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Networks

The study of networks has been a topic of vigorous recent
interest.

A network consists of assemblies of elements, and can be
represented by nodes plus links between nodes.

Each node may be capable of some function and may have
some capacity.

Thus the network is capable of carrying out some task, or of
supporting some dynamical processes.

Networks are ubiquitous in the real world in both natural and
engineered contexts.
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Networks: Examples

Both natural and engineered networks are seen.

Power grids, Internet, Traffic networks, Telephone networks

Metabolic networks, neural networks, ecological networks,
food-webs.

Collaborative networks, friendship networks, co-worker
networks.
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Transport on networks

Transport processes on metabolic and other biological
networks

Traffic of information packets on computer or
communication networks

Road traffic in transportation networks, air traffic in airport
networks

The efficiency and optimisation of transport on the networks is
controlled by

the structure and topology of the network

the mechanism of transport
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Communication network Models

Scale-free networks.

Can be based on regular 2 − d geometries and incorporate
geographic separations.

Networks of hosts and routers (Sole and Valverde)

Incorporate clustering and hubs (Rosenfeld).
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Connections and routing

Gradient flows on scale-free geometries (Bassler and
Toroczkai)

Distance based connections (Waxman)

Random assortative connections (Singh and Gupte)

A variety of routing algorithms are possible.

Important to note that these networks can reproduce some
of the characterisitics of realistic internet traffic.
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Models under discussion

Communication networks based on two-d and 1-d lattices.
The models incorporate local clustering and geographic
separations.

Despite the regular geometry, traffic on 2-d networks
reproduces the characteristics of realistic internet traffic
(Sawada and Ohira, Lawniczek).

Single message transfer and multiple message transfer are
studied.

Under multiple message traffic, a transition from a
decongested phase where traffic flows freely, to a
congested phase where traffic jams is seen.
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Models under discussion

Statistical characterisers: Average travel times, travel time
distributions, waiting time distributions.

These statistical quantities show characteristic signatures of
congestion or decongestion, and the network topology.

Synchronisation (both complete synchronisation, and phase
synchronisation) is seen between the queues at the most
frequented hubs in the congested phase. Synchronisation is
lost as the queues clear.

A synchronisation to desynchronisation transition in seen in
the queue lengths at the most frequently visited hubs for the
models.

Real-life networks show these effects. We demonstrate
these for the air-port network of the U.S. and the IITM
campus network.
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The Waxman network
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The Waxman network

The Waxman graphs are generated on a co-ordinate grid
with the probability of a link betweennode a and node b
being given byd being given by

P (a, b) = β exp(− d

αM
) (0)

where 0 < α, β < 1, d is the Euclidean distance between a
and b, and M =

√
2L.

Larger values of β correspond to larger link densities, and
smaller values of α increase the density of shorter links as
compared to longer ones.

The Waxman networks are popular models of intranet
topologies.
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The clustered network
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shows the area of influence. A typical path is shown.
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Single Message Transfer

Any node can function as a source or target node for a
message and can also be a temporary message holder or
router.

The metric distance between any pair of source (is, js) and
target (it, jt) nodes on the network is defined to be the
Manhattan distance Dst = |is− it| + |js− jt|.
The message transfer between source and target takes
place from node to node via the shortest path utilising the
hubs.

The constituent nodes of the hub transfer the message
directly to the hub.

The hub transfers messages to the peripheral node nearest
the target.
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Connecting the hubs: Random
assortative connections
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Random assortative connections between hubs. Speed up message transfer and

achieve decongestion.
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Connecting the hubs

Message transfer can be speeded up by setting up hub to hub
connections.

Hub Capacity:
This is defined to be the number of messages the hub can
process simultaneously.

Gradient connections:
Each hub is randomly assigned some message capacity
between one and Cmax. A gradient connection is assigned
from each hub of capacity less than Cmax to all the hubs
with the maximum capacity (Cmax).

Random Assortative connections:
Assortative connections one way, or two way, are made
from each hub to two randomly chosen other hubs. Here,
the hub capacities are all unit.

New Frontiers in Complex Networks, 2010 – p.13



Connecting the hubs: Gradient
connections
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Gradient connections between hubs. These can shortcut the message transfer.
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Average travel times

q = 3.5086
q = 3.5086

β = 0.358
A

v
e

ra
g

e
_

tr
a

v
e

l_
ti
m

e

No. of Hubs

(a)

 10

 100

 1000

 1  10  100  1000

 10
 10

 100  1000

 100

 1000

A
v
e

ra
g

e
_

tr
a

v
e

l_
ti
m

e

β = 0.358

q =3.5086
q =3.58219

β = 0.34

No. of Hubs

(b)

 10

 100

 1000

 1  10  100  1000

 10

 100

 1000

 10  100  1000

Baseline data (∆) f(x) = Qexp[−Axα]; gradient data (�), one-way assortative (+),

two-way assortative (times) f(x) = A(1 − (1 − q)x/x0)(1/(1−q)).

New Frontiers in Complex Networks, 2010 – p.15



Average travel times

The average travel time tavg for messages shows stretched
exponential behaviour as a function of hub-density on the
baseline. Here, f(x) = Qexp[−Axα], where α = 0.50 ±
0.011, A = 0.051 and Q = 146.

However, the gradient data fits a q-exponential
f(x) = A(1 − (1 − q)x/x0)

(1/(1−q)with q = 3.51, A = 142 and
x0 = 0.03.

The one-way assortative connections and two way
assortative connections are also q−exponential functions.

The tails of the q− exponentials are power-laws. Thus
average travel time falls rapidly at high hub density.
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Finite Size Scaling
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A 1 − d network
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Travel time distribution for single
messages
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Congestion and decongestion of
traffic

Realistic networks experience congestion problems under
multiple message transfer due to capacity limitations.

Hubs which see heavy traffic are prone to trap messages.

Such hubs identified by defining a co-efficient of
betweenness centrality CBC = Nk

N where Nk is the number
of hubs through a given hub k and N is the total number of
messages running through the lattice.

Signatures of congestion can be seen in statistical
characterisers.
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Congestion and trap formation: One
time deposition
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Congestion and trap formation:
Constant density traffic
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2 − d lattice and (c) the 1 − d ring network.
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Trap formation: Constant density
traffic
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Travel time distributions: gradient
and baseline
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Travel time distributions: Waxman
networks
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Waiting time distributions: gradient
and baseline
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Travel time distributions: 1 − d ring
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Waiting time distributions

The distribution of waiting times is normal in the congested
phase

1
σ
√

2π
exp(− (w−a)2

2σ2 )

and log-normal in the decongested phase
1

wσ
√

2π
exp(− (lnw−µ)2

2σ2 ).

For the 1 − d ring we have the distribution
1

tσ
√

2π
exp(− (lnt−µ)2

2σ2 )(1 +Bt−δ)
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Phase Diagram
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Phase Diagram

Values of Γc for different values of Nm (baseline)
Nm Γc

5 110
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The stochastic process for transport

The displacement of a message on the network depends on
factors that are partly systematic, and partly random, with
the random element arising due to interference from other
messages and limitations of hub capacity.

Hence, message transfer in both the congested and
decongested phases can be modelled by stochastic
differential equations.
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The stochastic process for transport

In the congested phase, the displacement Xt of the message at
a timet can be modelled by the equation

dXt = µ(Xt)dt+ σ(Xt)dWt

here, µ(Xt) represents the drift co-efficient, σ(Xt) is the
diffusion co-efficient and Wt is a Wiener process.
The probability distribution f(X, t) satisfies the forward
Kolmogorov equation

∂f

∂t
=

(∂µ(X)f(X, t))

∂X
+

∂2

∂X2
(σ2(X)f(X, t))
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The stochastic process for transport

The stationary solution, i.e. ∂f
∂t = 0 can be found using Wright’s

formula

f(x) =
N

σ2

∫ x

−∞

µ(s)

σ2(s)
ds

where N is a normalisation constant.
If the drift co-efficient is of the form µ(Xt) = (µ̄−Xt) and the
diffusion co-efficient σ(Xt) is a constant,then, the stationary
probability distribution f(X) turns out be of the normal form

f(x) =
1

σ
√

2π
exp− (X − µ̄)2

2σ2
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The stochastic process for transport

On the other hand, in the decongested phase, the process can
be modelled by the equation

dXt = µ(Xt)Xtdt+ σXtdWt

Let S(X) = log(X). Then the form of the stichastic equation in
the decongested phase can be reduced to the form in the
congested phase. Then, using f(X) = f(S) dSdX , the form of
f(X) in the decongested phase can be found to be

f(X) =
1

σX
√

2π
exp−(lnX − µ̄)2

2σ2
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Airport traffic
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Airport traffic: Delay times
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(a) The scaled delay time distribution of flights of UA arriving at the airport SFO show
log-normal behavior. (b) For the flights of AA arriving at DFW, the distribution fits into a
log-normal with a power law correction. The data is plotted for July 4 2007, November 22
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Airport traffic: Non-flight parameters

Pass. Aircr. Cargo RW HP TP. TC Area
Name (mil) (ths) (KTons) (K.acr)

ORD 77.0 958.6 2003 7 1 4 15 7.6
DEN 47.3 598.4 645.4 6 0 5 4 33.4
DFW 60.2 699.7 797.3 7 1 5 16 18.1
ATL 84.8 976.4 746.5 5 1 2 2 4.7
LAX 61.0 656.8 1907.5 4 1 9 4 3.5
MIA 32.5 384.5 1830.6 4 0 9 24 3.3
SFO 34.9 379.5 752.1 4 0 3 11 5.2
SEA 29.4 317.9 641.7 3 0 16 3 2.5
JFK 43.7 378.4 1636.4 4 4 10 35 5.2
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Self organised map for clustering

An SOM was used to cluster the air-ports using non-flight data.

An SOM based on a 2 − d grid was used to cluster the
air-ports using non-flight data.

Initial vectors were Wi were random

The neighbourhood function θ(t) was a truncated Gaussian.

Input vectors D(j) were the non-flight parameters of the
air-ports.
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Self organised map for clustering

Update Wi(t+ 1) = Wi + αθ(t)(D(j) −Wi), for the best
matching unit.

After iterations, output vectors assigned based on distance
between Wi and input vectors.

Finally only two parameters turned to be crucial, aircraft
movements and runways.
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Result of SOM

A run of the SOM for 2 parameters. Raw result on left classification into Class I and II
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Classification

1. Class I
(a) Atlanta (ATL)
(b) Chicago (ORD)
(c) Dallas (DFW)
(d) Denver (DEN)

2. Class II
(a) Los Angeles (LAX)
(b) Miami (MIA)
(c) New York (JFK)
(d) San Francisco (SFO)
(e) Seattle (SEA)
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Synchronisation

In the congested phase, the queue lengths for some pairs
from the hubs of show phase synchronization and complete
synchronization as a function of time.

A cascading master-slave relation is seen between the
hubs, with the hubs of high CBC driving the lower ones.

The queue lengths are seen to synchronize during the
congested phase. In the decongested phase the queues
desynchronise.
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Queue lengths and synchronisation

The queue at a given hub is defined to be the number of
messages which have the hub as a temporary target.

Two queue lengths qi(t) and qj(t) are said to be completely
synchronized if

qi(t) = qj(t)

where qi(t) is the queue at the ith hub. Complete
synchronisation is seen for certain pairs of hubs with
random assortative connections.
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Phase Synchronisation
The phase at a given hub is defined as

Φi(t) = tan−1 qi(t)

< qi(t) >

The queue lengths are phase synchronized if

|Φi(t) − Φj(t)| < Const

where Φi(t) and Φj(t) are the phase at time t of the ith and
jth hub respectively.

Phase synchronisation for random assortative connections,
the gradient and the base line.
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Complete and Phase
Synchronisation
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Global synchronisation

The usual characteriser of global synchronisation is the
order parameter

r exp iψ =
1

N

N∑
j=1

exp iΦj (-9)

Here ψ represents the average phase of the system, and
the Φj-s are the phases defined earlier.

Here the parameter 0 ≤ r ≤ 1 represents the order
parameter of the system with the value r = 1 being the
indicator of total synchronisation.
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Global synchronisation
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Synchronisation for the Waxman
network
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Synchronisation for Airport traffic
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Synchronisation for Airport traffic
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Synchronisation for IITM network
traffic
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Conclusions

The statistical characterisers of a several distinct model
networks show similar behaviour.

The average travel times for single message transport show
q−exponential behaviour as a function of hub density. The
power-law tail of this behaviour can be explained in terms of
the log-normal distribution of travel times seen at high hub
densities.

The distribution of travel times shows log-normal behaviour
for the gradient distribution, and log-normal times powerlaw
corrections for the assortative connections.

In the case of multiple message transfer, the waiting time
distribution in the congested phase fits a gaussian. The
waiting time distribution in the decongested phase shows
log-normal behaviour. This is true across all the networks.
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Conclusions

The queue lengths of the most frequently visited hubs
synchronise for similar traffic patterns.This can be complete
synchronisation or phase synchronisation. Transitions to
total synchronisation can be seen. Synchronisation can
therefore be used to detect abnormal traffic. Global
synchronisation effects can be used to cluster data.

Real life networks show similar effects. Our observations
can therefore have practical utility.

Thanks to
Andreas Deutschmann (German flying authority), J. Kurths
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