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Definition and basic properties of prime numbers

If n has no divisor other than 1 and n, then n is called prime.

2,3,5,7,11,13, · · ·

Theorem (1. Euclid)
If p is a prime and p divides ab, then p divides a or p divides b.

The interest around 16th century was more on the properties of
individual primes.Example are

Theorem (2.)

If p does not divide a, then ap−1 − 1 is divisible by p.

Before stating other theorem, it is better to introduce a notation (of
congruance) due to Gauss.
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We say a ≡ b (mod m) if the diffrence between a and b is divisible by
m.

In the notation, Theorem 2 can be written as

Theorem (3.)

If a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

This was generalised by Euler; A special case of Euler’s theorem is

Theorem (4.)

If p and q are distinct primes and p and q do not divide a, then
a(p−1)(q−1) ≡ 1 (mod pq).

Remark
The most popular public key cryptosysten, called RSA (due to Rivest,
Shamir and Adleman) is based on Theorem 4.
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Some more properties of primes

Theorem (5. Euler)
If a 6≡ 0 (mod p), then

a
p−1

2

{
≡ 1 (mod p) if a ≡ x2 (mod p) for some x ,
≡ −1 (mod p)otherwise.

An important theorem, connecting the behaviour of two primes p and q
is quadratic reciprocity law (due to Gauss).

Theorem (Wilson)
(p − 1)! ≡ −1 (mod p).
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Number of primes =∞.

The interest shifted in the late 17th century, when number theorist
started studying the distribution of prime numbers.

We start with

Theorem (6. Euclid)
These are infinitely many prime numbers.

The proof, given by Euclid is a “proof from the book”.

Proof.
If p1,p2, · · · pr are the only primes, consider the number

N = p1,p2, · · · pr + 1.

Since every number has a prime factor, N also has a prime factor and
the primes p1,p2, · · · pr can not be prime factors of N. Hence there
exists atleast one more prime.
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Euler’s proof: Number of primes =∞.

There was no progress on the problem of studying the distribution of
primes till the time of Euler. Euler provided a different proof of the fact
that there are infinitely many primes.

Consider for any real number s,

∏
p

(
1− 1

ps

)−1

=

(
1 +

1
2s +

1
22s + · · ·+

)(
1 +

1
3s +

1
32s + · · ·

)
· · ·

When we multiply out, we get terms of the form 1
(p

α1
1 p

α2
2 ···pαr n)

s .This

means, because of unique factorization, the product is a sum of the
elements of the form 1

ns each appearing once. This proves

Theorem (7. Euler’s identity)∑∞
n=1

1
ns =

∏
(1− 1

ps )−1 (= ζ(s)) if s > 1.
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Euler’s proof contd.

We can now deduce Th.6 from Th.7: For example, by putting s = 2, we
get
π2

6 =
∏

p(1− 1
p2 )−1 and hence it can not be a finite product.

Better still: Put s = 1 + ε, and ε→ 0.
Then

∞ =
∑

n

1
ns =

∏
p

(
1− 1

p

)−1

and hence it is not a finite product.
Incidentally this proves that ∑

p

1
p

=∞.

Hence there are “more” primes than squares.
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Number of primes: Conjectures of Gauss

Now a natural question is: How many primes are there upto N?

π(N) = # of primes up to N.

It was conjectured, both on numerical evidences and probablistic

considerations, that π(N) is around N
log N . (Incidentally, we do not know

any exact formula for π(N) and we do not even expect to have one).

Gauss felt that N
log N is a good approximation to π(N) and

li(N) =
∫ N

2
dt

log t is a better approximation.

(He even postulated that π(N) < li(N) for all N. This was proved false
by J.E. Littlewood).
Since li(N) is a “difficult” function to handle, one considers

ψ(N) = the primesp upto N counted with a weight by log p.

Then π(N) ∼ li(N) is same ψ(N) ∼ N. This statement is called Prime
Number Theorem.
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Work of Riemann

Riemann initiated a study of Prime Number theorem.

He started with the Euler’s identity (for a complex variables)
continued ζ(s) meromorphically throughout the complex plane
and gave a proof of prime number theorem (with a minor gap in
the proof).

Incidentally this is the only article he work on Prime Number Theory
and all the later developments on Prime Number Theory crucially
depend on this work.

The minor gap was fixed by Jacques Hadamard and
de la Valée Poussin in 1898 - 1899 independently and Prime Number
was proved.
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Primes in an arithmetic progression

Let A = (a,a + d ,a + 2d ,a + 3d , · · · ) be an arithmetic progression.

Question
Whether there are infinitely many primes in A?

Obvious constraints
A = {9 (mod 15)} = (9,24,39,54,69, · · · ). Here every number is
divisible by 3 and hence it contains no primes.
A = {3 (mod 15)} has exactly one prime.

If we ignore such exceptions, then every A has infinitely many primes.
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Theorem (Dirichlet)
If a and d have no common factors, then A = {a (mod d) has infinitely
many primes.

Infact if d ≤ (log x)100, then the number of primes ≤ x , which are in A
is around

1
φ(d)

x
log x

,

where φ(d) is the Euler’s totient function, defined as the number of
integers less than d , having no common factor with d .

The result is proved using the analytic properties of the functions of the
following kind. ∑

n

χ(n)

ns ,

where χ : Z→ C∗ is a periodic function with period d and satisfies
χ(nm) = χ(n)χ(m).
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Additive Number theory

One would like to know whether an integer can be written as a sum of
integers of special form and if so, how many summands are needed?

(Langrange’s theorem): Every integer can be written as a sum of
atmost 4 squares.

Eg:
89 = 92 + 22 + 22

103 = 102 + 12 + 12 + 12

(Fermat)(a) If a prime p is of the form 4k + 1, then it can be written
as a2 + b2.
(b)If a prime p is of the form 4k + 3, then it can not be written as
a2 + b2.

Proof of (b) is easy. First note that every square is of the form 4k or
4k + 1. Hence sum of two squares can only be of the form 4k or
4k + 1 or 4k + 2.
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Theorem
A positive integer n can be written as x2 + y2, if and only if

n = 2apb1
1 pb2

2 · · · p
br
r q2c1

1 · · · q2c2
2 · · · qcs

s ,

where p’s are primes of the form 4k + 1 and q’s are primes of the form
4k + 3.

In other words, in the prime factorisation of n, 2 and p can appear to
any power. But q’s appear only with even power.

Theorem
If an integer n is not of the form 4k (8l + 7), then it can be written as
a2 + b2 + c2.
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Goldbach Conjecture

Goldbach’s conjecture is an interesting example of a problem in
additive number theory, involving prime numbers.

Conjecture
Every even number ≥ 6 is a sum of two prime numbers;

2n = p1 + p2.

This conjecture (with a few related conjectures) appeared in a letter by
Goldbach to Euler on June 17, 1742.

It seems that this conjecture was observed by Descartes even earlier.
Still (as remarked by Erdös), we shall continue to call this Goldbach’s
conjecture.
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Probabilistic evidence

Given any n consider all the solution of the equation

2n = a + b (1)

with a,b ≥ n
2 . There are n such solution.

The probability that a is prime is around 1
log n . Therefore the probabilty

that both a and b are primes is around 1
log2 n

. Hence there are atleast
c n

log2 n
solutions of (1) with both a and b primes. We need to prove that

there is at least one such presentation.
When we relook at the above argument, one has some misgivings. For
example it shows that any odd integer can be also written as a sum of
two primes. However sice primes are odd (except for one of them, an
oddity), it is not possible that 2N + 1 can be written as a sum of two
primes.
Hardy and Littlewood formulated a conjecure which takes care of local
obstructions and in particular gives a number of ways an integer can
be written as a sum of two primes.
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Numerical evidence

Jean-Marc Deshouillers; te Riele, H.J.J. and Saouter, Y. in 1998
showed that conjecture is true if n ≤ 1014.

Oliveira e Silva in 2008 showed that the conjecture is true if
n ≤ 12× 1017.
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Methods of attack: Additive combinatorics

If A,B ⊂ [1,N] we set

A + B = {x ∈ Z : x = a1 + b1 for some a1 ∈ A,b1 ∈ B}.

Suppose one knows the lower bound for the cardinality of A,B then
one can try to get a lower bound for the cardinality of A + B;
Particularly of one knows that if r(n) is the number of ways of writing n
as a + b, then r2(n) is small (at least on average), then |A + B|
becomes very large.
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Given A ⊂ N we write A(n) to denote the number of elements a ∈ A
with a ≤ n.

Theorem (Mann)
If A(n) ≥ αn and B(n) ≥ βn then

(A + B)(n) ≥ (α+ β)n ∀n.

Using this Ramaré and Saouter showed that every even integer is a
sum of at most 6 primes.

Ramaré and Saouter: Every odd inetger upto 1.13× 1022 is a sum of 3
primes.
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Methods of attack: Circle method

So far the best method of attack for Goldbach conjecture seems to be
circle method.

This method was developed by Hardy and Ramanujan to get the
approximate value of partition function p(n).

The method has been successively used to solve the universal
Waring’s problem (Hardy-Littlewood, Davenport, Vinogradov,
Thanigasalam, Vaughan).
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Description of circle method for Goldbach problem

Let I(N) =

∫ 1

0

∑
p≤N

e2πipα

2

e−2πiNαdα =

∫ 1

0

∑
p1,p2≤N

e2πi(p1+p2−N)αdα.

Since we have ∫ 1

0
e2πinαdα =

{
0 if n 6= 0,
1 if n = 0.

,

we have
I(N) = #{(p1,p2) : N = p1 + p2}.

The integrand is big when α is very close to a rational number with a
small denominator and small otherwise.
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Evaluation of the integral in a close neighbourhood of rational numbers
with small denominator gives the contribution of the order of N

log2 N
.

If one can prove the rest of the contribution is neglible, one has the
result. This method has enabled one to prove.

(Vinogradov 1937) 2N + 1 = p1 + p2 + p3 if N ≥ N0.

(Chen and Wang 1989) The value of N0 in above theorem may be
taken as 1043000.

(Deshouillers, Effinger, Riele, Zinoviev 1997) Assuming
Generalised Riemann Hypothesis (GRH) we may take N0 = 3

Ramaré and Saouter established that every odd integer upto
1.13× 1022 is a sum of three primes.
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Using “Sieve methods” Chen established that 2N = p1 + n, where p1 is
prime and n has atmost 2 prime factors.

K. Ramachandra showed that given a sufficiently large x , any interval
[x , x + x7/12] contains an even integer which can be written as a sum
of two primes.

Montgomery and Vaughan showed that the number of even natural
numbers which are ≤ x and can not be written as a sum of two primes
is at most x1−c , where c > 0 is an absolute constant.
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