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E-R Random Networks: 
The Degree Distribution

• “If a random vertex is picked, 
what is the probability that its 
degree equals k?”

• Denote by pi(k) the probability 
that vertex i has degree k

• For the whole network

• For E-R networks, all vertices are 
alike, so pi(k) = P(k) for all i

• Erdös-Rényi networks:

(for large N)
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Average shortest path length 
in E-R networks

• Let us assume that there is a 
single connected component (a 
strong assumption, we’ll get back 
to this)

• Then for E-R networks

• The path length grows very 
slowly with network size; paths 
are short even for very large E-R 
networks

for comparison:

1D chain
2d lattice

ER networks

“E-R networks are 
infinite-dimensional”
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It’s A Small World!
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How Far Are You From Anyone Else?

Frigyes Karinthy: Chains (1929)

• Classic short story 

• Karinthy believed that the modern world was 'shrinking' due to ever-
increasing connectedness of human beings

• Excerpt: “A fascinating game grew out of this discussion. One of us suggested 
performing the following experiment to prove that the population of the 
Earth is closer together now than they have ever been before. We should 
select any person from the 1.5 billion inhabitants of the Earth—anyone, 
anywhere at all. 
He bet us that, using no more than five individuals, one of whom is a personal 
acquaintance, he could contact the selected individual using nothing except 
the network of personal acquaintances.”

• These ideas had a strong influence on social sciences

5Tuesday, January 5, 2010



Six Degrees of Separation

Stanley Milgram, 
"The Small World Problem", 
Psychology Today, 1967, Vol. 2, 60-67

• Milgram picked 296 individuals in 
Nebraska and Boston

• Everyone was given a letter to be 
delivered to a target individual in 
Massachusetts

• Instructions: “If you know the target 
person, give the letter to him, otherwise 
give it to someone who you think is 
closer to the target.”

• 64 letters reached the target, through 5.2 
intermediaries
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The Birth of Complex Networks Science:
Small-World Networks

D.J. Watts and S. Strogatz,
”Collective dynamics of 'small-world' networks", 
Nature 393, 440–442, 1998

• This paper practically launched
the science of complex networks

• Elaborates on the topic of short 
path lengths

• Probably the simplest model ever
published in Nature

• Has been cited >3500 times!!
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Small Worlds: Path Lengths Revisited

• E-R random networks: shortest path 
lengths

• Compatible with the six-degrees idea

• Turns out that path lengths in real-world 
networks are indeed short!

• Example networks in Watts & Strogatz 
(1998):

• Film actors: movie collaborations from the 
Internet Movie Database

• US power grid

• Neurons of C. Elegans, a tiny worm which is 
one of the model organisms in biology 

Network N <l> <lrand>

film actors 22500 3.65 2.99

US power grid 4941 18.7 12.4

C. Elegans neurons 282 2.65 2.25

• N = network size
• <l> = avg shortest path length
• <lrand> = -”- in E-R networks with same N, <k>
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The Clustering Coefficient

• Measures “cliquishness” in local network 
neighbourhoods, i.e. deviations from 
randomness

• “What is the probability that two of my 
friends are also friends?”

• Defined for node i (of degree ki) as the 
number of links between neighbours 
divided by the possible number of such 
links ki(ki-1)/2

•

Ei = # of
edges among
i’s neighbours

average of Ci 
for vertices
of degree k

average of Ci 
over the network

í
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Clustering Coefficient for E-R Networks

• The clustering coefficient

can be viewed as the probability that 
two neighbours of i are connected

• For E-R networks

(remember <k>=pN)

• Hence

(limit taken such that <k>=const)

• Large random networks are 
treelike - there is practically 
no clustering!
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Clustering in Real-World Networks

Network N <l> <lrand> <C> <Crand>

film actors 22500 3.65 2.99 0.79 0.00027

US power grid 4941 18.7 12.4 0.08 0.006

C. Elegans neurons 282 2.65 2.25 0.28 0.06

Average clustering coefficient values are orders 
of magnitude higher than in E-R networks!

Note: Nowadays one would not use E-R networks as the random reference, but construct 
random networks with the same degree sequence than in data. This would not change the 

results here, though.
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Summary: Path Lengths and Clustering in 
Real-World Networks

Random networks

short low

short high

long high

Real-world networks

Regular networks

shortest paths clustering

12Tuesday, January 5, 2010



The Watts-Strogatz Small World Model

• A simple model for interpolating 
between regular and random 
networks

• Randomness controlled by a single 
tuning parameter

The model:

• Take a regular clustered 
network

• Rewire the endpoint of each 
link to a random node with 
probability p
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Path lengths and clustering in the WS model

Clustering

Path lengths

The “Small-World” regime:
paths short, clustering high

W
atts &

 Strogatz, N
ature 3

9
3

, 440–442, 1998

14Tuesday, January 5, 2010



Dynamics on Small-World Networks

• Crucial observation: network 
structure heavily affects 
processes taking place on 
networks!

Examples:

• Spreading or contact processes: 
small number of shortcuts 
enormously speeds up the process

• Synchronization: shortcuts give rise 
to rapid synchronization of 
oscillators

1) Many real-world processes take 
place on networks: 

•disease spreading
•computer virus spreading
•cascading power grid failures
•information transmission
•metabolism, genetic regulation
•everything inside your brain

2) Network structure has 
important consequences on such 
processes

1) & 2) → To understand such 
processes it is imperative to 
understand the underlying 
networks!
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Example: Dynamics of Spreading (SI)

• Simplest possible model: 
Susceptible-Infected (SI)

• Initially all nodes susceptible

• Introduce an infected node

• Each infected node infects its 
susceptible neighbours, each with 
probability p per time step

t=0

t=1

t=2

SI in a regular ring lattice
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Example: Dynamics of Spreading (SI)
SI in a regular ring with added shortcuts

time

number of 
infected
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• More realistic model: 
Susceptible-Infected-Recovered 
(SIR)

• Each infected node infects its 
susceptible neighbours, each with 
probability p per time step

• Each infected node recovers and 
becomes immune with 
probability q per time step

• Three different outcomes: 
1) the disease dies out, 
2) the disease becomes endemic 
(doesn’t die, doesn’t spread), 
3) a large fraction of the system 
gets infected

• These depend on p, q, and 
network structure

Example: Dynamics of Spreading (SIR)
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DENSITY OF SHORTCUTS

3%

50 %

Example: Dynamics of Spreading (SIR)

At a critical fraction of 
shortcuts, the disease 
suddenly becomes an 

epidemic

Note: this fraction
depends on the spreading

model’s parameters
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Example: Dynamics of Neurons

• Roxin et al, Phys. Rev. Lett. 92, 198101 
(2004)

• Neurons obey integrate-and-fire 
dynamics: 

• Input from neighbours excites neuron
• Excitement fades with time
• If excited enough, fire a signal to 

neighbours
p=0.1

In a regime of shortcut densities,
the system starts oscillating
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Example: 
2D small world of excitable media

• Each element behaves like a neuron 
(integrate, fire, recover)

• Random shortcuts added on top of 
the 2D plane

• Different dynamics arise as 
function of shortcut density

S. Sinha, J. Saramäki, K. Kaski, cond-mat/0701121!

21Tuesday, January 5, 2010



The Erdös Number
• Erdös authored 512 publications

• “Collaborative distance” to Pál 
Erdös is known as the Erdös 
number

• Average number is less than 5, 
almost everyone with a finite 
number has a number <8

http://www.ams.org/mathscinet/collaborationDistance.html
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Scale-Free Networks
All Nodes Are Not Equal
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Degree Distributions, Again

• Erdös-Renyi: • Small-World 
Networks:

p=0

p=1

k

P(
k)

P(
k)
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Degree Distributions in Real-World Networks

A.-L. Barabási & R. Albert, 
Emergence of Scaling in Random Networks, Science 286, 509 (1999)
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Degree Distributions in Real-World Networks

actor 
collaborations

WWW links
in domain nd.edu

• Note the logarithmic axes:

Barabási, Albert, Science 286, 1999

26Tuesday, January 5, 2010



Power-Law Distributions

<k> = <k> = 4

power-law

Poisson
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Power-Law Distributions

<k> = <k> = 4

power-law

Poisson

The power-law 
distribution has 

a fat tail
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Power-Law Distributions

<k> = <k> = 4

power-law

Poisson

The power-law 
distribution has 

a fat tail

Thus there are 
always hubs - 

nodes with 
excessively high 

degrees
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Example: The Internet

K. Claffy
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More Real-World Examples

• Here, cumulative distributions 
have been plotted:

• For most real-world networks,

• However note that there are 
serious difficulties in estimating 
power-law exponents!

• There are also other 
distributions which look like 
power laws!

M
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Moments of Power-Law Distributions

• What are the consequences of 
different ranges of    ?

• First moment = mean = average 
degree <k>:

• Second moment = variance = 
<k2>:

<k> = ∞, <k2> = ∞

<k> finite, <k2> = ∞

<k> finite, <k2> finite

2

3 many
real-
world 
networks
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Scale-Free Networks

• Networks with power-law 
degree distributions are called 
scale-free networks

• This is because there is no 
characteristic scale in the 
distribution

• If degrees are rescaled, the form 
of the distribution does not 
change:

• For comparison, the Poisson 
distribution behaves like this:

⇒

power-law
Poisson
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Importance of hubs

Numerical experiment:

1. Take a connected network

2. Start removing vertices one by one

3. Keep track of the size of the largest 
connected component

• Do this such that 
a) Vertices are removed randomly,
b) Vertices are removed in order of 
degree, starting with the hubs

connected
network

some vertices
removed

more vertices
removed

network with
giant component
& separate clusters

network split
into small clusters
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Importance of hubs: error tolerance
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average size of separated
clusters
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0
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component size

= random removal

fraction of removed vertices

= high-k vertices first

the network
collapses here

s
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>
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0

2

0.2 0.4

Scale-free networks

[strictly speaking, this is
known to be true only
for uncorrelated SF
networks]

when high-k vertices
removed first (”attacks”),
SF nets break rapidly

when high-k vertices
removed first (”attacks”),
SF nets break rapidly

SF nets robust against
random removal (”errors”)

SF nets robust against
random removal (”errors”)

Albert, Jeong, Barabási, Nature 406, 378 (2000)
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The Role of Hubs

• This result indicates that scale-
free networks are very 
resilient to random 
damage

• E.g. the Internet is very robust against 
server breakdowns

• This has been suggested as one reason 
for the ubiquity of scale-freeness

• However, there is a cost: 
targeted attacks will easily 
destroy such networks!

• There are deep connections to 
many observed phenomena

• E.g. spreading of biological and 
electronic viruses - as long as 
hubs exist, these will always find 
a way to spread
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Where Do Networks Come From?

• For understanding network 
structure, the following point is 
essential:

• NATURAL NETWORKS ARE 
NOT STATIC OR IN 
EQUILIBRIUM!

• Instead, they are dynamic entities 
which are constantly growing 
and altering their wiring

• Of especial importance is the 
growth of networks

Network Changes due to

Social networks People being born & 
dying, people moving, ...

WWW New hyperlinks

Protein interactions Biological evolution

Scientific collaborations New scientists, 
new papers
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The Barabási-Albert Scale Free Model

• A model of network growth

• Based on the principle of 
preferential attachment - 
“rich get richer!”

• Yields networks with a power-
law degree distribution

1. Take a small seed network, 
e.g. a few connected nodes

2. Let a new node of degree m 
enter the network

3. Connect the new node to 
existing nodes such that the 
probability of connecting to 
node i of degree ki is

4. Repeat 2.-3. until N nodes.(average degree <k>=2m)
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(Early) Motivation for 
Preferential Attachment

• Websites with many hyperlinks are 
easily found, and so people tend to 
link to them

• Popular people get to know more 
people

• Important proteins interact with 
more and more proteins produced 
by evolution

Some prior similar models

• The Simon Model (1955)

• The Price Model (1976) for 
scientific citations 

…
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The BA model: properties

• Average shortest path lengths:

- “Ultrasmall worlds!”

• Clustering coefficient:

• The clustering coefficient is 
independent of degree, 
decreases with network 
size, and is unrealistically 
small for large networks!

• However, it is better than for E-R 
networks, where it is practically 
zero for networks of any size
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Other Scale-Free Network Models

• the Holme-Kim Model
– motivation: to get realistic

clustering

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Create a new vertex with
m edges

3. Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k (just like BA)

4. With probability p, connect the next edge to
a random neighbour of the vertex of step 3.,
otherwise do 3. again

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

probability p probability 1-p

1. preferential attachment

2A. connect to
neighbour
(implicit preferential 
attachment)

2B. preferential
attachment

for large N, ie clustering more 
realistic! This type of clustering is found
in many real-world networks.
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• Random walks (Vazquez,
Evans, yours truly, et al.)

– motivation: a ”local” explanation to
preferential attachment

– e.g. people learn to know people
through other people, which leads
to popular people without looking for
them

1. Take a small seed network

2. Create a new vertex with m edges

3. Pick a random vertex

4. Make a l-step random walk starting from
this vertex

5. Connect one of the edges of the new
vertex to wherever you are

6. Repeat 3.-5. or 4.-5. m times

7. Repeat 2.-6. until N vertices

1. Take a small seed network

2. Create a new vertex with m edges

3. Pick a random vertex

4. Make a l-step random walk starting from
this vertex

5. Connect one of the edges of the new
vertex to wherever you are

6. Repeat 3.-5. or 4.-5. m times

7. Repeat 2.-6. until N vertices

1. pick a starting point

2. make a walk (here of 2 steps)

3. make another 4. connect after m 
walks

Other Scale-Free Network Models
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Other Scale-Free Network Models

• the vertex copying model
(Kleinberg, Kumar):

– motivation: citations or WWW link
lists are often copied

– a ”local” explanation to
preferential attachment

– asymptotically SF with γ ≥ 3

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. Take a small seed network

2. Pick a random vertex

3. Make a copy of it

4. With probability p, move each edge of the
copy to point to a random vertex

5. Repeat 2.-4. until the network
has grown to desired size
of N vertices

1. copy a vertex

2. rewire edges with p
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• During evolution genes get 
accidentally duplicated

• A gene is duplicated = a node in the 
protein-protein interaction network 
is duplicated

• The duplicated gene can mutate more 
freely (no pressure to retain function)

• In terms of proteins, in course of time 
the duplicated protein loses some 
links and gains new ones

• This mechanism creates fat-tailed or 
scale-free degree distributions in 
protein-protein interaction networks!

Evolution of Genome: 
Duplication & Divergence
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Scale-Free Network Models: Summary

• For growing networks, 
preferential attachment 
yields power-law degree 
distributions

• To be exact, it has to be linear:

(If superlinear, “winner takes it all” and in the 
end one node has ALL the links! If sublinear, we 
get a stretched exponential degree distribution)

(if mixed, e.g. combination of linear preferential 
and random attachment, we get exponents 
larger than 3!)

• The fundamental model: Barabási-
Albert, where

• Several mechanisms lead to the 
preferential attachment principle!
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Generalized random graphs

• E-R networks: random with 
Poissonian degree distribution

• It may be useful to construct 
entirely random networks with a 
CHOSEN degree distribution 
p(k)

• Useful e.g. for comparisons:
• Take a real-world network
• Analyze it
• Generate an entirely random 

network with the same degrees
• Compare network 

characteristics (you’ll learn 
these later...)

• Why? To see if characteristics 
are not simply induced by 
degree distribution

• The configuration 
model:
• Take N vertices
• Assign a degree to each
• Join them randomly

i
j k

l

i
j

kl
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Generalized random networks

Recipe II
• Take a network
• Pick two random edges
• Exchange their endpoints
• Repeat
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Reading & Pointers
Review Papers

• M.E.J. Newman, The Structure and Function of Complex Networks, SIAM 
Review 45, 167-256 (2003)
• http://arxiv.org/abs/cond-mat/0303516

• Boccaletti et al, Complex networks: Structure and dynamics, Physics Reports 
424, 175 (2006)
• http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.7590&rep=rep1&type=pdf

Books
• Popular science: A.-L. Barabási: Linked, D.J. Watts: Six Degrees
• Dorogovtsev & Mendes: Evolution of Networks
• Mark Newman, Albert-László Barabási, & Duncan J. Watts: The Structure and 

Dynamics of Networks (collection of key papers with editorial introductions)

Earlier network courses & exercises by me:
• http://www.lce.hut.fi/teaching/S-114.4150/
• https://noppa.tkk.fi/noppa/kurssi/s-114.4150
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