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Epidemics and epidemiology in history

HISTORY OF INFECTIOUS DISEASES

— . == e SN /
THE MIDDLE AGES THE RENAISSANCE INDUSTRIALAGE 20TH CENTURY 21ST CENTURY

Nearly two-thirds of ~ Rebirth of thinking  Industrialization led  Discovery of Penicillin. Human Genome

the European led to critical to over crowding, Social reform shaped

population were observations of poor sanitation and health and human New and

affected by the disease outbreaks. subsequent services. emerging diseases:

plague. epidemics SARS, HINI,
Ty Increased vaccination Chikungunya.

i the purpose of Poli kers by i i

Public health purpose o olicy makers began  aided against Tracking diseases

initiatives were understanding health ~ addressing health childhood diseases. through social

developed to stop status. problems and media.

the spread of the sanitation.

disease.

m 1918 Pandemic: 50 million deaths in 2 years
(3-6% world pop) Every country and
community was effected

3/ 49

Project completed.

m Good news: Pandemic of
1918 lethality is currently
unlikely Governments
better prepared and
coordinated: e.g. SARS
epidemic. But ..

m Planning & response to
even a moderate outbreak
is challenging: inadequate
vaccines/anti-virals,
unknown efficacy, hard
logistics issues

m Modern trends complicate
planning: increased travel,
immuno-compromised
populations, increased
urbanization
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Epidemic science in real-time

Editorial, Fineberg and Harvey, Science, May 2009: Epidemics

Science in Real-Time

Five areas: (i) Pandemic risk, (ii) vulnerable populations, (iii) available
interventions, (iv) implementation possibilities & (v) pitfalls, and public
understanding.
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Modeling before an Modeling during an
epidemic epidemic

(i) Determine the (/) Quantifying
(non)medical interventions | transmission parameters,
required, (/i) feasibility of (i) Interpreting real-time
containment, (iii) optimal epidemiological trends, (iir)
size of stockpile, (iv) best measuring antigenic shift
use of pharmaceuticals and (iv) assessing impact
once a pandemic begins ) of interventions. )
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Key elements of computational epidemiology

Models of

Situation

POF b X i Assessment,

networ| Consequence

Data analysis and policy
- Syndromic plannin
Surveillance \7 " . Prediction 9
- Social media »| Simul ibration, i
> calibration, - Forecasting

- Surveys validation - Interventions, e.g.

- Built
infrastructure

vaccinations, social
distancing, sequestration
- resource allocation and
logistics

- contact tracing and
inference

Model of
disease
spread

m Modeling, characterization and analysis:
m Will there be a big outbreak? Has it peaked?

m Mathematical models of disease spread and efficient simulation tools
for analysis

m Prediction, calibration and validation:
m Learn parameters of disease model, and individual effects
m Situational assessment and policy planning:

m Interventions to control outbreak: Whom to vaccinate? Should we
close schools,
m Surveillance and parameter refinement, adaptive control
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Outline

m Mathematical models for epidemic spread
m Intervention design as optimization problems
m Social objective: designing interventions to minimize outbreak
(centralized)
m Social objective with limited compliance: group level interventions
(partially centralized)
m Individual level objective: game-theoretical interventions
(decentralized)
m Combining individual and social objectives: anti-viral distribution
problem
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Classifying formal models

NetworkBased
Modeling
[Keelingetal]
I T 1
[Barabas, = ’ RealisticSodalNet.
i, Meye, T
Biton, Newrmary femplate-based
Meyey, Vespignani] L !
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Mass action compartmental Models

8/ 49

00 O L Y o
0o L ) ® ®

°o , LYY e @
S [ R

Assumption: complete mixing
among population of size N

ds
dt
di
dt
dr
dt

—Bis
Bis — i

vi

m Individuals in states Susceptible (S), Infected (1) or
Resistant/Recovered (R).

m Epidemic characterized by reproductive number Ry

m Large epidemic if Ry > 1
m Modeling epidemic = estimating Ry
m Controlling epidemic: reducing Ry

m Limited use in large realistic populations

m Does not capture heterogeneity in population
m Extensions using compartmental models with mixing parameters, but

becomes hard to analyze
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Pros and cons of compartmental models
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Compartmental models have been immensely successful over the last
100 years — (i) workhorse of mathematical epidemiology, (/i) easy to
extend and quick to build; (iii) good solvers exist, simple ones can be
solved analytically; (iv) mathematical theory of ODEs is well
developed

SARS was estimated to have Ry € [2.2,3.6]*

m Though it spread across many countries, small number of infections
m Estimates were based on infections in crowded hospital wards, where
complete mixing assumption was reasonable
Compartmental models lack agency and heterogeneity of contact
structure
m True complexity stems from interactions among many discrete actors
m Each kind of interaction must be explicitly modeled
m Refinement is difficult
Human behavioral issues — Inhomogeneous compliance; changes in
the face of crisis

Harder to design implementable interventions.

Y ipsitch et al., Science, 2003; Riley et al., Science, 2003————
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Networked epidemiology: Discrete time SIR
model on a network

Fixed point: R = {1,2,3} and S = {4}
p(1,3)(1 = p(1,2))p(2,3)(1 — p(2,4))(1 — p(3,4))

Each node is in states S (susceptible), | (infectious) or R (recovered)

Time is discrete

Each infected node u spreads the infection independently to each
susceptible neighbor v with probability p(u, v)

Infected node u recovers after 1 time step

Fixed point: all nodes in states S or R

Network Dynamics & Simulation Science Laborator
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Dynamics of the SIR model: impact of network
structure

m Phase transition for SIR model shown in many graph models: there
exists a threshold p; such that few infections if p < p; but large
outbreak if p > p;

Technique: mainly extends branching process
Clique on n nodes?: p; = 1/(n—1)

Lattice Z9: p; — 1/(2d), as d — oo
Random d-regular graphs: p; =1/d

Not well understood in general graphs

m Partial characterization in finite regular expander graphs with high
girth3
m Characterization in terms of the second moment*

2Erd8s and Rényi, 1959
3Alon, Benjamini and Stacey, 2001
*Chung, Horn, Lu, 2009
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Interventions as optimization problems

Given (maybe?)
m A social network G(V, E)
m Initial infected set A
m Budget B

m Stochastic model for disease spread

Objective(s)
m Choose S C V to vaccinate so that |S| < B, and expected #infected
nodes is minimized
m Other objectives

m Reduce the epidemic duration
m Reduce peak
m Delay epidemic

m Individual compliance depends on their utilities
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Interventions

Pharmaceutical interventions (PI)
m use of prophylactic vaccinations and anti-viral drugs

m modeled as node deletions
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Interventions

Non Pharmaceutical interventions (NPI)

m Reducing contacts by social distancing, school or work place closure,
or isolation.

m Modeled as edge deletions

14 / 49 Network Dynamics & Simulation Science Laboratory



Different kinds of issues in studying
interventions as optimization problems

m Resource constraints, e.g., budget for vaccines to use

m Complex and multiple objective functions, e.g., expected outbreak
size, peak size and duration

m Need multi-criteria optimization
m Implementability and compliance

m Interventions should be described succinctly
m Individual vs social good
m Computationally very hard problems

m Computing basic properties related to epidemics (e.g., probability that
a node gets infected) is #P-hard in network models

m Optimization problems NP-hard even for very simplistic settings (e.g.,
SI model or simple contagion)

m Simplistic brute-force methods are unlikely to scale to realistic networks

m Metaheuristics do not give any insights into how well they perform
(relative to the best possible).
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QOutline

m Mathematical models for epidemic spread
m Intervention design as optimization problems
m Social objective: designing interventions to minimize outbreak
(centralized)
m Social objective with limited compliance: group level interventions
(partially centralized)
m Individual level objective: game-theoretical interventions
(decentralized)
m Combining individual and social objectives: anti-viral distribution
problem

Our approach

Formalize interventions in terms of network structure
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Dynamics in the SIS model: preliminaries

Nodes in Susceptible (S) or Infectious (I) states

Each infected node spreads infection to each susceptible neighbor
with rate 3

Each infected node becomes susceptible with rate §

p(A): spectral radius of adjacency matrix A
T=46/8
E(S.5)|

m Generalized isoperimetric constant: 1(G, m) = infscy |sj<m 5]
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Dynamics in the SIS model: preliminaries
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Nodes in Susceptible (S) or Infectious (I) states

Each infected node spreads infection to each susceptible neighbor
with rate 3

Each infected node becomes susceptible with rate §
p(A): spectral radius of adjacency matrix A
T=46/8
1E(S.9)]

Generalized isoperimetric constant: 7(G, m) = infscy |sj1<m 5]

Spectral radius

p(A) = max, x| Ax/x*

Avg degree < p(A) < A(G),
where A(G) is the

maximum node degree n(G,6) < 2/6
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Dynamics in the SIS model (informal) spectral
characterization’

p(A): spectral radius of adjacency matrix A
T=4/8
E(S,5

m Generalized isoperimetric constant: (G, m) = infscy |sj<m T\)

If p(A) < T: epidemic dies out “fast”

If n(m) > T: epidemic lasts “long”

Similar implications but different assumptions, extended to SEIR models®
6

®BA Prakash, D Chakrabarti, M Faloutsos, N Valler, C Faloutsos. Knowledge and
Information Systems, 2012

6y, Wang, D. Chakrabarti, C. Wang and C. Faloutsos, ACM Transactions on
Information and System Security, 2008.

"A. Ganesh, L. Massoulie and D. Towsley, IEEE INFOCOM.—2005
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Formally

Lemma (Sufficient condition for fast recovery)

Suppose p(A) < T. Then, the time to extinction T satisfies

Lemma (Sufficient condition for lasting infection)

Ifr = % < 1, then the epidemic lasts for “long”:

Prlr > r™1/(2m)] > I—;r(l +0(r™)
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Implications for different network models

m Hypercube: p(G) = Iog2 n, and n(m) = (1 — a) log, n for m = n?
m Fast die out if 8 < Iog —, slow die out if 8 > %
m Erd8s-Rényi model: p(G) = (1+ o(1))np = (1+ o(1))d and
n(m) = (14 o(1))(1 - a)d where m/n — «

m Fast die out if 3 < m, slow die out if 3 > m

m Power law graphs (Chung-Lu model): assume degree distribution with
power law exponent v > 2.5
m E[r] = O(logn) if B < (1 —u)/v/m and E[7] exponential if
B> m®/y/m for some u,a € (0,1) and m = n*, for A € (0, =15)

’ y—1
m In general, gap between necessary and sufficient conditions for
epidemic to last long

Network Dynamics & Simulation Science Laborator
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Controlling epidemics in the SIS model

m Reduce spectral radius below T to ensure the epidemic dies out fast.

m Spectral radius can be reduced by deleting nodes (vaccination) or
edges (social distancing)

Spectral Radius Minimization (SRM) problem

m Given: graph G=(V, E), threshold T and cost c(e) for edges

m Objective: choose cheapest set E/ C E of edges to delete, so that
M(G[E-E]) L T.

Similarly: node version

21/ 49 Network Dynamics & Simulation Science Laboratory



Reducing the spectral radius to control
epidemic spread

m Interventions (node/edge deletion) to reduce spectral radius below
given threshold

m NP-hard to approximate within a constant factor
m Heuristics based on components of the first eigenvector and degree:
[Tong et al., 2012], [Van Mieghem et al., 2011]

m Node version: if G has a power law degree sequence with exponent
B> 2 and T? < cdmax, then a high degree strategy gives an
O(TP~1) approximation.

m Node version: ©(1) approximation by a high degree strategy in

Chung-Lu random graphs with power law weights with exponent
8> 2.
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Some notation and properties
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A: adjacency matrix of G with eigenvalues
A > X > 0,

Let Wi (G) denote the set of closed walks of
length k

Let Wi(G) = [Wi(G)

Edge e “hits” walk w if e € w.

n(e, G): #walks in Wi (G) containing edge e
Let Eope(T) denote the optimum set of edges,

whose deletion reduces the spectral radius
below T

pF )\f-‘ = Z,-Af-j- = Zwewk(G) d(w), where
d(w) is the number of distinct nodes in walk w
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An O(log? n)-approximation algorithm

Algorithm GREEDYWALK: Pick the smallest set of edges E’ which hit at
least Wi (G) — nT* walks, for even k = clogn

m Initialize E' < ¢

m Repeat while Wi (G[E \ E']) > nTk:
m Pick the e € E '\ E’ that maximizes
m E'+— E'U{e}

n(e,G[E\E"])
c(e)

We have \1(G[E\ E']) <(1+4¢€)T, and
c(E") = O(c(Eopt(T))log nlog A/e€) for any e € (0,1).

Similar bound for node version
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Proof: bounding spectral radius of residual
graph

By construction: W, (G’) < nTk, where G’ = G[E — E’]. Therefore,

ZH:A,-(G’)":ZA;}— > d(w) < kWi(G')
i=1 i

weW(G')
=Y Xi(G')* < nkT*
and therefore, \;(G’) < 2(cgntlogk)/kT

2
<(1+¢€)T, for k > —logn.
€

Network Dynamics & Simulation Science Laborator
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Proof: bounding c(E’)

Let EqjtopT be optimal solution for the partial covering instance:
cheapest subset of edges that hits at least W, (G) — nT* walks.

Standard greedy analysis = c(E’) = O(c(EnitopT) log H), where
H = #elements in covering instance.

Elements= walks = H = |W,(G)| < nAk

By definition, A\1(G[E — EopT(T)]) < T. Therefore,

Wi(GIE — Eopr(T)]) < 327y Mi(G[E — Eopr(T)])* < nT*.
= c(EnropT) < c(EopT(T))

c(E") = O(Eopr(T)log nlog A).

Network Dynamics & Simulation Science Laborator
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Improvement to O(log n) factor

m Partial coverage problem: primal-dual algorithm of [Gandhi et al.,
2004] for selecting a minimum cost collection of sets that covers at
least k elements, with O(f)-approximation, where f is the maximum
number of sets containing any element

m Our set system:

m Sets = edges, elements = walks in Wy
m f = O(log n), since walks have length k = O(log n)
m Set system of size n9(°€") so cannot apply primal-dual algorithm of
[Gandhi et al., 2004] directly
m Can do updates implicitly and get polynomial time
O(log n)-approximation
m Results in ¢c(E') = O(c(Eopt(T))logn), M(G[E—E']) <(1+4+¢€)T

m Constant factor approximation by semidefinite programming based

rounding.
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Heuristics that work well

m Pick edges e = (i, /) in decreasing order of
eigenscore(i, j) = x1(i) - x}(j) [Tong et al., 2012], [Van Mieghem et
al., 2011]

m Pick edges e = (/,) in decreasing order of degscore(i,j) = d(i)d(j)
[Van Mieghem et al., 2011]

m Hybrid rule: pick edge from either order whose removal causes the
largest reduction in \;

Network Dynamics & Simulation Science Laborator
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Empirical analysis of different heuristics
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Max Eigenvalue after removal

Max Eigenvalue after removal

Chun-Lu PowerLaw Graph(exp=3.0), r = -0.03

Irvine Social Network
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P2P Network (Gnutella-06), r = 0.0516

4 6
% Edges removed

Autonomous Systems Network (Oregon AS-733), r = -0.170

22]

3
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4 6
% Edges removed
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Analysis of degree heuristic

Let G be a power law graph with exponent 3 > 2, where 3 is a constant
and let threshold T satisfy T2 < ¢/ for a constant ¢ < 1. Then, the
number of edges removed by the degree heuristic is O(T?~2|Eopr(T))).

Let G(w) be a Chung-Lu random power law graph on n nodes with
exponent 3 > 2 and w(V/) a constant. Let T be the threshold satisfying
max;cy w; > T2 and T = Q(log n). Then, the number of edges removed
by the degree heuristic is O((log n)°~1)|Eopr|.
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QOutline

m Mathematical models for epidemic spread
m Intervention design as optimization problems
m Social objective: designing interventions to minimize outbreak
(centralized)
m Social objective with limited compliance: group level interventions
(partially centralized)
m Individual level objective: game-theoretical interventions
(decentralized)
m Combining individual and social objectives: anti-viral distribution
problem
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Group level intervention

m Assume V=ViUWU...V,
m Each V; might denote a demographic group

m If n; vaccines are allocated to V;, assume they are distributed
randomly within the set

Group Node Immunization Problem

m Given: Graph G(V,E), a partition V = Vj...U V4, with vaccine
cost C; for each group i, budget B

m Select subset S; C V;, i =1,...,k, such that \1(G[U;V; — §}]) is
minimized.

GREEDYWALK can be extended to group level
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Algorithm GroupGreedyWalk

Algorithm GROUPGREEDYWALK(G, B)
Initialize x = 0. Let N = [W(G, k)|.
While >, x; < B
Let / be the index that maximizes
COUNTWALKS(G, x + e;) — COUNTWALKS(G, x).
X=X+e;

Let x°P*(B) be the optimum solution corresponding to budget B of edges
removed. Let x8 be the allocation returned by
GROUPGREEDYWALK(G, 1 B log?® n), for a constant c;. Then, we have
A(G(x8)) < T for a constant c,.
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QOutline

m Mathematical models for epidemic spread
m Intervention design as optimization problems
m Social objective: designing interventions to minimize outbreak
(centralized)
m Social objective with limited compliance: group level interventions
(partially centralized)
m Individual level objective: game-theoretical interventions
(decentralized)
m Combining individual and social objectives: anti-viral distribution
problem
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Epidemic containment game in the SIS model
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m Let a = (a1, a2, ..., a,) denotes the strategy profile with a, =1
denoting that node x is vaccinated

m Let S = S5(a) = {x € V: a, = 1} denote the set of vaccinated nodes

m Cost for node v, given strategy vector a:

C, ifa, =1,
cost(v,a)=4¢ L, ifa,=0and \i(G[V —S(a)])< T,
Le, ifa,=0and \(G[V—-S(a)])>T.

Nash equilibrium a: if no node v has incentive to switch unilaterally, given
that other players’ strategies are fixed
Social cost cost(a) =), cost(v,a)
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Structure of Nash equilibria
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mAssume C=1,L=0,L.>1
m The strategy corresponding to any minimal set S such that
A1(G[V = S]) < T isa NE.

m Finding the social optimum of an EC game is NP complete.

Moreover, the cost of social optimum cannot be approximated within
a factor of 1.3606 unless P=NP.
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Results: price of anarchy

m Let G be a power law graph with exponent 5 > 2, where 3 is a
constant and let T2 < cA for a constant ¢ < 1, where A is the
maximum node degree. Then, the price of anarchy is O (T2(5=1).

m Erdés-Rényi random graph model: if G = G(n, p), for p > &, where ¢
is a suitably large constant and np > (1 + &) T2 for any positive

constant 0, the price of anarchy is almost surely O (Icfp”)

Network Dynamics & Simulation Science Laborator
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Results: price of anarchy

m Chung-Lu random graph model: given a weight sequence
w = (w(vy, V), w(v, V), ..., w(v,, V)) for nodes v; € V, the random
graph G(w) is constructed in the following manner:

m add edge (v}, vk) with probability %
vi€ "

Consider a Chung-Lu random power law graph G(w) of n nodes and
power law exponent 3 > 2. Suppose w(V) = > w(v)/|V|= O(1) and
Winax = max,{w, } > (1 + ) T?w(V) for some constant & and

T = Q(log?n). The price of anarchy in G(w) is 8( T2(5=1)) almost surely.
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Effect of behavioral changes: coevolution

ncreased contacts i
Vaccinated g
nodes vaccine

m Network coevolves with epidemic spread
m People reduce contacts if there is an epidemic going on
m Risky behavior: people increase contacts if they feel they are protected
(e.g., after a vaccine)
m Model of risk behavior
m Vaccines have limited efficacy
m Individuals who are vaccinated increase their contact strengths with
some probability

Network Dynamics & Simulation Science Laborator
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Effect of behavioral changes: coevolution

For G € G(n, p) (the Erdés-Rényi model), there exist parameters ps
(vaccine failure probability) and p, (the increased probability of contact
due to risky behavior), such that the expected outbreak size is o(n) for
pv = 0,1, but is ©(n) for some p, € (0,1).
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QOutline

m Mathematical models for epidemic spread
m Intervention design as optimization problems
m Social objective: designing interventions to minimize outbreak
(centralized)
m Social objective with limited compliance: group level interventions
(partially centralized)
m Individual level objective: game-theoretical interventions
(decentralized)
m Combining individual and social objectives: anti-viral distribution
problem
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Combining social and individual incentives:
anti-viral distribution problem
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Policy Problem: Is there an optimum
strategy to partition the scarce AV
doses between public stockpile
administered through hospitals and
private stockpile distributed using a
market-mechanism

Measures of Effectiveness: Number of
infected, peak infections, cost of
recovery, equitable allocation

Additional issues: How do disease
prevalence, individual behavior, network
structure, disease dynamics and AV
demand co-evolve?

Price
=
Prevalence

% Susceptibility
<«
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Models of individual behaviors and adaptation

m Isolation based on Prevalence (fear contagion)

m Entire household isolated when perceived prevalence > threshold
m Compliance rate: 40%

m Economic Behavior: Demand elasticity based on Prevalence

= Household demand: D, = 552 (1 — e~ %)

m Increases with disease prevalence x;

m Increases with household budget B; j, decreases with price P, and
price is linear in remaining supply

m (3 reflects risk aversion or prevalence elastic demand to AV.

m Disease Reporting and treatment

m Anti-virals are administered to individuals who are symptomatic, report
clinic and are correctly diagnosed.

Network Dynamics & Simulation Science Laborator
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Organizational Behavioral models

m Hospitals
m Total AV supply is 15K: allocated between hospitals and market

m Hospitals: give to diagnosed as infected
m Markets

m Market: sells to households according to demand and price
m Markets provide A/Vs on a first come first serve basis (are not spatially

sensitive in this version)
m Assume a centralized market. Linear price curves (as a function of

remaining A/V stock)

Network Dynamics & Simulation Science Laboratory
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Results (1): both Private and Public Distribution
are important

n Suggests optimal aIIocation Strategy Of Attack Rate Decreases with Increasing Hospital Allocation
. . 30 T T - v
AVs between public and private
stockpile 25|
m Hospitals (public sector) should be 2 2l
given priority g
.. . 15 |
m If > threshold, the remaining stockpile ®
be distributed via market. 10
m Private stockpile useful for individuals 5
who are infectious but not 0 20 40 60 80 100

. fraction (%) allocated to hospitals
symptomatic

m Optimal split (40% to hospitals, 60% to 1600

the market) recovers the cost of 1400

.. . . . 1200
antiviral manufacturing if the unit cost

1000
is below a bound. 800
600
400
200

0

Revenue from Antiviral Market vs. Hospital Allocation

revenue ($k)

0 20 40 60 80 100
(%)-allocated to-hospital
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Results (I1): Role of Behavioral Adaptations

m Both behavioral adaptation were critical
in controlling the epidemic

m Household isolation reduces the peak
infection rate by 30%.

m Prevalence based demand delays the
peak infection rate by 30 days.

Natural behavior adaptation to an epidemic
in conjunction with well established logistics
(markets + public distribution) reduce and
delay the peak infection rate
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number of infectious nodes

number of infectious nodes

Effect of Public Policy (Social Isolation)

Effect of Prevalence Sensitive Demand Behavior

day
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Conclusion

Network based formulations for designing interventions
m Tools from dynamical systems, spectral graph theory, approximation
algorithms
m Novel challenges
m Multiple and competing objectives
Logistical issues: how to distribute vaccines

| |
m Network not really known: realistic population and network models
m Uncertainty: source, network, epidemic model parameters not known

accurately
m Taking individual incentives into account
m Coevolution of disease with network
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Thank You



Questions?
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