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E-R Random Networks:
The Degree Distribution

“If a random vertex is picked,
what is the probability that its
degree equals k?”

Denote by pi(k) the probability
that vertex i has degree k

For the whole network

N
o
P(k) =+ > pi(k)
=1

For E-R networks, all vertices are
alike, so pi(k) = P(k) for all i

Erdos-Reényi networks:

oy (R

(for large N)

(k

Pk)
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Average shortest path length
in E-R networks

Let us assume that there is a
single connected component (a
strong assumption, we’ll get back
to this)

Then for E-R networks

(I) < In N

The path length grows very
slowly with network size; paths
are short even for very large E-R
networks

for comparison:

3 1D chain

ER networks
10° .

-1
1|:| 1 1 L1 o1l 1 1 [ | 1 1 L1 11l 1 1 L1 11
10° 10 10° 0 1t

N

< J=

“E-R networks are
infinite-dimensional”
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It’s A Small World!
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How Far Are You From Anyone Else!?

Frigyes Karinthy: Chains (1929)

® C(Classic short story

® Karinthy believed that the modern world was 'shrinking' due to ever-
increasing connectedness of human beings

® Excerpt:“A fascinating game grew out of this discussion. One of us suggested
performing the following experiment to prove that the population of the
Earth is closer together now than they have ever been before.We should
select any person from the 1.5 billion inhabitants of the Earth—anyone,
anywhere at all.
He bet us that, using no more than five individuals, one of whom is a personal
acquaintance, he could contact the selected individual using nothing except
the network of personal acquaintances.”

® These ideas had a strong influence on social sciences
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Six Degrees of Separation

Stanley Milgram,

"The Small Worid Problem”,
Psychology Today, 1967,Vol. 2, 60-67

® Milgram picked 296 individuals in

Nebraska and Boston

® Everyone was given a letter to be
delivered to a target individual in

Massachusetts

® |[nstructions:“If you know the target
person, give the letter to him, otherwise
give it to someone who you think is

closer to the target.”

® 64 |letters reached the target, through 5.2

intermediaries

Tuesday, January 5,2010



D.)J. Watts and S. Strogatz,

The Birth of Complex Networks Science:

Small-World Networks

»Collective dynamics of 'small-world’ nhetworks",

® This paper practically launched
the science of complex networks

Nature 393, 440442, 998

Elaborates on the topic of short
path lengths

Probably the simplest model ever
published in Nature

Has been cited >3500 times!!

letters to nature
I

typically slower than ~1kms™') might differ significantly from
what is assumed by current modelling efforts”. The expected
equation-of state differences among small bodies (ice versus rock,
for instance) presents ancther dimension of study; having recently
adapted our code for massively parallel architectures (K. M. Olon
and E.A, manuscriptin preparation ), we are now ready to performa
more oompneha\sine am)rsis.

The exp ¥ d here suggest that when a
young, non-porous asteroid nl’su»:b exist) suffers extensive impact
damage, the resulting fracture pattern largely defines the astercid’s

Collective dynamics of
‘small-world’ networks

Duncan J. Watts® & Steven H. Strogatz

mews of Theoredaal end Applied Mechenics, Xmsball Hal,
C..w.\ Universiay, Tshaca, Now Tork 1 4353, USA

response to future impacts. The hastic nature of
implies that small asteroid interiors may be as diverse as their
ﬂupes and spin states. Detailed numerical simulations of impacts,
using accurate shape models and rheologies, could shed I.lghl on
how asteroid collisional response depends oninternal

and shape, and bence on bow plnetesimals evolve. Dem]ed
simulations are also required b predn:( heq

Ilisi N k o{(ouplod "— ical systems have been used to model
biologi 4, Josephson junction arrays*¥, excitable
media’, neural nmrks‘”. spatial glmu" genetic control
networks" lnd many olhel If. systems. Ordinaril

ry the 1 d to be cither oompldzly
r(gxl.uor(oml.iae}y nuniom. But many biological, technological
and social ks lie here between these two extremes

effects of nuclear explosions on Earth-crossing comets and
asteroids, either for hazmrd rmng,mon" through disruption and
deflection, or for resource exploitation”™. Such predictions would
require detailed reconnaissance concerning the composition and
interpal structure of the targeted cbject.

Paceivd 4 Februry. wcepied 18 March 1998

Here we explore simple models of networks that can be tuned

through this middle ground: regular networks ‘rewired” to intro-

duce increasing amounts of disorder. We find that these systems

can be highly clustered, like regular lattices, yet have small

characteristic path lengths, like random graphs. We call them

smnl]-vmald nrhm:b. by analogy with the small-world
* (popularly known as six degrees of separation™)
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To interpolate between regular and random networks, we con-
sider the following random rewiring procedure (Fig. 1). Starting
from a ring lattice with = vertices and k edges per vertex, we rewire
each edgeat random with probability p. This construction allows us
to ‘tune’ the graph between regularity (p = 0} and disorder (p = 1),
and thercby to probe the intermediate region 0 < p < 1, about
which little is known.

We quantify the structural properties of these graphs by their
characteristic path Jength L{p} and clustering coefficient C{p), as
defined in Fig, 2 Jegend. Here L{p) measures the typical separation
between two wertices in the graph (a global property), whereas Cp)
measures the cliquishness of a typical neighbourhcod {a local
property). The petwocks of interest to us have many vertices
with sparse oonnecmns. bul not o sprx- that the graph is in
danger of bec cted. cifically, we require

7% k% Inin) % 1, where k = Inim) gu.mmza that a random
graph will be connected”. In this regime, we find that
L~nw2k% | and C~34 as p— 0, while L = Ly~ In(mVInik)
and C = €,y ~kin ¥ 1 as p— 1. Thus the regular lattice at p = 0
is a highly clustered, large world where L grows linearly with n,
whereas the random petwork at p = 1 is a poorly clustered, small
woekd where L grows only logarithmically with ». These limiting
cases might lead one to suspect that large C is always associated with
large L, and small C with small L.

On the contrary, Fig. 2 reweals that there is a broad interval of p
over which L{p) is almost as small as L., vt Cp) * C .
These small-world networks result from the immediate drop in L{p)
caused by the introduction of a few Jong-range edges. Such ‘short
cuts’ connect vertices that would otherwise be much farther apart
than L4, .. For small p, each short cut has a highly nonlinear effect
on L, contracting the distance not just between the pair of vertices
that it conpects, but between their immediate neighbourboods,
neighbourboods of neighbourboods and so on. By contrast, an edge

“Presst addrene Pud K Lesewidd Conter 1 @ Sccl Schencey, Cotonbs Usmingy 513 578
Beflding, GOWILS %, New York, New Yort 10007, USh.

aa0 HAse® Nuntim Abhhern 121 W0 NATURE|VOL 3934 FUNE 1998
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Small Worlds: Path Lengths Revisited

® E-R random networks: shortest path
lengths
(I) < In N

® Compatible with the six-degrees idea

® Turns out that path lengths in real-world
networks are indeed short!

® Example networks in Watts & Strogatz

(1998):

[ Film actors: movie collaborations from the
Internet Movie Database

° US power grid

° Neurons of C. Elegans, a tiny worm which is
one of the model organisms in biology

film actors 22500 | 3.65 | 2.99
US power grid 4941 | 18.7| 124
C.Elegans neurons | 282 |[2.65| 2.25
* N = network size
* <[> = avg shortest path length
® <lrang> = -"- in E-R networks with same N, <k>
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The Clustering Coefficient

® Measures “cliquishness” in local network
neighbourhoods, i.e. deviations from
randomness

® “What is the probability that two of my
friends are also friends?”

® Defined for node i (of degree k;) as the
number of links between neighbours
divided by the possible number of such
links ki(ki-1)/2

o (. c [0., ”

E.=# of
edges among
i's neighbours

average of C,
for vertices
of degree &

average of C;
over the network
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Clustering Coefficient for E-R Networks

® The clustering coefficient ® Hence
2F lim C (k) 0
. alu; Im Cgpp = —/— =
C'I — g i r_} — I|I i
1 _If_i (k?-_ - J_} .."'\' o _._\
can be viewed as the probability that (limit taken such that <k>=const)

two neighbours of i are connected

® Large random networks are
® For E-R networks treelike - there is practically
i no clustering!

i
L]

Cer=Cigr=p= N

(remember <k>=pN)

Tuesday, January 5,2010
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Clustering in Real-World Networks

Network N <[> <lrana> <C> <Crana>

film actors 22500 3.65 2.99 0.79 0.00027
US power grid 4941 18.7 12.4 0.08 0.006
C. Elegans neurons 282 2.65 2.25 0.28 0.06

Average clustering coefficient values are orders

of magnitude higher than in E-R networks!

Note: Nowadays one would not use E-R networks as the random reference, but construct
random networks with the same degree sequence than in data. This would not change the
results here, though.

Tuesday, January 5,2010
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Summary: Path Lengths and Clustering in
Real-World Networks

shortest paths clustering

Random networks

Real-world networks

wg\‘[u - ‘TM -

o e

Regular networks

G
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The Watts-Strogatz Small World Model

Regular Small-world Random

Watts & Strogatz, Nature 393, 440442, 1998

Increasing randomness

® A simple model for interpolating The model:
between regular and random ® Take a regular clustered
networks network

® Rewire the endpoint of each
® Randomness controlled by a single link to a random node with
tuning parameter probability p

Tuesday, January 5,2010 13



Path lengths and clustering in the WS model

1 E IEI lgllllrh IJI 1 llll'ﬂlll 1 1 lllllll 1 1 LI L L

08 L Clustering

°“'Path lengths

8661 ‘Trh—0by ‘€6E dIMeN ‘Z3e30.15 B SIIBAA

L HP/LO)
ol ol . 3
0.0001 0.001 0.01 0.1 1

The “Small-World” regime:
paths short, clustering high
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Dynamics on Small-World Networks

Crucial observation: network
structure heavily affects
processes taking place on
networks!

Examples:

Spreading or contact processes:
small number of shortcuts
enormously speeds up the process

Synchronization: shortcuts give rise
to rapid synchronization of
oscillators

|) Many real-world processes take

place on networks:

edisease spreading

ecomputer virus spreading
ecascading power grid failures
*information transmission
*metabolism, genetic regulation
eeverything inside your brain

2) Network structure has
important consequences on such
processes

) & 2) & To understand such
processes it is imperative to
understand the underlying

networks!
\_

~

Tuesday, January 5,2010
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Example: Dynamics

Simplest possible model:
Susceptible-Infected (SI)

Initially all nodes susceptible
Introduce an infected node

Each infected node infects its
susceptible neighbours, each with
probability p per time step

of Spreading (Sl)

Sl in a regular ring lattice

=1

=2

Tuesday, January 5,2010
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A
number of

infected

Example: Dynamics of Spreading (Sl)

Sl in a regular ring with added shortcuts

p=0 p=0.01 p=0.02 p=0.1

)
)

200 200 200 200

150 - 160 - 150 - 150
s
[nk}
o
‘= 100 - 100 - 100 - 100
B
H

&0 . S0 . &0 - &0

0 a : a 0

0 20 40 G0 0 20 40 1] 0 20 40 RO 0 20 40 G0

tirne t time t time t tirne t
>
time

Tuesday, January 5,2010
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More realistic model:
Susceptible-Infected-Recovered

(SIR)

Each infected node infects its
susceptible neighbours, each with
probability p per time step

Each infected node recovers and
becomes immune with
probability g per time step

Example: Dynamics of Spreading (SIR)

Three different outcomes:

|) the disease dies out,

2) the disease becomes endemic
(doesn’t die, doesn’t spread),

3) a large fraction of the system
gets infected

These depend on p, g, and
network structure

Tuesday, January 5,2010
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Example: Dynamics of Spreading (SIR)

0.8 |
I
; I
L,H 0.6 50 % |
N I
i I
S, 0.4 | At a critical fraction of
E I shortcuts, the disease
O g2t ] suddenly becomes an
0 3% _—"  epidemic
LLI
Pl s e T : '-'::-‘1: I/ /

Note: this fraction

0 0.02  0.04 depends on the sprexding
DENSITY OF SHORTCUTS
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Example: Dynamics of Neurons

® Roxin et al, Phys. Rev. Lett. 92, 198101
(2004)
® Neurons obey integrate-and-fire
dynamics:
® |nput from neighbours excites neuron
® Excitement fades with time
® |f excited enough, fire a signal to
neighbours
T:nﬂ ==V, + e T gsy'nzwfjﬁ(f - fj;m.} — Tp)

dt .
J.m

2 1000

=¥

= 800 =3
— 600} i
=]

£ ot =
L 2005 =
r A “;

In a regime of shortcut densities,
the system starts oscillating

Tuesday, January 5,2010
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Example:
2D small world of excitable media

S. Sinha, J. Saramiki, K. Kaski, cond-mat/0701121

® Each element behaves like a neuron
(integrate, fire, recover)

® Random shortcuts added on top of
the 2D plane

0.4 ® Different dynamics arise as
Y 05 ¢) | function of shortcut density
;: “ Y [T
00 0271 HH' IH| H I‘ |
= 111 | ’ ||\'|
< 0 A s ’ S—
00“ lO;)O 2()(')0 3000

time t

Tuesday, January 5,2010
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The Erdos Number

® Erdos authored 512 publications _ _

® “Collaborative distance” to Pal

Erdos is known as the Erdos
number a 6 8
Erdds

® Average number is less than 5, +1 +2
almost everyone with a finite
number has a number <8

http://www.ams.org/mathscinet/collaborationDistance.html
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Scale-Free Networks

All Nodes Are Not Equal
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Degree Distributions, Again

® Erdos-Renyi: ® Small-World
Networks:

k
N L — (k) <k">
Pk) =e k!

p=0

Tuesday, January 5,2010
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Degree Distributions in Real-World Networks

A.-L. Barabasi & R. Albert,
Emergence of Scaling in Random Networks, Science 286, 509 (1999)

10 0 0 — .
10° W 10 ; ]
2 P \.\ B l ¢ ‘\‘\ C
0 0 10" £ .
: L XY
» £
4 \. - ‘\
= 10 ‘. .
S 1 4 \ -2 \Q
o 0 " 10 %
“ N .
-6 \\ \
10° 10 " 10° %
; A t d
\ | )
10° Lot e 10° | i W 10" N
10 10 10 10° 10° 10 10° 10° 10° 10 10
K

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yo, = 2.3, (B) Yy = 2.1 and (C) Ypower = 4
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Degree Distributions in Real-World Networks

1 Barabésiﬂ Albert, Science 286, 1999
1':' ; . -..'. ."} #‘. - 1

A B

10 4 .-."h
10 .
& u
= 10 o
e * )
0 ‘H:l" 10 |
5 _" 1[]{! .""u
10" | actor - WWW links'"™,
. collaborations o - in domain nd'fqd*;
..H:I 5 I'| |E ] I}I L : L _-.q..i__._._n.....uTJ_ﬁ..l P
10 10 10 10 0 10 100 107 10
K
'
/

P(k) x k

* Note the logarithmic axes:

log P(k) = —Alogk + B = P(k) = ¢Pk~

Tuesday, January 5,2010



Power-Law Distributions

0.t -
el power-law P(k) o k=7 |
% "
L, P(k) ~e” hk—’;T
0.4 r Poisson L T

degree k

Tuesday, January 5,2010



0.a -

0.6 -

pik)

0.4 -

0.2r-

Power-Law Distributions

w07

7| The power-law
distribution has
a fat tail

power-law ‘P(k) > ]‘ﬁ‘ 3t

(R
P(k) ~ e 0022 ]
(k) ~ € il /_

10 15 200 25

5 0 15 20 25 El
degree k

a0
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Power-Law Distributions

71 The power-law  _
.l distribution has
a fat tail
o -
|
0.a - .
power-law l
0.6 -
"@"‘2 -
g
0.4 -
- Poisson .
| 25 30
’ : 0 1
de Thus there are
d " always hubs -
i nodes with
excessively high
degrees
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Example: The Internet

K. Claffy

Tuesday, January 5,2010
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More Real-World Examples

® Here, cumulative distributions 10
have been plotted:

uewMaN [T W

_P [;Jié’- = ulé’-f} ~ Z JECJF_#F ~ uli’-f_r\?_lj 1 ia) collaborations

in mathematics
L IIIIIIII L IIIIIIII L L

I [0 [

® For most real-world networks,
Y = [2'! ‘3}

() Word-Wide Web

® However note that there are
serious difficulties in estimating

||:|l:I T T 77771 LR B
power-law exponents! 2N | =
0" £ E
® There are also other 107 3
. . . . . - (f) protein =
distributions which look like pof mentons |
E 1 1 | I | I 1 1 1 =
|

power laws!
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Moments of Power-Law Distributions

® What are the consequences of ® Second moment = variance =
different ranges of 7! <k?>:
® First moment = mean = average (k) — = oo,if v <3
degree <k>: /1 = const.,if v >3
=
(k) ~ / k x k~7dk
;F.TD A
:"-:- . .
_ / L=+ g, <k> finite, <k’> finite
ko 37 Y many
g 1 1 1 ’A:FF <k> finite, <k’> =0 | reall-d
— . 111}{ 5 k,:r__g — k,.,{._g wor
—0oC 4 — ' 0 2 networks
= const., if v > 2
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Scale-Free Networks

Networks with power-law °
degree distributions are called
scale-free networks

This is because there is no
characteristic scale in the
distribution

If degrees are rescaled, the form
of the distribution does not
change:

P(ak) x (ak)™" =a "P(k)

= P(k=20) P(k=200) P(k=25x10°

For comparison, the Poisson
distribution behaves like this:

P (ak)
P (k)

Plk=2) P(k=20) P(k=2x10% -

TRR=1.
i

= i

- 1k
(ke )! (k)
X
ppo loe—1) .
HIILF:I

(ak)!

~ [ when o = 1,k = (k)

Poisson

power-law

degree k

Tuesday, January 5,2010
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Importance of hubs

Numerical experiment:

|. Take a connected network
2. Start removing vertices one by one

3. Keep track of the size of the largest
connected component

* Do this such that
a) Vertices are removed randomly,
b) Vertices are removed in order of
degree, starting with the hubs

connected
network

removed

some vertices

network with
giant component
& separate clusters

removed

more vertices

network split
into small clusters

Tuesday, January 5,2010
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Importance of hubs: error tolerance

E-R random networks

2 + average size of separated
clusters I\
0! I \
~
1 _ 7 ~

relative giant
component size

v the network

collapses here

0 0.2 0.4

fraction of removed vertices

—— = rgndom removal
= = high-k vertices first

Albert, Jeong, Barabasi, Nature 406, 378 (2000)
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Importance of hubs: error tolerance

E-R random networks

the network
collapses here

0.2

0.4

fraction of removed vertices

—— = rgndom removal
= = high-k vertices first

Scale-free networks

SF nets robust against

0.4

/'0.2

when high-k vertices
removed first (attacks”),

SF nets break rapidly

networks]

Albert, Jeong, Barabasi, Nature 406, 378 (2000)

Tuesday, January 5,2010
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[strictly speaking, this is
known to be true only
for uncorrelated SF



The Role of Hubs

This result indicates that scale-
free networks are very
resilient to random
damage

® E.g.the Internet is very robust against
server breakdowns

®  This has been suggested as one reason
for the ubiquity of scale-freeness

However, there is a cost:
targeted attacks will easily
destroy such networks!

There are deep connections to
many observed phenomena

E.g. spreading of biological and
electronic viruses - as long as
hubs exist, these will always find
a way to spread

Tuesday, January 5,2010
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Where Do Networks Come From?

For understanding network
structure, the following point is
essential:

NATURAL NETWORKS ARE
NOT STATIC OR IN
EQUILIBRIUM!

Instead, they are dynamic entities
which are constantly growing
and altering their wiring

Of especial importance is the
growth of networks

Network

Changes due to

Social networks

People being born &

dying, people moving, ...

WWWwW

New hyperlinks

Protein interactions

Biological evolution

Scientific collaborations

New scientists,
new papers

Tuesday, January 5,2010
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The Barabasi-Albert Scale Free Model

® A model of network growth |. Take a small seed network,
e.g.a few connected nodes

® Based on the principle of

preferential attachment - 2. Let a new node of degree m
“rich get richer!” enter the network
® Yields networks with a power- 3. Connect the new node to

law degree distribution existing nodes such that the

probability of connecting to

2m2 node i of degree k; is
P(k)="—
T, =

Zi ki

(average degree <k>=2m) 4. Repeat 2.-3. until N nodes.
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(Early) Motivation for
Preferential Attachment

gp.»%.»@»

® Websites with many hyperlinks are
easily found, and so people tend to
link to them

® Popular people get to know more
people

® |mportant proteins interact with
more and more proteins produced
by evolution

Some prior similar models
The Simon Model (1955)

The Price Model (1976) for
scientific citations
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The BA model: properties

® Average shortest path lengths: ® The clustering coefficient is
In N independent of degree,
< [> X 1l decreases with network
In (l]ﬁl N’) size, and is unrealistically

small for large networks!

- “Ultrasmall worlds!”

® However, it is better than for E-R
networks, where it is practically

. ° L4 ° .
Clustering coefficient: zero for networks of any size

In V) 2

- (
C'(k.N) «
( , | ) X N
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Other Scale-Free Network Models

the Holme-Kim Model

motivation: to get realistic
clustering

Take a small seed network

Create a new vertex with
m edges

Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. preferential attachment

N

2A. connect to 2B. preferential
neighbour attachment
(implicit preferential

attachment)

C(k)oc%

for large N, ie clustering more
realistic! This type of clustering is found
in many real-world networks.

Tuesday, January 5,2010

42



Other Scale-Free Network Models

« Random walks (Vazquez,

Evans, yours truly, et al.)

motivation: a "local” explanation to
preferential attachment

e.g. people learn to know people
through other people, which leads

to popular people without looking for
them

Take a small seed network

Create a new vertex with m edges

Pick a random vertex

Make a [-step random walk starting from

this vertex 3. make another 4. connect after m

walks

Connect one of the edges of the new
vertex to wherever you are

Repeat 3.-5. or 4.-5. m times

Repeat 2.-6. until N vertices

Tuesday, January 5,2010

43



Other Scale-Free Network Models

 the vertex copying model 1. copy a vertex
(Klelnberg, Kumar): A

motivation: citations or WWW link
lists are often copied

— a”’local” explanation to
preferential attachment

— asymptotically SF with y=3

1. Take a small seed network
2. Pick a random vertex
3. Make a copy of it

4.  With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

Tuesday, January 5,2010



Evolution of Genome:
Duplication & Divergence

® During evolution genes get
accidentally duplicated

Duplicated area

® A gene is duplicated = a node in the
protein-protein interaction network
is duplicated

® The duplicated gene can mutate more Betore
. . uplication
freely (no pressure to retain function)

After
duplication
® In terms of proteins, in course of time
the duplicated protein loses some

links and gains new ones

® This mechanism creates fat-tailed or
scale-free degree distributions in
protein-protein interaction networks! K
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Scale-Free Network Models: Summary

® For growing networks,
preferential attachment

yields power-law degree
distributions

® To be exact, it has to be linear:

B Zz ki

T

(If superlinear,“winner takes it all” and in the
end one node has ALL the links! If sublinear, we
get a stretched exponential degree distribution)

(if mixed, e.g. combination of linear preferential
and random attachment, we get exponents
larger than 3!)

The fundamental model: Barabasi-
Albert, where

P (k) = 5

Several mechanisms lead to the
preferential attachment principle!
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Generalized random graphs

E-R networks: random with
Poissonian degree distribution

It may be useful to construct
entirely random networks with a

CHOSEN degree distribution
p(k)

Useful e.g. for comparisons:

Take a real-world network
Analyze it

Generate an entirely random
network with the same degrees
Compare network
characteristics (you’ll learn
these later...)

Why!? To see if characteristics
are not simply induced by
degree distribution

The configuration
model:

® Take N vertices

® Assign a degree to each
® Join them randomly

N
- </
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Recipe Il

Take a network

Pick two random edges
Exchange their endpoints

Repeat

Generalized random networks

J4
v
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Reading & Pointers

Review Papers

® M.E.). Newman, The Structure and Function of Complex Networks, SIAM

Review 45, 167-256 (2003)
° http://arxiv.org/abs/cond-mat/0303516

® Boccaletti et al, Complex networks: Structure and dynamics, Physics Reports
424,175 (2006)

° http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.7590&rep=rep | &type=pdf

Books

® Popular science: A.-L. Barabasi: Linked, D.]. Watts: Six Degrees

Dorogovtsev & Mendes: Evolution of Networks

® Mark Newman,Albert-Laszlo Barabasi, & Duncan J.Watts: The Structure and
Dynamics of Networks (collection of key papers with editorial introductions)

Earlier network courses & exercises by me:
® http://www.lce.hut.fi/teaching/S-114.4150/
® https://noppa.tkk.fi/noppa/kurssi/s-114.4150
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