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Agenda 

•  Introduce Web monetization 
–  Search and Display Advertisement 

•  Auctions 
–  Participation in Auctions 
–  Pricing 

•  Exchanges 
–  Ranking, response prediction 

•  “Next gen” monetization 
–  Social Targeting 
–  Chunked-rewards 
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A Free Web! 

•  The WWW comes free for users 
–  Browse, search, communicate, chat, socialize, all 

free! 

•  Web is funded by advertisers! 
–  To a large extent (Yahoo!, Google, Facebook, Bing) 

How does online advertising work ? 
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Paid Search 
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Contextual Ads 
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Display Ad: Impression 
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Display Ad: Click 
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Display Ad: Conversion 
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Display Ad: Publisher targeting 
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Display Ad: Location targeting 
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Display Ads is big business 
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Massive scale 

12 



Yahoo! Labs, Bangalore	


Quick Recap: Types of ads 

•  Textual (3 – 4 lines of text) 
–  Paid Search (e.g.,  

•  Appear on Search results page 
•  Selected based on search keywords 
•  Advertiser pays per click 

–  Contextual Ads 
•  Appear on web-pages 
•  Keywords constitute content of the page 
•  Advertiser pays per click 

•  Graphical (image, video, animation) 
–  Appear on web-pages 
–  Targeting criteria specified by the advertiser and optimized by the Ad-

network 
–  Advertiser chooses between paying per impression, per-click or per-

conversion 
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4 Players in Display Ads 

•  Advertiser: Wants high RoI (e.g. cost per lead or conversion)  
–  Demand: Buyer of “ad impressions” from publishers 
–  Targets users (e.g. Males, from California) and pages (e.g. sports) 
–  May require guaranteed impressions (e.g. 10 Million in 30 days) 
–  Or competes in an on-line auction to win impressions 
–  Might specify frequency caps (e.g. < 10/user/day) 
–  Might specify budget caps (e.g. < $200 daily) 
–  Bidding Examples 

•  Lipstick maker: $2 CPM on 30-40 year old females, who visit fashion pages 
•  Insurance seller: $2 CPA on 40-50 year old males, who visit finance pages 

•  Publisher: Wants revenue to be maximized, but not at the cost of user 
dissatisfaction 
–  Supply: Seller of “ad impressions” to advertisers 
–  Specify types of ads that can be placed (e.g. only travel related ads) 
–  Might specify desired payment type of the ads 
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4 Players – Contd. 

•  User: Wants useful ads 
–  Browses 
– Can specify interests / hobbies / likes 
–  Views, clicks, converts, buys 

•  Ad-Network / Exchange (e.g. Y!, Google, MSN): 
Wants to maximize revenue 
–  The “matchmaker” 
– Operates infrastructure for match-making 
–  Takes a cut for each payment from advertiser to 

publisher 
–  In many cases, dual role as publisher (like Yahoo!) 
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How it all works ? 
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Ad Selection: Simple example 

•  Advertiser 1: Bids $2 CPM on 30-40 year, males, from Karnataka 
•  Advertiser 2: Bids $30 CPC on 25-35 year old males from India 
•  Advertiser 3: Bids $90 CPA on males 
•  Advertiser 4: Bids $3 CPM on females from Karnataka 

•  A 30 year old male from Karnataka (user u) browses (page p), causing 
an opportunity 

•  Which ad will he end up viewing? 
–  Match based on targeting (Ads 1, 2 and 3 are eligible) 
–  Compute expected revenue from each 

•  Ad 1 = $0.002 
•  Ad 2 = $30 *                          = $0.003, (if                            = 0.001) 
•  Ad 3 = $90 *                          = $0.0009, (if                           = 0.0001) 

–  Auction conducted on expected revenue: highest one wins 
–  Ad 2 wins and gets shown to the user 
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Ad Selection: Prediction 

•  True                   ,                   are unknown 
•  Need to predict 

– Say                    for Ad 2 = 0.0006 (true = 0.001), 
then Ad 1 wins       Loss of $0.001 

– Say                   for Ad 3 = 0.0004 (true = 0.0001), 
then Ad 3 wins       loss of $0.0021 

•  In-accurate prediction causes ‘wrong’ ad to be 
shown  

•  Accurate prediction is crucial to revenue 
•  Ranking problem versus absolute prediction 
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Digression 

•  Determine eligible ads “Matching Problem” 
– Satisfy targeting criteria 
– Other constrains 

•  Budget remaining 
•  Frequency caps per user / day 

•  Auction rules 
– Allocation rule 
– Payment rule 

•  All this needs to happen in tens of 
milliseconds 
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The Open Exchange 

Transparency and value	


Has ad 
impression to 

sell --	

AUCTIONS	


CPA $2.00 x	

25% chance 

Bids $0.50	


Bids $0.75 via Network…	


… which becomes 
$0.45 bid	


Bids $0.65—WINS!	


AdSense	


Ad.com	


Bids $0.60	
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A bit about data 

•  Users ~ tens of millions 
•  Pages ~ hundreds of millions 
•  Ads ~ hundreds of thousands 
•  Responses are of three types 

–  Click, Post-click conversion, Post-view conversion 
–  Each needs a separate model 

•  Billions of <user, page, ad> records per day along with 
response observed 

•  Privacy policy limits amount of historical data to be 
used in prediction 

•  Response rates are non-stationary 
–  Trust recent history more 
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Response Prediction Problem 

•  Notation: 
– Page:                  = page features         
– Ad:                      = Ad features 
– User:                   = user features 
– Response: Tries =        , Success =  

•  Goal is to predict response rates for each 
cell 

•  MLE:  
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Challenges 

•  Sparsity:  
–  Too many combinations, most cells have 

•  High dimensional categorical variables, e.g. In CLICK data, 100M 
cells 

–  ‘cold-start’ problem 
–  If not zero, most cells have small tries 

•  Rare response: 
–  Response rates are extremely rare 
–  0 in 100 is not the same as 0 in 100,000 

•  Imbalanced sample size 
•           in cells have huge variation 

•  Smoothing to perform small sample corrections is important 
•  How do we perform such corrections in a scalable way? 
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Basic Ideas 

•  When       is ‘sufficiently’ large, trust MLE 
•  For small       , 

– Collapse cells based on features and 
predict from the aggregates 

– Use hierarchical information for 
aggregation and predict by “falling back” 

– Use smoothing 
– Other statistical corrections 
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Hierarchical structure 

•  Assuming two hierarchies (Publisher 
and advertiser) 

Pub-
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Three models 

•  Baseline 
– Logistic Regression 

•  Decision Tree 

– Learnt hierarchy based on predictive-ness 
of attributes, then smoothing / corrections 

•  LMMH [D. Agarwal et. al., ACM SIGKDD 2010] 

– Natural hierarchy of ads and pages 
•  Collaborative filtering with hierarchies 
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Logistic Regression 

27 

•  Use singleton features only 
•  Use conjunction features 

•  Need hashing trick to reduce dimensionality 
[Weinberger et. Al, ICML 2009] 

•  Performs poorly: Approximating in the non-linear region 



Yahoo! Labs, Bangalore	


Decision Tree 

•  Each record is labeled ‘succ’ or ‘no-succ’ 
•  Tree induction with gain ratio as the 

splitting criterion 
•  Shrinkage: Child’s estimate is shrunk 

towards the parent 
•  Return from the parent for cold-start 
•  Runs on Grid (Map-Reduce), model 

refreshed periodically 
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DT Example 

DT - Learned hierarchy , tree induction on ad, publisher, user attributes 
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LMMH (Agarwal et. Al: ACM 
SIGKDD 2010) 

•  3-stage log-linear model 
– Stage 1: Feature based only, uses GLMM 

•  e.g. pub category, creative category, daypart,… 
– Stage 2: Clustering data matrix elements 

•  through multi-clustering : extension of SIGKDD 
07 work 

•  E.g. features – 1(pub clust =1, creative cluster= 
2) ) 

– Stage 3: corrections using multiple hierarchies 
•  Sparse solutions through a new penalty 
•  E.g  Publisher x Adv hierarchy + daypart x Adv 

hierarchy 
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Real world Data sets 

•  CLICK  [~90B training events] 
•  PCC (~.5B training events) 

– Conversion only through click  
•  PVC – Post-View conversions (~7B events) 

– Cookie gets augmented with pixel and triggers 
success 

•  Features 
– User, pub and ad features 
– 2 hierarchies (publisher and advertiser) 
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Accuracy: Average test log-
likelihood 
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What if prediction still goes 
wrong? 

•  Erroneous prediction can cause auction to degenerate 
•  Risk mitigation is needed 
•  Allocate a budget proportional to historical number of 

successes 
–  Decrement every time the ad is shown 
–  Stop when there is no budget left 
–  Refresh budget periodically 

•  Principle: “Throttle” un-tested ads until they (slowly) 
prove themselves 

•  Note: Allocation rule no longer just (max eCPM) in 
auction 
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Pricing models 

•  We talked about 
– CPM (advertiser bears the risk) 
– CPC, CPA (Publisher bears the risk) 

•  Any scheme which can balance this? 
– dCPM (dynamic CPM) 

34 
Delivered CTR	
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Things we did not talk about 

•  Guaranteed delivery display! 
•  How do advertisers bid? 
•  Behavioral targeting 
•  Social targeting 
•  Layout optimization 
•  Social sharing of Ads 

– Do influencers affect product buying? 
{Bhatt et. Al – CIKM 2010} 

•  Many many others 
35 
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“Next Gen”: Social Targeting, 
Chunked Rewards 
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STRATEGIC DATA SOLUTIONS	


Rushi Bhatt, Vineet Chaoji, Rajesh Parekh 

 Product Adoption in  
Large-Scale Social Networks 
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Questions 

•  What are the correlates of adoption 
spread? 
– Are high-degree users “different”? 
– Are neighborhoods predictive? 

•  How do we improve uptake? 
– Do social attributes provide a lift? 
– Is neighborhood targeting a good idea? 
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Spread of Premium Service 
Adoption Through a Network 

39 

Case Study: 	

Adoption Spread in	


the PC to Phone Premium Service 	
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Data Sources 
•  Social Graph 

–  IM users and their friendship network 
–  O(100M) nodes, O(1B) edges 

•  Behavior 
–  Granular events: page views, searches, 

search result clicks, ad views, ad clicks 
–  IM usage: messages sent, login days, … 

•  Demographic 
–  Gender, Age 

•  Geographic (from IP address) 
–  Login country 
–  Granular DMA level information 

•  Premium Service  
–  PC 2 Phone subscription 
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PC to Phone	

Premium Service	


Low baseline adoption rates	
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Social Network Effect Exists 

41 

More friends adopting improves chances of adoption	
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High-degree users are harder 
to convert 
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Threshold model – For the same #predecessors, highly connected 
users are less likely to adopt	
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Are High Degree Users  
Influencers? 

43 

If high degree  influencer, then there should be difference in 
#predecessors & #successors	


Also, Anagnostopoulos et al. ‘08, 	

 Dodds & Watts ‘07	
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High Degree Users 
“Underperform” 
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Successors per user reached lower for high degree users 	

[Dodds & Watts ’07, also Kitsak et al. ‘10]	
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Adoption Spread is Mostly Local 
Influence is not Far Reaching 
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Longer cascades do exist, but very few	


82% cascades shorter than two hops	
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Adoption Spread by Internal 
Nodes 
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Intermediate nodes sustain the cascades	

Longer cascades triggered by high degree users	
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Predicting Future Adoption 

•  Predict future adoptions, target the likely adopters through 
messaging 

•  Direct: 	

–  Identify individuals with high 

probability of adoption	

–  Message: “Sign-up now to 

receive 100 free minutes”	


•  Social Neighborhood:	

–  Identify adopters in prime 

social neighborhoods	

–  Message: “Refer a friend: Get 

100 free minutes per adopting 
friend”	
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Model to Predict Adoption 

Social Neighbourhood:  
# Premium friends 
# Premium friends that are 

linked 
Total number of friends 
Number of different 

countries your friends 
belong to 

48 

Activity: 	

# PC-to-PC Calls	

IMs Sent	

# Friends added	

# logins	


Demographic 	

Age	

Gender	


Geographic	

Originating Country	


•  Target	  variable:	  	  
•  Direct	  marke+ng:	  Binary	  variable	  indica+ng	  adop+on	  during	  training	  period	  

•  Train	  a	  Decision	  Tree	  

Training Period:	

User features till Mi	

Adoption in Mi+1	


Testing Period:	

User features till Mi+1	

Adoption in Mi+2	


Mi	

Mi+1	
 Mi+2	
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Model Evaluation 

•  Metric 1: Cumulative coverage 
–  Good if there is a large number of 

adoptions from a small target pool 
–  Does not factor in the cost of 

targeting users 

•  Metric 2: Adoptions per user 
–  Good when we have the highest 

adoptions per targeted user 
–  Factors in the cost of targeting to 

each user 
–  Helps to decide the right 

incentives for each targeted user 

Users identified by model	
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Methods compared 
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•  # Premium predecessors 
•  Ego-features: User’s own behavior 
•  Social-features: Behavior of one’s 

friends 
•  Ego+Social 
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Direct Targeting 

•  Combined user and behavioral features 
best for direct targeting [Also, Hill et al. ‘06] 

51 

Feature	   Rela0ve	  Importance	  
Score	  

country	   44.76	  
pc2pc	   25.81	  

prem_bdy	   6.32	  
fringe	   6.03	  
ten_cat	   4.51	  
gender	   2.25	  
age_cat	   2.20	  
n_logins	   1.92	  
n_friends	   1.51	  

buddy_countries	   1.27	  
reach_bdy	   1.00	  
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Social Targeting 

•  Given a set A of adopters 
–  Define σ(A) as the cumulative number of future adoptions among friends 

of A (over a specified time period) 
•  Target variable: Identify the set A of adopters that maximizes σ(A) 

•  Approach 
–  Train a regression model (Gradient Boosted Decision Tree) to predict σ(A) 
–  Rank order adopters in descending order of σ(A) 

Training Period:	

Users adopting till Mi	

Friends adopting in Mi+1	


Testing Period:	

Users adopting till Mi+1	

Friends adopting in Mi+2	


Mi	
 Mi+1	
 Mi+2	
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Methods Compared 

•  Earliest-first 
•  Latest-first 
•  Most-connected (!) 

– Enjoys advantage: even random 
adoption around them will yield highest 

 #successors 

•  Learned estimates  
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Social Targeting 

•  Learned ranking better than all 
heuristics 
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Caveats 

•  Correlation or causation? 
–  Strong correlation in adoption of friends observed from data. 

Does it mean adoptions are induced by social neighborhood? 

•  Response rates (probability of adoption) are assumed 
to be same for direct vs. social neighborhood targeting 
–  Adoptions per targeted user may be different for the two 

schemes 

•  Social neighborhood targeting expects users to recruit 
their friends 
–  Target identification is “crowd sourced” to selected users in the 

neighborhood 
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Conclusion 

•  Neighborhoods, not Individuals (!) 
–  Most models already allow this (e.g., IC, Threshold) 

•  Behavior, Demographics, Geography, Social Neighborhood: 
All matter 

•  Both targeting methods better than well-established 
heuristics 
–  Social targeting: Assumes that users will select and recruit friends 

with right incentive 
–  Direct targeting: Useful to “start off” neighborhoods that are sparse in 

adoption 
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Q&A 
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Thank you! 



STRATEGIC DATA SOLUTIONS	


Ad Selection with a Chunked Price Model 
Narayan Bhamidipati, Rushi Bhatt, Michael Grabchak (Cornell)	
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Chunked Price Model: The Setup 

Reward:	

Payout on achieving goal	


Probability:	

of success in an attempt	


Goal: 	

#successes needed	


Time:	

#attempts	
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Objective: Revenue Maximization 

•  At each time 1 ≤ t ≤ T 
–  decide which ad to show 
–  observe the outcome (click or no click) 
–  revise the goals 
–  repeat 

•  In such a way that total (expected) revenue is 
maximized at time T 

•  Obviously, once a goal for an ad is met, that ad 
is never shown again 
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Optimal Algorithm 

•  Let n1=1, n2=2, and T=2,  
•  Also, let r1p1 < r2p2 

•  ER(1,2,2) = max{ ER(1,2,2|1), ER(1,2,2|2)} 
 where, 	


  ER(1,2,2|1) = p1r1+(1-p1)r1p1	

  ER(1,2,2|2) = p2r2p2+(1-p2)r1p1	


  Complexity: O(4T)	
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Greedy Algorithms 

•  For each ad, define an index that 
–  Considers only ads with unattained but attainable 

goals 
–  Increases with pi and ri, decreases with ni. 
–  Is a scalar multiple of ri. 

•  Some indices: 
–  ripi/ni : continues showing the same ad 
–  ripi/ni P(ni in T) : depends on T also 
–  ri P(ni in T) : simplified, yet feasible 
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Theoretical Guarantees 

•  Make use of the parallels with Stochastic 
Knapsack Framework 
–  Items = ads,  
–  random weight Wi = #attempts to attain goal 

•  Introduce artificial policies like 
–  γ0 = always show the ad with max exp reward 
–  γ7 = choose the better of γ0 and ripi/ni. 

•  Obtain a 3-approximation 
–  under mild assumptions: P(ni in T) ≥ ½ 
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  Optimal vs. Greedy Performance 

•  Algorithms are much 
closer to optimal 

•  Identical to optimal in 
certain regions 

•  Significantly lower for 
some cases 
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Complete Enumeration: Optimal 
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Relative Performance of Greedy 

•  Two ads 
•  Several 

combinations of 
–  Goals 
–  Rewards 
–  Probabilities 

•  Segregated by 
difficulty levels 
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Real Time Bidding (Current work!) 

•  Once the next ad to be shown is 
determined 
– Need to bid for it in the NGD system 
– Bid should be proportional to the value the 

ad is supposed to bring 
– A missed opportunity would imply one less 

attempt available 
– Maximize profits by optimizing bid prices 


