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Model fitting and inference for infectious disease dynamics

Parameter estimation
Given a model, what are the parameter combinations that best
fit the data (in whichever way)

Why are we doing this?

• Learn something about the system
• test a scientific hypothesis

• e.g., why did the UK H1N1 epidemic wane in summer
2009? (Dureau et al., 2013)

• estimate parameters
• e.g. which fraction of infections with cholera in Bangladesh

are asymptomatic? (King et al., 2008)
• sometimes in real time

• Validate the model
• especially: for prediction
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State estimation
Given what we observe, what is the state of the sytem?
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2. Linking models to data
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• eyeballing
• absolute distance
• squared distance
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Probabilistic formulation

• We can think of the relationship between the model and
data as probabilistic

• For example, often we know something about how the
data were taken → observations introduce uncertainty

• We can express the uncertainty in observing the process
as a probability p(data|underlying process)

• By including this in our model, we get
p(data|model output)



Interlude: probabilities I

Probability theory is nothing but common sense
reduced to calculation.

Laplace, 1812
• If A is a random variable, we write p(A = a) for the

probability that A takes value a.
• We often write p(A = a) = p(a)
• Example: The probability that it rains tomorrow

p(W = rain) = p(rain)
• Normalisation

∑
a p(a) = 1



Interlude: probabilities II

• If A and B are random variables, we write
p(A = a,B = b) = p(a, b) for the joint probability that A
takes value a and B takes value b

• Example: The probability that it rains tomorrow and India
wins at the cricket p(W = rain,C = India) = p(rain, India)

• We can obtain a marginal probability from joint
probabilities by summing p(a) =

∑
b p(a, b)



Interlude: probabilities III

• The conditional probability of getting outcome a from
random variable A, given that the outcome of random
variable B was b, is written as p(A = a|B = b) = p(a|b)

• Example: the probability that India wins at the cricket,
given that it rains p(C = India|W = rain) = p(India|rain)

• Conditional probabilities are related to joint probabilities
as p(a|b) = p(a,b)

p(b)
• We can combine conditional probabilities in the chain rule

p(a, b, c) = p(a|b, c)p(b|c)p(c)



Probability distributions (discrete)
• E.g., how many people die of horse kicks if there are 0.61

kicks per year
• Described by the Poisson distribution
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Evaluating under the (Poisson) probability distribution
• E.g., how many people die of horse kicks if there are 0.61

kicks per year
• Described by the Poisson distribution
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[1] 0.1010904
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Generating a random sample (Poisson distribution)
• E.g., how many people die of horse kicks if there are 0.61

kicks per year
• Described by the Poisson distribution
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Probability distributions (continuous)
• Extension of probabilities to continuous variables
• E.g., the temperature in Chennai tomorrow
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Evaluating under the (normal) probability distribution
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[1] 0.0004363413

Two directions

1. Evaluate the probability (density)
2. Randomly sample



Generating a random sample (normal distribution)
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Example: observation uncertainty

SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5 per day.
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Example: observation uncertainty
SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5 per day.

At day 10, 18 cases observed, 31.1 cases in the model.
p(data point 10|θ) = 0.078

Multiply across the data to get the full trajectory likelihood.
p(data|θ) =

∏
i p(data point i|θ)



Example: observation uncertainty
SIR model, assume that cases are detected with independent
reporting probability ρ = 0.5 per day.

At day 10, 18 cases observed, 31.1 cases in the model.
p(data point 10|θ) = 0.078

Sum across the data to get the full trajectory log-likelihood.
log(p(data|θ)) =

∑
i log(p(data point i|θ))



 



 



The likelihood

• We have argued that it makes sense to write
p(data|model output)

• For a given model the output depends on the parameters
θ. So we can write p(data|θ) (note: θ encompasses all
parameters; e.g., θ = {β, γ})

• This is called the likelihood of parameters θ

• likelihoods can span a wide range of orders of magnitude,
which can lead to numerical problems

Solution: take the logarithm to get the log-likelihood
log p(data|θ) =

∑
i log p(data point i|θ)



Frequentist vs Bayesian inference

Frequentist inference:

• there are true parameters in the world, the uncertainty
comes from the data

• this is encoded in the likelihood: p(data|θ)
• in inference, I try to estimate these parameters
• probabilities express outcomes of repeated experiments

Bayesian inference

• there are no true parameters, the data are true; uncertainty
is in parameters / hypotheses

• this is encoded in the posterior: p(θ|data)
• probabilities express my belief in a given parameter
• the posterior is interpreted as the probability distribution of

a random variable θ
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3. Bayesian inference



Bayes’ rule

• We said that in Bayesian inference, we need to calculate
p(θ|data). Applying the rule of conditional probabilities, we
can write this as

p(θ|data) = p(data|θ)p(θ)
p(data)

• p(θ|data) is the posterior
• p(data|θ) is the likelihood
• p(θ) is the prior
• p(data) is a normalisation constant
• In words, (posterior) ∝ (normalised likelihood) × (prior)



Prior probabilities

• p(θ) quantifies our degree of belief via a probability
distribution before confronting the model with data: p(θ)
E.g., from previous measurements, literature, experts etc.

• Example: R0 of measles

Hooker et al. 2011

He et al. 2010

Metcalf et al. 2009

Mossong and Muller 2000

Ferrari et al. 2008

Bjornstad et al. 2002

Wallinga et al. 2001

Farrington et al. 2001

Edmunds et al. 2000

Grais et al. 2006

Anderson and May 1990

0 10 20 30 40 50

R0



Example: estimating R0 of measles



Example: prior for estimating R0 of measles



Example: posterior for estimating R0 of measles



Expectation values

Bayesian statistics

• Parameter(s) θ are interpreted as a random variable,
distributed according to the posterior.

p(θ|data) ∝ p(data|θ)p(θ)

• To calculate the expected value of any quantity given the
data, we integrate over p(θ)

E[A] =
∫

p(θ|data)X(θ)dθ

• For example, in an SIR, if we know p(β, γ), we can
calculate the expected value of R0

E[R0] =
∫

p(β, γ|data)βγ dβdγ



Sample approximation

• How do we find an expression for p(β, γ|data)? Generally,
this is impossible.

• Instead, we can use a Monte-Carlo approximation:

∫
f(x)p(x)dx ≈

∑
x

p(x)f(x)

• Or: draw N samples from p(x) and calculate

∫
f(x)p(x)dx ≈ 1

N
∑

x ∼ p(x)
f(x)
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4. Monte-Carlo sampling



Rejection sampling

• Consider a distribution f (✓),which
we can evaluate for any ✓

• How do we draw samples?



Rejection sampling

Rejection sampling uses a proposal
distribution q(✓) which:

• is simple to evaluate
• is easy to sample from
• one can find M > 1 such that
f (✓) < Mq(✓) for all ✓



Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

Draw u ⇠ Uniform[0,Mq(✓⇤)]

Evaluate f (✓⇤)

If f (✓⇤) > u accept, else reject

Repeat steps 1-4



Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

Evaluate f (✓⇤)

If f (✓⇤) > u accept, else reject

Repeat steps 1-4



Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

If f (✓⇤) > u accept, else reject

Repeat steps 1-4



Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

Repeat steps 1-4



Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS7.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS8.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS9.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS10.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS11.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS12.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS13.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS14.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS15.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS16.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS17.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS18.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS19.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS20.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS21.png


Rejection sampling

The algorithm proceeds as follows:

1. Sample ✓⇤ from q(✓)

2. Draw u ⇠ Uniform[0,Mq(✓⇤)]

3. Evaluate f (✓⇤)

4. If f (✓⇤) > u accept, else reject

5. Repeat steps 1-4

RS22.png


Rejection sampling

• Rejection sampling works best if
q(✓) ⇡ f (✓) (M ' 1)

• Acceptance rate of rejection
sampler is 1

M

• Requiring f (✓) < Mq(✓) for all ✓
can make rejection rate v. high

• Even more limited in high
dimensions



Markov Chain Monte Carlo

• In Markov Chain Monte Carlo (MCMC) we do not define one
proposal density q(✓) such that f (✓) < Mq(✓).

• Rather we build up a chain of samples where each proposed
✓⇤ depends on the previous one

i.e the proposal density takes the form q(✓⇤|✓)

• A commonly used MCMC algorithm is Metropolis-Hastings
(M-H).

• The acceptance rate of M-H is carefully derived to ensure
unbiased samples.



Metropolis-Hastings

The algorithm proceeds as follows:

1. Initialise ✓0, set ✓ = ✓0

Sample ✓⇤ ⇠ q(✓⇤|✓)
Compute acceptance probability, r

Draw u ⇠ Uniform[0, 1]

Set new sample to

✓(s+1) =

(
✓⇤, if u < r

✓(s), if u > r

Repeat steps 2-5
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(
✓⇤, if u < r

✓(s), if u > r

Repeat steps 2-5



Metropolis-Hastings

The algorithm proceeds as follows:

1. Initialise ✓0, set ✓ = ✓0

2. Sample ✓⇤ ⇠ q(✓⇤|✓)
3. Compute acceptance probability, r

4. Draw u ⇠ Uniform[0, 1]

5. Set new sample to

✓(s+1) =

(
✓⇤, if u < r

✓(s), if u > r

6. Repeat steps 2-5



Choosing a proposal distribution

If variance is too small, the chain will be slow to reach the target
distribution.



Choosing a proposal distribution

If variance is too high, many proposed values will be rejected and
the chain will stick in one place for many steps.



Choosing a proposal distribution

If variance is just right, the chain will efficiently explore the full
shape of the target distribution.

Try several different proposal distributions (pilot runs), aiming for
an acceptance rate between 24% and 40%.





5. Summary



Summary

• Likelihood as p(data|θ) to express closeness of model to
data

• Bayesian inference:
(posterior) ∝ (normalised likelihood) × (prior)

• To estimate quantities or project into the future, need to
calculate E[A] =

∫
p(θ|data)X(θ)dθ

• Monte Carlo sampling as a method to calculate this
• Metropolis-Hastings Markov-Chain Monte Carlo method



 



Tomorrow: Try it yourself in the lab


