tick data containing information of
all transactions carried out in the NSE between Jan 1, 2003 and Mar 31, 2004.
This information includes the date and time of trade, the price of the stock during
transaction and the number of shares traded. This database is available in the form
of CDs published by NSE.

3 Results

To investigate the nature of the volume and number of trades distribution in detail,
we first consider the high-frequency tick-by-tick data. To calculate these quanti-
ties we use a time-interval �t D 5 minutes and normalize the resulting variables
by subtracting the mean and dividing by their standard deviation. The resulting
distributions of normalized trading volume v D Vt;�t�hV ip

hV 2i�hV i2 and number of trades

n D Nt;�t�hN ip
hN 2i�hN i2 , where h: : :i represents time average, for all stocks that are traded
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Fig. 1 Cumulative distribution of (a) normalized trading volume and (b) normalized number of
trades in �t D 5-minute time intervals for all stocks traded in NSE in December 2003. The
cumulative standard normal distribution, i.e., N .0; 1/, is shown for comparison (broken line)

in NSE are shown in Fig. 1. Direct comparison with the standard normal distribu-
tion N .0; 1/ shows that both of these quantities are distributed differently from
a Gaussian.
As the exact nature of the distributions for the entire market is difficult to charac-

terize, we now consider the volume and number of trades data for individual stocks.
Fig. 2 shows the corresponding distributions for a particular stock which appear to
possess tails described by a power-law decay. Using the Clauset-Shalizi-Newman
(CSN) estimator based on maximum likelihood and Kolmogorov-Smirnov statis-
tic [29], we obtain exponents of �2:87 and �3:11 for the volume and number of
trades respectively, both of which lie outside the Levy-stable regime. However, the
values of these exponents differ from stock to stock. More importantly, the power-
law nature of the decay itself is not entirely representative of the ensemble of stocks.
The deviation of the distributions from a power-law is quite apparent visually for
several frequently traded stocks (e.g., the volume distribution of SBI).
As the best-fit distributions for the high-frequency volume and number of trades

statistics of the NSE do not appear to have a form that is common to all stocks, we
cannot readily use this data to decide whether these distributions are Levy-stable
or not. Instead, we shall use an indirect approach based on the idea of the stability
of a distribution under time-aggregation of the corresponding random variables2.
A distribution is said to be stable, when a linear combination of random variables
independently chosen from the distribution has the same distribution, up to a trans-

2 It should be noted here that the convergence to a stable form, which follows from the Central
Limit Theorem, is strictly valid only when the variables being aggregated are statistically indepen-
dent. However, if correlations do exist between the variables, then provided that these correlations
decay sufficiently fast, the theorem still holds and the convergence result can be applied. We have
explicitly verified that the auto-correlation function for trading volume shows an exponential decay
with time-lag.
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Fig. 2 Cumulative distribution of (a) volume and (b) number of trades in �t D 5-minute time
intervals for a particular stock (Colgate) traded at NSE between Jan 2003 and March 2004

lation in the mean and a scale factor in the variance. Thus, a sum of independent,
identically distributed random variables always converge to a stable distribution. In
terms of symbols, if x1 and x2 are random variables chosen from a stable distribu-
tion Pstable.x/, then for any pair of positive constants a; b, the composite variable
a x1 C bx2 has the same distribution, but possibly with a different mean and vari-
ance. If the mean is identical to the original distribution, then it is said to be strictly
stable (or stable in the narrow sense) [30]. This is a generalization of the classical
Central Limit Theorem, according to which, a variable generated by adding a large
number of random numbers from arbitrary distributions having finite variance will
eventually be seen to follow a Gaussian distribution. Removing the restriction of
finite variance results in other possible stable distributions, including the Cauchy
and Levy distributions. In particular, a cumulative probability distribution having
a power-law tail exponent ˛ > �2 has an unbounded second moment. It is, thus,
Levy-stable and will not converge to a Gaussian even if we consider an aggregate
quantity generated by summing together many random variables generated using
such a distribution. Here, we shall use the fact that if the volume or the number of
trades, when aggregated over long time periods, converges to a Gaussian distribu-
tion, then the original distribution of Vt;�t or Nt;�t (respectively) could not have
been Levy-stable.
Fig. 3 shows the time-series of daily trading volume and number of trades for all

stocks traded at NSE. To address the non-stationary nature of the variation in both
the quantities, we calculate the mean (�t ) and standard deviation (�t ) over a moving
window. The data is then de-trended by subtracting the mean and normalized by
dividing by the standard deviation, i.e., xt;daily D .Xt;daily � �t /=�t , where Xt;daily

can represent either the daily volume or number of trades. The window used in
Fig. 3 has a width of 10 days but small variations in the window size do not critically
affect the results. One can also check whether the fluctuations from the mean values
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Fig. 3 The time-series of (a) the total volume of all stocks traded Vt;daily and (b) the total number of
trades in the market Nt;daily (dots), shown for the interval T D 1000–1500 days in the daily NSE
data. The continuous curves represent the moving average(�t ) of the corresponding quantities
calculated over a moving window (having a width of 10 days and shifted in steps of 1 day). The
standard deviation (�t ) calculated over the window is used to show the range of fluctuations (dotted
lines) in the quantities Vt;daily and Nt;daily expected from a Gaussian distribution (i.e., �˙ 3� )

observed in these quantities agree with those expected from a Gaussian distribution
by verifying if most data points lie within the bounds representing three standard
deviations above and below the mean (which account for about 99:7% of all data
points if they are normally distributed). As seen from Fig. 3, this indeed appears to
be the case.
To obtain a more reliable comparison between the empirical and normal distri-

butions, we next use a graphical method, specifically the Quantile-Quantile or Q-Q
plots [31], for comparing the de-trended, normalized volume and number of trades
data with the standard normal distribution. The abscissa and ordinate of any point
in such a Q-Q plot correspond to the quantiles (i.e., points taken at regular intervals
from the cumulative distribution function) of the theoretical and empirical distribu-
tions being compared, respectively. Linearity of the resulting curve implies that the
empirical distribution is indeed similar to the theoretical distribution, in this case,
the standard normal distribution. While the daily data (Fig. 4a,d) shows deviation
from linearity at the ends, the agreement between the two distributions become bet-
ter when the data is aggregated over several days. Indeed, when we consider the
volume and number of trades over a 10-day period, the corresponding distributions
appear to match a normal distribution fairly well as indicated by the linearity of the
Q-Q plots (Fig. 4c,f). This is also shown by direct graphical comparison of the dis-
tributions of these quantities aggregated over 10 days with the normal distribution
shown in Fig. 5.
For a more rigorous determination of the nature of the distributions for the tem-

porally aggregated volume and number of trades data, we turn to statistical tests for
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Fig. 4 Q-Q plots comparing the distributions of normalized and de-trended volume (a-c) and num-
ber of trades (d-f) for the entire market to a standard normal distribution at different scales of tem-
poral aggregation. The aggregation is over 1 day for (a,d), 5 days for (b,e) and 10 days for (c,f). The
broken line used for evaluating linearity of the plots is obtained by extrapolating the line joining
the the first and third quartiles of each distribution. The linear nature of the plots for both volume
and number of trades aggregated over 10 days suggest that the quantities converge to a Gaussian
distribution at this level of temporal aggregation
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Fig. 5 Probability distribution of the de-trended and normalized trading volume (a) and number
of trades (b) for all stocks in NSE aggregated over 10 days. For comparison, the standard normal
distribution is shown (broken curve)

normality. Such tests go beyond simple regression-based best-fit of an empirical dis-
tribution by a theoretical curve and provides measures for the goodness of fit of the
theoretical distribution to the data. Here, we use the Lilliefors test and the Anderson–



Are Trading Volume and Frequency Distributions Universal? 25

Darling test for testing whether the distribution of vt;daily and nt;daily approaches the
Gaussian form as the data aggregation is done over longer and longer time-scales.
For both these tests the null hypothesis (H0) considered is that the empirical data
is described by a Gaussian distribution. The Lilliefors test begins by estimating the
mean and standard deviation of the underlying distribution from the data. It then
calculates the test statistic, which is the maximum deviation of the empirical distri-
bution from a normal distribution with the estimated mean and standard deviation.
The null hypothesis is rejected when the maximum deviation becomes statistically
significant. For all results reported here, we have fixed the level of significance at
5%. The p-value for the test indicates the probability of obtaining the observed
maximum deviation assuming H0 to be true, and a small value indicates that it is
very unlikely that the empirical data follows a Gaussian distribution. The Anderson–
Darling test is a non-parametric method for determining whether the empirical data
is generated by a specific probability distribution and is considered to be one of the
most powerful statistical tests for identifying deviations from normality [32]. It esti-
mates the value of a test statistic, A2, which is then compared with standard critical
values of the theoretical distribution against which the empirical data is being tested.
For example, the null hypothesis that a Gaussian distribution explains the empirical
data can be rejected if the estimated test statistic A2 exceeds 0:751.
The results of both statistical tests for the volume and number of trades data

for the entire market is shown in Table 1. While the daily data clearly does not fit
a Gaussian distribution, when aggregated over 10 days the trading volume does ap-
pear to be normally distributed, as the null hypothesis cannot be rejected for either
of the tests we have used. Similarly, as the temporal aggregation is increased to 10
days for the number of trades data, the resulting distribution does appear to con-
verge to a Gaussian form according to both the tests. As the time-period over which
the daily data has been collected is relatively large (� 16 years) we also checked
whether the convergence to a Gaussian with increasing temporal aggregation also
holds for subsets of the entire data-set. We have verified that even when the data is
split into three approximately equal parts, with each sub-set corresponding to a pe-
riod of about 5 years, the time-aggregated volume and number of trades distributions
approach a Gaussian distribution according to the statistical tests.

Table 1 Normality tests for trading volume and number of trades for the entire NSE market at
different scales of temporal aggregation

Temporal Anderson–Darling test Lilliefors test
Aggregation Reject H0? Statistic (A2) Reject H0? p-value

1 day Y 26.631 Y 0
Volume 5 day Y 2.1738 Y 0.0097

10 day N 0.2110 N 0.7100
1 day Y 28.694 Y 0

Trades 5 day Y 1.4519 Y 0.0050
10 day N 0.3764 N 0.7950



26 V.S. Vijayaraghavan, S. Sinha

Thus far we have been considering together all stocks that are traded in the NSE.
In order to verify if the convergence to Gaussian distribution is also seen when
the trading volume data for individual stocks is aggregated over longer periods, we
shall now look at a few representative stocks from different market sectors. The
cumulative distributions of the volume traded over the course of a single day for
two stocks (Colgate and SBIN) are shown in Fig. 6. Both appear approximately
linear in a semi-logarithmic graph, suggesting that the distribution may be fit by
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Fig. 6 Cumulative distribution of the total daily volume for two representative stocks: (a) Colgate
and (b) SBIN, during the period March 1994 to May 2010. Note that the ordinate has a logarithmic
scale. Thus, the linear nature of the distributions suggest that they are approximately exponentially
decaying
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Fig. 7 Probability distribution of the de-trended and normalized trading volume aggregated over
10 days for two stocks: (a) Colgate and (b) SBIN. For comparison, the standard normal distribution
is shown (broken curve). The time-series was de-trended by subtracting the mean calculated over
a moving window (having a width 10 days and shifted in steps of 1 day) and normalized by dividing
with the standard deviation calculated over the same window
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an exponential form. However, when we look at the volume traded over 10 days,
the corresponding de-trended and normalized distributions appear to be reasonably
well-fit by the standard normal distribution (Fig. 7).

Table 2 Lilliefors test for normality of trading volume distribution for representative individual
stocks in NSE

Stock 5-day aggregate 10-day aggregate
Reject H0? p-value Reject H0? p-value

ABANLLOYD Y 0.0 N 0.127
ACC Y 0.0 N 0.727
COLGATE Y 0.0 N 0.508
DABUR Y 0.0 Y 0.002
DRREDDY Y 0.001 N 0.002
GAIL Y 0.0 Y 0.017
GLAXO Y 0.0 Y 0.010
GODREJIND Y 0.0 N 0.636
HCLTECH Y 0.0 Y 0.014
HDFCBANK Y 0.0 N 0.899
ICICIBANK Y 0.0 N 0.558
INFOSYSTCH Y 0.0 Y 0.0
IOC Y 0.0 Y 0.0
RELCAPITAL Y 0.0 Y 0.029
RELIANCE Y 0.0 Y 0.0
SATYAMCOMP Y 0.003 N 0.104
SBIN Y 0.0 N 0.502
TCS Y 0.036 N 0.787

Table 3 Anderson–Darling test for normality of trading volume distribution for representative
individual stocks in NSE

Stock 5-day aggregate 10-day aggregate
RejectH0? Statistic (A2) Reject H0? Statistic (A2)

ABANLLOYD Y 6.696 N 0.546
ACC Y 2.199 N 0.326
COLGATE Y 6.691 N 0.229
DABUR Y 7.013 Y 0.876
DRREDDY Y 2.9960 N 0.389
GAIL Y 4.084 Y 1.212
GLAXO Y 6.833 Y 1.281
GODREJIND Y 4.757 N 0.270
HCLTECH Y 1.891 Y 1.099
HDFCBANK Y 3.954 N 0.298
ICICIBANK Y 3.504 N 0.611
IOC Y 3.585 N 0.491
RELCAPITAL Y 4.135 Y 1.113
RELIANCE Y 7.806 Y 14.07
SATYAMCOMP Y 2.001 N 0.521
SBIN Y 2.537 N 0.339
TCS Y 1.300 N 0.439
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As in the case of the data for the entire market, we have carried out the Lil-
liefors test (Table 2) and the Anderson–Darling test (Table 3) for the volume data
at different levels of aggregation. As is seen from the test results, while the volume
traded over 5 days cannot be described by a Gaussian distribution for any of the
stocks, when we consider the volume traded over 10 days, the Gaussian distribution
appears to be a reasonable fit for many of the stocks considered.
Thus, our results indicate that, at least for the Indian market, the proposed invari-

ant forms for the volume and number of trade distributions that have been observed
in the developed markets of USA, London and Paris [17] do not hold true. In partic-
ular, the trading volume distribution does not follow a Levy-stable form. It has been
suggested that, in the developed markets, the Levy-stability of the Vt distribution is
a consequence of the Levy-stable trade size (q) distribution. Thus, a reason for the
deviation of the volume distribution from Levy-stability could be inferred by look-
ing at Eq. (1). If the distribution of qi is Levy-stable but not that of Nt , the heavier
tail of the former distribution would appear to dominate the nature of the tail of the
Vt distribution. Presumably, this is what is happening in developed markets where
we note that �q and �V are almost same (within error bars) [11]. However, in the
Indian market, the distribution of qi , even though it appears to fit a power-law, is
clearly outside the Levy-stable regime. For instance, the exponent obtained by the
CSN estimator for all trades carried out in December 2003 at NSE is �q ' 2:63
(Fig. 8). Thus, in the Indian financial market, the nature of the distribution for Vt

may be dominated by that of Nt instead of the q distribution. Indeed, our earlier
analysis had shown that there is a strong (almost linear) correlation between Nt and
Vt [25], which would appear to support this hypothesis. It suggests that, for emerg-
ing markets where the trade size distribution has not yet become Levy-stable, the
volume distribution would closely follow the distribution of the number of trades
which is outside the Levy-stable region (as seen also for developed markets).
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4 Conclusions

In this article, we have examined the statistical properties of the distributions of the
trading volume and the number of trades in the National Stock Exchange, the largest
Indian financial market. Using both low-frequency (daily) and high-frequency (tick-
by-tick) data, we have tried to characterize the nature of these distributions. In par-
ticular, we have sought to establish whether or not the distributions are Levy-stable
by examining their stability under temporal aggregation. Our results show that al-
though from the tick-by-tick or daily data it is difficult to exactly characterize the
nature of the distribution of volume and number of trades, when we consider these
quantities aggregated over a period of several days (e.g., 10 days), the resulting dis-
tribution approaches a Gaussian form. This has been verified both graphically using
Q-Q plots and plots of the probability distribution functions, as well as, with statisti-
cal tests of normality, such as the Lilliefors test and the Anderson–Darling test. This
suggests that the distributions of volume and number of trades are not Levy-stable,
as otherwise they could not have converged to a Gaussian distribution when aggre-
gated over a long period. Our results are significant in the context of the ongoing
debate about the universality of the nature of the volume and number of trades dis-
tributions. Unlike the Levy-stable nature of the volume and trade size distributions
seen in developed markets, the emerging financial market of India appears to show
a very different form for these distributions, thereby undermining the claim for their
universality.
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