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THE MIDDLE AGES

Nearly two-thirds of 

the European 

population were 

affected by the 

plague.

Public health 

initiatives were 

developed to stop 

the spread of the 

disease.

HISTORY OF INFECTIOUS DISEASES

THE RENAISSANCE

Rebirth of thinking 

led to critical 

observations of 

disease outbreaks.

Data was studied for 

the purpose of 

understanding health 

status.

INDUSTRIAL AGE

Industrialization led 

to over crowding, 

poor sanitation and 

subsequent 

epidemics.

Policy makers began 

addressing health 

problems and 

sanitation.

20TH CENTURY

Discovery of Penicillin.

Social reform shaped 
health and human 
services.

Increased vaccination 
aided against 
childhood diseases.

21ST CENTURY

Human Genome 
Project completed.

New and 
emerging diseases: 
SARS, H1N1, 
Chikungunya.

Tracking diseases 
through social 
media.

500-1300 1300-1700 1700-1900 1900-2000 2000-Present

1918 Pandemic: 50 million deaths in 2 years
(3-6% world pop) Every country and
community was effected

Good news: Pandemic of
1918 lethality is currently
unlikely Governments
better prepared and
coordinated: e.g. SARS
epidemic. But ..

Planning & response to
even a moderate outbreak
is challenging: inadequate
vaccines/anti-virals,
unknown efficacy, hard
logistics issues

Modern trends complicate
planning: increased travel,
immuno-compromised
populations, increased
urbanization
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Epidemics and epidemiology in history



Editorial, Fineberg and Harvey, Science, May 2009: Epidemics
Science in Real-Time

Five areas: (i) Pandemic risk, (ii) vulnerable populations, (iii) available
interventions, (iv) implementation possibilities & (v) pitfalls, and public
understanding.

www.sciencemag.org SCIENCE VOL 324 22 MAY 2009 987
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EDITORIAL

Epidemic Science in Real Time
FEW SITUATIONS MORE DRAMATICALLY ILLUSTRATE THE SALIENCE OF SCIENCE TO POLICY THAN AN
epidemic. The relevant science takes place rapidly and continually, in the laboratory, clinic, and

community. In facing the current swine flu (H1N1 influenza) outbreak, the world has benefited

from research investment over many years, as well as from preparedness exercises and planning in

many countries. The global public health enterprise has been tempered by the outbreak of severe

acute respiratory syndrome (SARS) in 2002–2003, the ongoing threat of highly pathogenic avian

flu, and concerns over bioterrorism. Researchers and other experts are now able to make vital con-

tributions in real time. By conducting the right science and communicating expert judgment,

scientists can enable policies to be adjusted appropriately as an epidemic scenario unfolds. 

In the past, scientists and policy-makers have often failed to take advantage of the opportu-

nity to learn and adjust policy in real time. In 1976, for example, in response to a swine flu out-

break at Fort Dix, New Jersey, a decision was made to mount a nationwide

immunization program against this virus because it was deemed similar

to that responsible for the 1918–1919 flu pandemic. Immunizations were

initiated months later despite the fact that not a single related case of

infection had appeared by that time elsewhere in the United States or the

world (www.iom.edu/swinefluaffair). Decision-makers failed to take

seriously a key question: What additional information could lead to a dif-

ferent course of action? The answer is precisely what should drive a

research agenda in real time today.

In the face of a threatened pandemic, policy-makers will want real-

time answers in at least five areas where science can help: pandemic risk,

vulnerable populations, available interventions, implementation possi-

bilities and pitfalls, and public understanding. Pandemic risk, for exam-

ple, entails both spread and severity. In the current H1N1 influenza out-

break, the causative virus and its genetic sequence were identified in a matter of days. Within a

couple of weeks, an international consortium of investigators developed preliminary assess-

ments of cases and mortality based on epidemic modeling.* 

Specific genetic markers on flu viruses have been associated with more severe outbreaks. But

virulence is an incompletely understood function of host-pathogen interaction, and the absence

of a known marker in the current H1N1 virus does not mean it will remain relatively benign. It

may mutate or acquire new genetic material. Thus, ongoing, refined estimates of its pandemic

potential will benefit from tracking epidemiological patterns in the field and viral mutations in

the laboratory. If epidemic models suggest that more precise estimates on specific elements such

as attack rate, case fatality rate, or duration of viral shedding will be pivotal for projecting pan-

demic potential, then these measurements deserve special attention. Even when more is learned,

a degree of uncertainty will persist, and scientists have the responsibility to accurately convey the

extent of and change in scientific uncertainty as new information emerges.

A range of laboratory, epidemiologic, and social science research will similarly be required

to provide answers about vulnerable populations; interventions to prevent, treat, and mitigate

disease and other consequences of a pandemic; and ways of achieving public understanding that

avoid both over- and underreaction. Also, we know from past experience that planning for the

implementation of such projects has often been inadequate. For example, if the United States

decides to immunize twice the number of people in half the usual time, are the existing channels

of vaccine distribution and administration up to the task? On a global scale, making the rapid

availability and administration of vaccine possible is an order of magnitude more daunting.

Scientists and other flu experts in the United States and around the world have much to

occupy their attention. Time and resources are limited, however, and leaders in government

agencies will need to ensure that the most consequential scientific questions are answered. In the

meantime, scientists can discourage irrational policies, such as the banning of pork imports, and

in the face of a threatened pandemic, energetically pursue science in real time.

– Harvey V. Fineberg and Mary Elizabeth Wilson

10.1126/science.1176297

*C. Fraser et al., Science 11 May 2009 (10.1126/science.1176062).
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Modeling before an
epidemic

(i) Determine the
(non)medical interventions
required, (ii) feasibility of
containment, (iii) optimal
size of stockpile, (iv) best
use of pharmaceuticals
once a pandemic begins

Modeling during an
epidemic

(i) Quantifying
transmission parameters,
(ii) Interpreting real-time
epidemiological trends, (iii)
measuring antigenic shift
and (iv) assessing impact
of interventions.
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many countries. The global public health enterprise has been tempered by the outbreak of severe

acute respiratory syndrome (SARS) in 2002–2003, the ongoing threat of highly pathogenic avian

flu, and concerns over bioterrorism. Researchers and other experts are now able to make vital con-

tributions in real time. By conducting the right science and communicating expert judgment,

scientists can enable policies to be adjusted appropriately as an epidemic scenario unfolds. 

In the past, scientists and policy-makers have often failed to take advantage of the opportu-

nity to learn and adjust policy in real time. In 1976, for example, in response to a swine flu out-

break at Fort Dix, New Jersey, a decision was made to mount a nationwide

immunization program against this virus because it was deemed similar

to that responsible for the 1918–1919 flu pandemic. Immunizations were

initiated months later despite the fact that not a single related case of

infection had appeared by that time elsewhere in the United States or the

world (www.iom.edu/swinefluaffair). Decision-makers failed to take

seriously a key question: What additional information could lead to a dif-

ferent course of action? The answer is precisely what should drive a

research agenda in real time today.

In the face of a threatened pandemic, policy-makers will want real-

time answers in at least five areas where science can help: pandemic risk,

vulnerable populations, available interventions, implementation possi-
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ple, entails both spread and severity. In the current H1N1 influenza out-

break, the causative virus and its genetic sequence were identified in a matter of days. Within a

couple of weeks, an international consortium of investigators developed preliminary assess-
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Specific genetic markers on flu viruses have been associated with more severe outbreaks. But
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of a known marker in the current H1N1 virus does not mean it will remain relatively benign. It

may mutate or acquire new genetic material. Thus, ongoing, refined estimates of its pandemic

potential will benefit from tracking epidemiological patterns in the field and viral mutations in
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avoid both over- and underreaction. Also, we know from past experience that planning for the

implementation of such projects has often been inadequate. For example, if the United States

decides to immunize twice the number of people in half the usual time, are the existing channels

of vaccine distribution and administration up to the task? On a global scale, making the rapid

availability and administration of vaccine possible is an order of magnitude more daunting.

Scientists and other flu experts in the United States and around the world have much to

occupy their attention. Time and resources are limited, however, and leaders in government

agencies will need to ensure that the most consequential scientific questions are answered. In the

meantime, scientists can discourage irrational policies, such as the banning of pork imports, and
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Modeling before an
epidemic

(i) Determine the
(non)medical interventions
required, (ii) feasibility of
containment, (iii) optimal
size of stockpile, (iv) best
use of pharmaceuticals
once a pandemic begins

Modeling during an
epidemic

(i) Quantifying
transmission parameters,
(ii) Interpreting real-time
epidemiological trends, (iii)
measuring antigenic shift
and (iv) assessing impact
of interventions.
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Epidemic science in real-time



Model of 
disease 
spread

Simulations 
& analysis

Models of 
population & 

network 

Prediction, 
calibration, 
validation

Data
- Syndromic 
Surveillance
- Social media
- Surveys
- Built 
infrastructure

Situation 
Assessment, 
Consequence 

analysis and policy 
planning

- Forecasting
- Interventions, e.g. 
vaccinations, social 
distancing, sequestration
- resource allocation and 
logistics
- contact tracing and 
inference

Modeling, characterization and analysis:
Will there be a big outbreak? Has it peaked?
Mathematical models of disease spread and efficient simulation tools
for analysis

Prediction, calibration and validation:
Learn parameters of disease model, and individual effects

Situational assessment and policy planning:
Interventions to control outbreak: Whom to vaccinate? Should we
close schools,
Surveillance and parameter refinement, adaptive control

5 / 49

Key elements of computational epidemiology



Mathematical models for epidemic spread

Intervention design as optimization problems

Social objective: designing interventions to minimize outbreak
(centralized)
Social objective with limited compliance: group level interventions
(partially centralized)
Individual level objective: game-theoretical interventions
(decentralized)
Combining individual and social objectives: anti-viral distribution
problem
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Outline



Mathematical	
  
Models	
  for	
  

Epidemiology	
  

Differential	
  Equation	
  
Based	
  

[Hethcote:	
  SIAM	
  
Review]	
  

ODE’s	
  [Bernoulli,	
  
Ross,	
  McDonald,	
  

Kermack,	
  
McKendrick	
  

Stochastic	
  ODE’s	
  	
  

[Bartlett,	
  Bailey,	
  
Brauer,	
  Castillo-­‐

Chavez]	
  
Spatially	
  explicit	
  

Patch-­‐based	
   Cellular	
  	
  automata	
  

Network-­‐Based	
  
Modeling	
  

[Keeling	
  et	
  al.]	
  

	
  Random	
  net.	
  
[Barabasi,	
  	
  Meyer,	
  
Britton,	
  	
  Newman,	
  
Meyer,	
  	
  Vespignani]	
  

Template-­‐based	
  
Realistic	
  Social	
  Net.	
  

	
  [NDSSL,	
  Salathe,	
  ]	
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Classifying formal models



S I R 

Assumption: complete mixing
among population of size N

ds

dt
= −βis

di

dt
= βis − γi

dr

dt
= γi

Individuals in states Susceptible (S), Infected (I) or
Resistant/Recovered (R).

Epidemic characterized by reproductive number R0

Large epidemic if R0 > 1
Modeling epidemic = estimating R0

Controlling epidemic: reducing R0

Limited use in large realistic populations

Does not capture heterogeneity in population
Extensions using compartmental models with mixing parameters, but
becomes hard to analyze
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Mass action compartmental Models



Compartmental models have been immensely successful over the last
100 years – (i) workhorse of mathematical epidemiology, (ii) easy to
extend and quick to build; (iii) good solvers exist, simple ones can be
solved analytically; (iv) mathematical theory of ODEs is well
developed

SARS was estimated to have R0 ∈ [2.2, 3.6]1

Though it spread across many countries, small number of infections
Estimates were based on infections in crowded hospital wards, where
complete mixing assumption was reasonable

Compartmental models lack agency and heterogeneity of contact
structure

True complexity stems from interactions among many discrete actors
Each kind of interaction must be explicitly modeled
Refinement is difficult

Human behavioral issues – Inhomogeneous compliance; changes in
the face of crisis

Harder to design implementable interventions.
1Lipsitch et al., Science, 2003; Riley et al., Science, 2003
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Pros and cons of compartmental models



Fixed point: R = {1, 2, 3} and S = {4}
p(1, 3)(1− p(1, 2))p(2, 3)(1− p(2, 4))(1− p(3, 4))

Each node is in states S (susceptible), I (infectious) or R (recovered)

Time is discrete

Each infected node u spreads the infection independently to each
susceptible neighbor v with probability p(u, v)

Infected node u recovers after 1 time step

Fixed point: all nodes in states S or R

10 / 49

Networked epidemiology: Discrete time SIR
model on a network



Phase transition for SIR model shown in many graph models: there
exists a threshold pt such that few infections if p < pt but large
outbreak if p > pt

Technique: mainly extends branching process

Clique on n nodes2: pt = 1/(n − 1)

Lattice Zd : pt → 1/(2d), as d →∞
Random d-regular graphs: pt = 1/d

Not well understood in general graphs

Partial characterization in finite regular expander graphs with high
girth3

Characterization in terms of the second moment4

2Erdős and Rényi, 1959
3Alon, Benjamini and Stacey, 2001
4Chung, Horn, Lu, 2009
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Dynamics of the SIR model: impact of network
structure



Given (maybe?)

A social network G (V ,E )

Initial infected set A

Budget B

Stochastic model for disease spread

Objective(s)

Choose S ⊆ V to vaccinate so that |S | ≤ B, and expected #infected
nodes is minimized

Other objectives

Reduce the epidemic duration
Reduce peak
Delay epidemic

Individual compliance depends on their utilities
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Interventions as optimization problems



Pharmaceutical interventions (PI)

use of prophylactic vaccinations and anti-viral drugs

modeled as node deletions
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Interventions



Non Pharmaceutical interventions (NPI)

Reducing contacts by social distancing, school or work place closure,
or isolation.

Modeled as edge deletions
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Interventions



Resource constraints, e.g., budget for vaccines to use

Complex and multiple objective functions, e.g., expected outbreak
size, peak size and duration

Need multi-criteria optimization

Implementability and compliance

Interventions should be described succinctly
Individual vs social good

Computationally very hard problems

Computing basic properties related to epidemics (e.g., probability that
a node gets infected) is #P-hard in network models
Optimization problems NP-hard even for very simplistic settings (e.g.,
SI model or simple contagion)
Simplistic brute-force methods are unlikely to scale to realistic networks
Metaheuristics do not give any insights into how well they perform
(relative to the best possible).
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Different kinds of issues in studying
interventions as optimization problems



Mathematical models for epidemic spread

Intervention design as optimization problems

Social objective: designing interventions to minimize outbreak
(centralized)
Social objective with limited compliance: group level interventions
(partially centralized)
Individual level objective: game-theoretical interventions
(decentralized)
Combining individual and social objectives: anti-viral distribution
problem

Our approach

Formalize interventions in terms of network structure

16 / 49

Outline



Nodes in Susceptible (S) or Infectious (I) states

Each infected node spreads infection to each susceptible neighbor
with rate β

Each infected node becomes susceptible with rate δ

ρ(A): spectral radius of adjacency matrix A

T = δ/β

Generalized isoperimetric constant: η(G ,m) = infS⊂V ,|S |≤m
|E(S ,S̄)|
|S |

Spectral radius
ρ(A) = maxx xTAx/xx

Avg degree ≤ ρ(A) ≤ ∆(G ),
where ∆(G ) is the
maximum node degree

S

η(G , 6) ≤ 2/6
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Dynamics in the SIS model: preliminaries
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Dynamics in the SIS model: preliminaries



ρ(A): spectral radius of adjacency matrix A

T = δ/β

Generalized isoperimetric constant: η(G ,m) = infS⊂V ,|S |≤m
E(S ,S̄)
|S |

If ρ(A) < T : epidemic dies out “fast”

If η(m) > T : epidemic lasts “long”

Similar implications but different assumptions, extended to SEIR models5

6

5BA Prakash, D Chakrabarti, M Faloutsos, N Valler, C Faloutsos. Knowledge and
Information Systems, 2012

6Y. Wang, D. Chakrabarti, C. Wang and C. Faloutsos, ACM Transactions on
Information and System Security, 2008.

7A. Ganesh, L. Massoulie and D. Towsley, IEEE INFOCOM, 2005
18 / 49

Dynamics in the SIS model (informal) spectral
characterization7



Lemma (Sufficient condition for fast recovery)

Suppose ρ(A) < T . Then, the time to extinction τ satisfies

E [τ ] ≤ log n + 1

1− ρ(A)/T

Lemma (Sufficient condition for lasting infection)

If r = δ
βη(m) < 1, then the epidemic lasts for “long”:

Pr[τ > r−m+1/(2m)] ≥ 1− r

e
(1 + O(rm))
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Formally



Hypercube: ρ(G ) = log2 n, and η(m) = (1− a) log2 n for m = na

Fast die out if β < 1
log2 n

, slow die out if β > 1
(1−a) log2 n

Erdős-Rényi model: ρ(G ) = (1 + o(1))np = (1 + o(1))d and
η(m) = (1 + o(1))(1− α)d where m/n→ α

Fast die out if β < 1
(1+o(1))d , slow die out if β > 1

(1+o(1))(1−α)d

Power law graphs (Chung-Lu model): assume degree distribution with
power law exponent γ > 2.5

E [τ ] = O(log n) if β < (1− u)/
√

m and E [τ ] exponential if
β > mα/

√
m for some u, α ∈ (0, 1) and m = nλ, for λ ∈ (0, 1

γ−1 )

In general, gap between necessary and sufficient conditions for
epidemic to last long

20 / 49

Implications for different network models



Reduce spectral radius below T to ensure the epidemic dies out fast.

Spectral radius can be reduced by deleting nodes (vaccination) or
edges (social distancing)

Spectral Radius Minimization (SRM) problem

Given: graph G=(V, E), threshold T and cost c(e) for edges

Objective: choose cheapest set E ′ ⊆ E of edges to delete, so that
λ1(G [E − E ′]) ≤ T .

Similarly: node version

21 / 49

Controlling epidemics in the SIS model



Interventions (node/edge deletion) to reduce spectral radius below
given threshold

NP-hard to approximate within a constant factor

Heuristics based on components of the first eigenvector and degree:
[Tong et al., 2012], [Van Mieghem et al., 2011]

Node version: if G has a power law degree sequence with exponent
β > 2 and T 2 ≤ cdmax , then a high degree strategy gives an
O(T β−1) approximation.

Node version: Θ(1) approximation by a high degree strategy in
Chung-Lu random graphs with power law weights with exponent
β > 2.
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Reducing the spectral radius to control
epidemic spread



A: adjacency matrix of G with eigenvalues
λ1 ≥ λ2 ≥ . . . λn
Let Wk(G ) denote the set of closed walks of
length k

Let Wk(G ) = |Wk(G )|
Edge e “hits” walk w if e ∈ w .

n(e,G ): #walks in Wk(G ) containing edge e

Let Eopt(T ) denote the optimum set of edges,
whose deletion reduces the spectral radius
below T∑

i λ
k
i =

∑
i Ak

ii =
∑

w∈Wk (G) d(w), where
d(w) is the number of distinct nodes in walk w

23 / 49

Some notation and properties



Algorithm GreedyWalk: Pick the smallest set of edges E ′ which hit at
least Wk(G )− nT k walks, for even k = c log n

Initialize E ′ ← φ

Repeat while Wk(G [E \ E ′]) ≥ nT k :

Pick the e ∈ E \ E ′ that maximizes n(e,G [E\E ′])
c(e)

E ′ ← E ′ ∪ {e}

Lemma

We have λ1(G [E \ E ′]) ≤ (1 + ε)T , and
c(E ′) = O(c(EOPT(T )) log n log ∆/ε) for any ε ∈ (0, 1).

Similar bound for node version

24 / 49

An O(log2 n)-approximation algorithm



By construction: Wk(G ′) 6 nT k , where G ′ = G [E − E ′]. Therefore,

n∑
i=1

λi (G ′)k =
∑
i

Ak
ii =

∑
w∈W(G ′)

d(w) ≤ kWk(G ′)

⇒
n∑

i=1

λi (G ′)k 6 nkT k

and therefore, λ1(G ′) 6 2(log n+log k)/kT

6 (1 + ε)T , for k >
2

ε
log n.

25 / 49

Proof: bounding spectral radius of residual
graph



Let EHITOPT be optimal solution for the partial covering instance:
cheapest subset of edges that hits at least Wk(G )− nT k walks.

Standard greedy analysis ⇒ c(E ′) = O(c(EHITOPT) log H), where
H = #elements in covering instance.

Elements= walks ⇒ H = |Wk(G )| 6 n∆k

By definition, λ1(G [E − EOPT(T )]) ≤ T . Therefore,
Wk(G [E − EOPT(T )]) ≤

∑n
i=1 λi (G [E − EOPT(T )])k < nT k .

⇒ c(EHITOPT) ≤ c(EOPT(T ))

c(E ′) = O(EOPT(T ) log n log ∆).

26 / 49

Proof: bounding c(E ′)



Partial coverage problem: primal-dual algorithm of [Gandhi et al.,
2004] for selecting a minimum cost collection of sets that covers at
least k elements, with O(f )-approximation, where f is the maximum
number of sets containing any element

Our set system:

Sets ≡ edges, elements ≡ walks in Wk

f = O(log n), since walks have length k = O(log n)

Set system of size nO(log n), so cannot apply primal-dual algorithm of
[Gandhi et al., 2004] directly

Can do updates implicitly and get polynomial time
O(log n)-approximation
Results in c(E ′) = O(c(EOPT(T )) log n), λ1(G [E − E ′]) ≤ (1 + ε)T

Constant factor approximation by semidefinite programming based
rounding.
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Improvement to O(log n) factor



Pick edges e = (i , j) in decreasing order of
eigenscore(i , j) = x1(i) · x1(j) [Tong et al., 2012], [Van Mieghem et
al., 2011]

Pick edges e = (i , j) in decreasing order of degscore(i , j) = d(i)d(j)
[Van Mieghem et al., 2011]

Hybrid rule: pick edge from either order whose removal causes the
largest reduction in λ1
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Heuristics that work well
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Empirical analysis of different heuristics



Lemma

Let G be a power law graph with exponent β > 2, where β is a constant
and let threshold T satisfy T 2 6 c∆ for a constant c < 1. Then, the
number of edges removed by the degree heuristic is O(T β−2|EOPT(T )|).

Lemma

Let G (w) be a Chung-Lu random power law graph on n nodes with
exponent β > 2 and w(V ) a constant. Let T be the threshold satisfying
maxi∈V wi > T 2 and T = Ω(log n). Then, the number of edges removed
by the degree heuristic is O

(
(log n)β−1

)
|EOPT|.
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Analysis of degree heuristic



Mathematical models for epidemic spread

Intervention design as optimization problems

Social objective: designing interventions to minimize outbreak
(centralized)
Social objective with limited compliance: group level interventions
(partially centralized)
Individual level objective: game-theoretical interventions
(decentralized)
Combining individual and social objectives: anti-viral distribution
problem
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Outline



Assume V = V1 ∪ V2 ∪ . . .Vk

Each Vi might denote a demographic group

If ni vaccines are allocated to Vi , assume they are distributed
randomly within the set

Group Node Immunization Problem

Given: Graph G (V ,E ), a partition V = V1 . . . ∪ Vk , with vaccine
cost Ci for each group i , budget B

Select subset Si ⊂ Vi , i = 1, . . . , k , such that λ1(G [∪iVi − Si ]) is
minimized.

GreedyWalk can be extended to group level
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Group level intervention



Algorithm GroupGreedyWalk(G ,B)

1 Initialize x = 0. Let N = |W(G , k)|.
2 While

∑
j xj ≤ B

1 Let i be the index that maximizes
CountWalks(G , x + ei )−CountWalks(G , x).

2 x = x + ei

Lemma

Let xopt(B) be the optimum solution corresponding to budget B of edges
removed. Let xg be the allocation returned by
GroupGreedyWalk(G , c1B log2 n), for a constant c1. Then, we have
λ1(G (xg )) ≤ c2T for a constant c2.
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Algorithm GroupGreedyWalk



Mathematical models for epidemic spread

Intervention design as optimization problems

Social objective: designing interventions to minimize outbreak
(centralized)
Social objective with limited compliance: group level interventions
(partially centralized)
Individual level objective: game-theoretical interventions
(decentralized)
Combining individual and social objectives: anti-viral distribution
problem
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Outline



Let a = (a1, a2, ..., an) denotes the strategy profile with ax = 1
denoting that node x is vaccinated

Let S = S(a) = {x ∈ V : ax = 1} denote the set of vaccinated nodes

Cost for node v , given strategy vector a:

cost(v , a) =


C , if av = 1,
L, if av = 0 and λ1(G [V − S(a)]) < T ,
Le , if av = 0 and λ1(G [V − S(a)]) ≥ T .

Nash equilibrium a: if no node v has incentive to switch unilaterally, given
that other players’ strategies are fixed
Social cost cost(a) =

∑
v cost(v , a)

35 / 49

Epidemic containment game in the SIS model



Assume C = 1, L = 0, Le > 1

The strategy corresponding to any minimal set S such that
λ1(G [V − S ]) < T is a NE.

Finding the social optimum of an EC game is NP complete.
Moreover, the cost of social optimum cannot be approximated within
a factor of 1.3606 unless P=NP.
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Structure of Nash equilibria



Let G be a power law graph with exponent β > 2, where β is a
constant and let T 2 ≤ c∆ for a constant c < 1, where ∆ is the
maximum node degree. Then, the price of anarchy is O

(
T 2(β−1)

)
.

Erdős-Rényi random graph model: if G = G (n, p), for p ≥ c
n , where c

is a suitably large constant and np ≥ (1 + δ)T 2 for any positive

constant δ, the price of anarchy is almost surely O
(

log n
np

)
.
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Results: price of anarchy



Chung-Lu random graph model: given a weight sequence
w = (w(v1,V ),w(v2,V ), ...,w(vn,V )) for nodes vi ∈ V , the random
graph G (w) is constructed in the following manner:

add edge (vj , vk) with probability
w(vj ,V )w(vk ,V )∑

vi∈V w(vi ,V )

Theorem

Consider a Chung-Lu random power law graph G (w) of n nodes and
power law exponent β > 2. Suppose w(V ) =

∑
v w(v)/|V | = O(1) and

wmax = maxv{wv} ≥ (1 + δ)T 2w(V ) for some constant δ and
T = Ω(log 2n). The price of anarchy in G (w) is θ(T 2(β−1)) almost surely.
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Results: price of anarchy



Network coevolves with epidemic spread

People reduce contacts if there is an epidemic going on
Risky behavior: people increase contacts if they feel they are protected
(e.g., after a vaccine)

Model of risk behavior

Vaccines have limited efficacy
Individuals who are vaccinated increase their contact strengths with
some probability
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Effect of behavioral changes: coevolution



Lemma

For G ∈ G (n, p) (the Erdös-Rényi model), there exist parameters pf

(vaccine failure probability) and pr (the increased probability of contact
due to risky behavior), such that the expected outbreak size is o(n) for
pv = 0, 1, but is Θ(n) for some pv ∈ (0, 1).
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Effect of behavioral changes: coevolution



Mathematical models for epidemic spread

Intervention design as optimization problems

Social objective: designing interventions to minimize outbreak
(centralized)
Social objective with limited compliance: group level interventions
(partially centralized)
Individual level objective: game-theoretical interventions
(decentralized)
Combining individual and social objectives: anti-viral distribution
problem
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Outline



Policy Problem: Is there an optimum
strategy to partition the scarce AV
doses between public stockpile
administered through hospitals and
private stockpile distributed using a
market-mechanism

Measures of Effectiveness: Number of
infected, peak infections, cost of
recovery, equitable allocation

Additional issues: How do disease
prevalence, individual behavior, network
structure, disease dynamics and AV
demand co-evolve?
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Combining social and individual incentives:
anti-viral distribution problem



Isolation based on Prevalence (fear contagion)

Entire household isolated when perceived prevalence > threshold
Compliance rate: 40%

Economic Behavior: Demand elasticity based on Prevalence

Household demand: Dt,h =
Bt,h

Pt
(1− e−βxt )

Increases with disease prevalence xt
Increases with household budget Bt,h, decreases with price Pt , and
price is linear in remaining supply
β reflects risk aversion or prevalence elastic demand to AV.

Disease Reporting and treatment

Anti-virals are administered to individuals who are symptomatic, report
clinic and are correctly diagnosed.
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Models of individual behaviors and adaptation



Hospitals

Total AV supply is 15K: allocated between hospitals and market
Hospitals: give to diagnosed as infected

Markets

Market: sells to households according to demand and price
Markets provide A/Vs on a first come first serve basis (are not spatially
sensitive in this version)
Assume a centralized market. Linear price curves (as a function of
remaining A/V stock)
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Organizational Behavioral models



Suggests optimal allocation strategy of
AVs between public and private
stockpile

Hospitals (public sector) should be
given priority
If > threshold, the remaining stockpile
be distributed via market.
Private stockpile useful for individuals
who are infectious but not
symptomatic

Optimal split (40% to hospitals, 60% to
the market) recovers the cost of
antiviral manufacturing if the unit cost
is below a bound.
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Results (I): both Private and Public Distribution
are important



Both behavioral adaptation were critical
in controlling the epidemic

Household isolation reduces the peak
infection rate by 30%.
Prevalence based demand delays the
peak infection rate by 30 days.

Natural behavior adaptation to an epidemic
in conjunction with well established logistics
(markets + public distribution) reduce and
delay the peak infection rate
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Results (II): Role of Behavioral Adaptations



Network based formulations for designing interventions

Tools from dynamical systems, spectral graph theory, approximation
algorithms

Novel challenges

Multiple and competing objectives
Logistical issues: how to distribute vaccines
Network not really known: realistic population and network models
Uncertainty: source, network, epidemic model parameters not known
accurately

Taking individual incentives into account

Coevolution of disease with network
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Conclusion



Thank You
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Questions?
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