Complex Network Formation with Localized Payoffs

Acknowledgements

Joint Work With: Prof. Y. Narahari, Rohith D. Vallam, and C.A. Subramanya

Summary of the Results

- Analyze a network formation game in a strategic setting where payoffs of individuals depend only on their immediate neighbourhood. We call these payoffs as localized payoffs.
- In this network formation game, the payoff of each individual captures the gain from immediate neighbors, the bridging benefits, and cost to form links.
- Analytically prove the pairwise stability (PS) of several interesting network structures.
- Analytically characterize topologies of efficient networks.
- Simulations validate our analysis and reveal additional insights on PS topologies.
- Our price of stability(PoS) analysis indicate the emergence of efficient PS networks.

Motivation for the Model

- Complex networks are large in size and hence, it is realistic to use only the local neighbourhood information to characterize such networks.
- Incorporate bridging benefits to model complex networks.
- Importance of Bridging Benefits
 - Benefit to a node :- Direct Link Benefit + Bridging Benefits .
 - Node A has a bridging role in the social network.
 - Node A is a structurally advantageous position than Node B.
 - Empirical evidence show bridging benefit is insignificant if bridged paths are of length greater than two.

Formulation of Utility Function Using Local Neighbourhood Information

Sparsity of neighbourhood of node i with degree d_i is given by

$$s_i = \left(1 - \frac{\text{Number of links between neighbours}}{\text{Total possible links between neighbours}}\right)$$

Interpretation for Sparsity: Higher s_i ⇒ There are *less* links among the neighbours of node i ⇒ Node i is *more* important for communication among neighbours.

Sparsity of a1 in both networks = 1 !

Analytical Deductions on Topologies of Pairwise Stable Networks

- A network is stable if no node has an incentive to add/delete a link.
- Some standard topologies considered for pairwise stability are given below.

Analytical Deductions on Topologies of Pairwise Stable Networks

Parameter Region	Additional Conditions	P.S. ¹ networks	
	(1a) $(\delta - c) \geq \delta^2$	Complete	Boinvice Stability Regions
(1) $\delta > c$	(1b) $(\delta - c) < \delta^2$	Complete C.B.P ⁴	as given in Table 1
	(1c) $(\delta - c) < 2/3\delta^2$	C.E.T.P ⁶	1
		Complete C.B.P	0.8
		Complete, Null,	
(2) $\delta = c$		C.E.K.P ⁵	
	(3a) $(c - \delta) > 2\delta^2$	Null	
	(3b) $(c - \delta) \leq \delta^2$	C.B.P	
		Null	0.2
(3) $\delta < c$	(3c) $\delta^2 \leq (c - \delta) \leq 2\delta^2$	Cycle	
		Null	
	(3d) $(c - \delta) < 2/3\delta^2$	C.E.T.P	0 0.5 1
		Null	cost (c)
		C.B.P	

¹P.S: Pairwise Stable ⁴C.B.P: Complete BiPartite ⁵C.E.K.P: Complete Equi *K*-Partite ⁶C.E.T.P: Complete Equi Tri-Partite

Emergent Topologies during Simulations

Study of Clustering Coefficient in the Network Formation Game

Convergence to Pairwise Stable Network

9 of 11

Topologies of Efficient Networks

Efficiency (v(G))- The sum of individual utilities of the nodes in the network G i.e., $v(G) = \sum_{i=1}^{n} u_i$.

Results from Classical Extremal Graph Theory

From Turan's theorem, we know that

$$T \ge \begin{cases} \frac{n(4e-n^2)}{9} & \text{if } e > \left\lfloor \frac{n^2}{4} \right\rfloor \\ 0 & \text{if } e \le \left\lfloor \frac{n^2}{4} \right\rfloor \end{cases}$$
(1)

e: Number of edges, n: Number of vertices, T: Number of triangles of a graph.

Turan Graph Efficiency

Theorem

When $\delta = c$, the Turan graph is the unique efficient graph. **Proof sketch** It can be shown

$$u(G) \leq \delta^2 \sum_{i=1}^n d_i - \frac{\delta^2}{(n-2)} (2 \times 3 \times T_3(G))$$

where, $T_3(G)$ is the number of triangles in the graph G. Let \overline{G} have $\lfloor \frac{n^2}{4} \rfloor + x$ edges where x > 0. We can also get

$$\Delta u = u(\overline{G}) - u(G_{Turan}) \leq 2\delta^2 \left(x - \frac{n}{(n-2)}\frac{4x}{3}\right)$$

11 of 11

Efficient Networks Emerging From Proposed Utility Model

Parameter Range	Efficient Topologies
$\delta < c$ and $\delta^2 < (c - \delta)$	Null network
$\delta < c$ and $\delta^2 > (c - \delta)$	Turan network
$\delta = c$	Turan network
$\delta > c$ and $\delta^2 > 3(\delta - c)$	Turan network
$\delta > c$ and $(\delta - c) > 2\delta^2$	Complete network

Price of stability (PoS) is the ratio of the sum of payoffs of the players in a best pairwise stable network to that of an efficient network. PoS is 1 in each of the following scenarios:

(i)
$$\delta > c$$
 and $(\delta - c) > 2\delta^2$
(ii) $\delta > c$, $\delta^2 > (\delta - c)$ and $\delta^2 \ge 3(\delta - c)$
(iii) $\delta = c$
(iv) $\delta < c$ and $\delta^2 > (c - \delta)$

PoS is at least 1/2 in the following case: $\delta > c$ and $(\delta - c) \le \delta^2 < 3(\delta - c)$