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Summary of the Results

� Analyze a network formation game in a strategic setting where payoffs of
individuals depend only on their immediate neighbourhood. We call these
payoffs as localized payoffs .

� In this network formation game, the payoff of each individual captures
the gain from immediate neighbors , the bridging benefits , and cost to
form links .

� Analytically prove the pairwise stability (PS) of several interesting
network structures.

� Analytically characterize topologies of efficient networks.

� Simulations validate our analysis and reveal additional insights on PS
topologies.

� Our price of stability(PoS) analysis indicate the emergence of efficient PS
networks.
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Motivation for the Model

� Complex networks are large in size and hence, it is realistic to use
only the local neighbourhood information to characterize such
networks.

� Incorporate bridging benefits to model complex networks.

Importance of Bridging Benefits

� Benefit to a node :- Direct Link Benefit + Bridging
Benefits .

� Node A has a bridging role in the social network.

� Node A is a structurally advantageous position than Node
B.

� Empirical evidence show bridging benefit is insignificant if
bridged paths are of length greater than two .
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Formulation of Utility Function Using Local
Neighbourhood Information
Sparsity of neighbourhood of node i with degree di is given by

si =

(
1− Number of links between neighbours

Total possible links between neighbours

)

� Interpretation for Sparsity: Higher si =⇒ There are less links among the
neighbours of node i =⇒ Node i is more important for communication
among neighbours.

Utility Function Formulation

ui = di (δ − c) + di siδ
2

Sparsity of a1 in both networks = 1 !
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Analytical Deductions on Topologies of
Pairwise Stable Networks

� A network is stable if no node has an incentive to add/delete a link.

� Some standard topologies considered for pairwise stability are given
below.

Cycle Network: Bi-partite
Network:

Equi-partitioned
k-partite complete
network (k = 3):
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Analytical Deductions on Topologies of Pairwise
Stable Networks

Parameter Additional P.S.1

Region Conditions networks

(1a) (δ − c) ≥ δ2 Complete

(1) δ > c (1b) (δ − c) < δ2 Complete

C.B.P 4

(1c) (δ − c) < 2/3δ2 C.E.T.P 6

Complete
C.B.P
Complete, Null,

(2) δ = c C.B.P,

C.E.K.P5

(3a) (c − δ) > 2δ2 Null

(3b) (c − δ) ≤ δ2 C.B.P
Null

(3) δ < c (3c) δ2 ≤ (c − δ) ≤ 2δ2 Cycle
Null

(3d) (c − δ) < 2/3δ2 C.E.T.P
Null
C.B.P

1P.S: Pairwise Stable 4C.B.P: Complete BiPartite
5C.E.K.P: Complete Equi K -Partite
6C.E.T.P: Complete Equi Tri-Partite
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Validation of theoretical results
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Study of Clustering Coefficient in the
Network Formation Game

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

Time

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

t

N=20, delta=0.5, c=0.5

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cost (c)

N = 20, γ=0, 0.35, 0.7

benefit (δ)

cl
us

te
rin

g
co

ef
fic

ie
nt

Convergence to Pairwise Stable Network

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

120

140

160

180

cost (c)

N=20, γ=0

benefit (δ)

A
ve

ra
ge

 a
ct

s

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

40

50

60

70

80

90

100

110

120

130

cost (c)

N=20, γ=0.35

benefit (δ)

A
ve

ra
ge

 a
ct

s

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8

50

60

70

80

90

100

110

120

130

co
st

 (c
)

N=20, γ=0.7

benefit (δ)

A
ve

ra
ge

 a
ct

s

9 of 11



Topologies of Efficient Networks

Efficiency (v(G ))- The sum of individual utilities of the nodes in the
network G i.e., v(G ) =

∑n
i=1 ui .

Results from Classical Extremal Graph Theory

From Turan’s theorem, we know that

T ≥


n(4e−n2)

9 if e >

⌊
n2

4

⌋

0 if e ≤
⌊

n2

4

⌋ (1)

e : Number of edges, n : Number of vertices, T : Number of triangles
of a graph.
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Turan Graph Efficiency

Theorem
When δ = c, the Turan graph is the unique efficient graph.

Proof sketch It can be shown

u(G) ≤ δ2
n∑

i=1

di −
δ2

(n − 2)
(2× 3× T3(G))

where, T3(G) is the number of triangles in the graph G .

Let G have b n2

4
c+ x edges where x > 0. We can also get

∆u = u(G)− u(GTuran) ≤ 2δ2

(
x − n

(n − 2)

4x

3

)

11 of 11



Efficient Networks Emerging From Proposed Utility Model

Parameter Range Efficient Topologies

δ < c and δ2 < (c − δ) Null network

δ < c and δ2 > (c − δ) Turan network
δ = c Turan network

δ > c and δ2 > 3(δ − c) Turan network

δ > c and (δ − c) > 2δ2 Complete network

Price of stability (PoS) is the ratio of the sum of payoffs of the players
in a best pairwise stable network to that of an efficient network.
PoS is 1 in each of the following scenarios:
(i) δ > c and (δ − c) > 2δ2

(ii) δ > c , δ2 > (δ − c) and δ2 ≥ 3(δ − c)
(iii)δ = c
(iv) δ < c and δ2 > (c − δ)

PoS is at least 1/2 in the following case:
δ > c and (δ − c) ≤ δ2 < 3(δ − c)
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