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Motivation

2009 H1N1 pandemic

I How awareness propagated by mass media affects the af-
termath of an epidemic outbreak ?

I Can we capture this interplay using mathematical models?
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Preliminaries
Epidemic models

Kermack–McKendrick model
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İ = βSI − γI ,
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Ṙ = γI .

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 4



Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

Preliminaries
Epidemic models

Basic reproduction number R0

“ the average number of secondary cases arising from a single
primary case during its whole infectious period in an entirely
susceptible population.”

R0 =
β

γ
S0.
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Preliminaries
Behavioral epidemiology

I Saturating incidence accounting psychological effects by
Capasso and Serio, 1978

I STIs and HIV/AIDS

I SARS(2002)

H1N1(2009) Ebola(2014)

I Impact of media coverage by Liu and Cui, 2008
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The mathematical model
Basic model: model for infectious diseases

Modeling the effect of media-induced preventive
behavior on an epidemic outbreak
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The mathematical model
Basic model: model for infectious diseases

Variable considered

I Susceptible population, X

I Infected population, Y

I Aware population, Xa

I Awareness programs by media, M
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The mathematical model
Basic model: model for infectious diseases

Schematic diagram
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The mathematical model
Basic model: model for infectious diseases

The model

dX

dt
= A− βXY − λXM + νY + λ0Xa − dX ,

dY

dt
= βXY − νY − αY − dY , (1.1)

dXa

dt
= λXM − λ0Xa − dXa,

dM

dt
= φY − φ0M,

where, X (0) > 0, Y (0) > 0, Xa(0) ≥ 0, M(0) ≥ 0.
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The mathematical model
Basic model: model for infectious diseases

The model contd...

Using X + Y + Xa = N, model system (1.1) becomes,

dY

dt
= β(N − Y − Xa)Y − (ν + α + d)Y ,

dXa

dt
= λ(N − Y − Xa)M − λ0Xa − dXa, (1.2)

dN

dt
= A− dN − αY ,

dM

dt
= φY − φ0M.
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The mathematical model
Basic model: model for infectious diseases

Region of attraction

The total population N(t) is variable with

dN

dt
= A− αY − dN ≤ A− dN. (1.3)

For the solution of equation (1.3), we have

0 < N(t) ≤ N(0)e−dt +
A

d
(1− e−dt). (1.4)

I t →∞, N → A
d .

I If N(0) ≤ A
d , then A

d is the upper bound of N.
I If N(0) > A

d , then the solution enters or approaches asymptot-
ically to the feasible region Ω defined by

Ω =

{
(Y ,Xa,N,M) ∈ R4

+ : 0 ≤ Y + Xa ≤ N ≤
A

d
, 0 ≤ M ≤

φA

φ0d
= MR

}
,

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 15
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The mathematical model
Basic model: model for infectious diseases

Analytical results

The model system (1.2) has two non-negative equilibria as follows:

I (i) Disease free equilibrium (DFE) E0(0, 0, Ad , 0).

I (ii) Endemic equilibrium E ∗(Y ∗,X ∗a ,N
∗,M∗).

E ∗ exists only when βA− d(ν + α + d) > 0.

R0 =
βA

d(ν + α + d)
,

Equilibrium analysis
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The mathematical model
Basic model: model for infectious diseases

Analytical results contd...

Theorem

The equilibrium E0 is stable whenever R0 < 1 and is unstable for
R0 > 1. The endemic equilibrium E ∗ exists for R0 > 1 and is locally
stable provided,

A1A2A3 − A2
3 − A2

1A4 > 0, (1.5)

where, Ai ’s are the coefficients of characteristic equation of Jacobian
matrix evaluated at E ∗.

Proof

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 17
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The mathematical model
Basic model: model for infectious diseases

Analytical results contd...

Theorem

The endemic equilibrium E ∗ is globally stable in Ω provided,

3λ2φ2

(λ0 + d)2φ2
0

< min

{
d2

3A2
,

d3

αA2
,

2

9(N∗ − Y ∗ − X ∗a )2

}
. (1.6)

Proof

λ and φ have destabilizing effect on the system.
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The mathematical model
Basic model: model for infectious diseases

Numerical simulation

I Set of parameter values :

A = 400, β = 0.00002, λ = 0.0002, λ0 = 0.2, ν = 0.6,

α = 0.02, d = 0.01, φ = 0.0005, φ0 = 0.06.

I Components of endemic equilibrium :

Y ∗ = 2615, X ∗a = 653, N∗ = 34769, M∗ = 21.

I Eigenvalues :

−0.2214, −0.03014, −0.0426− 0.0375i and − 0.0426 + 0.0375i .
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The mathematical model
Basic model: model for infectious diseases

Numerical simulation contd...

Global stability of E∗ in Y − Xa −M space.
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The mathematical model
Basic model: model for infectious diseases

Numerical simulation contd...

Variation of variables with time for different values of parameters
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The mathematical model
Model for vector borne diseases

Modeling the effect of media-induced

awareness on the prevention of vector borne

diseases
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The mathematical model
Model for vector borne diseases

Criss-cross interaction
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The mathematical model
Model for vector borne diseases

Variables considered

Total human population NH

I Susceptible human population, XH

I Infected human population, YH

I Aware human population, AH

Total mosquito population NV

I Susceptible vector population, XV

I Infected vector population, YV

I Awareness programs by media, M

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 24



Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Variables considered

Total human population NH

I Susceptible human population, XH

I Infected human population, YH

I Aware human population, AH

Total mosquito population NV

I Susceptible vector population, XV

I Infected vector population, YV

I Awareness programs by media, M

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 24



Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Variables considered

Total human population NH

I Susceptible human population, XH

I Infected human population, YH

I Aware human population, AH

Total mosquito population NV

I Susceptible vector population, XV

I Infected vector population, YV

I Awareness programs by media, M

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 24



Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

The model

dXH

dt
= Λ− βHV XHYV − λXHM − dHXH + νYH + λ0AH ,

dYH

dt
= βHV XHYV − νYH − αYH − dHYH ,

dAH

dt
= λXHM − λ0AH − dHAH , (2.1)

dXV

dt
= bV NV − r

N2
V

K
− βVHXV YH − θAHXV − dV XV ,

dYV

dt
= βVHXV YH − θAHYV − dV YV ,

dM

dt
= φYH − φ0(M −M0),

where, XH(0) > 0,YH(0) ≥ 0,AH(0) ≥ 0,XV (0) ≥ 0,YV (0) > 0,M(0) ≥ M0.
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The mathematical model
Model for vector borne diseases

The model contd...

As NH = XH + YH + AH and NV = XV + YV , the model system
(2.1) can also be written as,

dYH

dt
= βHV (NH − YH − AH)YV − (ν + α + dH)YH ,

dAH

dt
= λ(NH − YH − AH)M − (λ0 + dH)AH ,

dNH

dt
= Λ− αYH − dHNH , (2.2)

dYV

dt
= βVH(NV − YV )YH − (θAH + dV )YV ,

dNV

dt
= rNV

(
1− NV

K

)
− θAHNV ,

dM

dt
= φYH − φ0(M −M0).
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The mathematical model
Model for vector borne diseases

Region of attraction

Ω =

{
(YH ,AH ,NH ,YV ,NV ,M) ∈ R6

+ : 0 ≤ YH + AH ≤ NH ≤
Λ

dH
,

0 ≤ YV ≤ NV ≤ KR , 0 ≤ M ≤ MR} ,

where, KR =
K (r − (θpΛ/dH))

r
and MR =

φ(Λ/dH) + φ0M0

φ0
.

I p is a dimensionless quantity defined as,

p =
λM0

λM0 + λ0 + dH
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The mathematical model
Model for vector borne diseases

Equilibria obtained

The model system (2.2) exhibits three non-negative equilibria:

I Disease and vector free equilibrium (DVFE)
E0(0, pΛ/dH ,Λ/dH , 0, 0,M0)

I Disease free equilibrium (DFE)
E1(0, pΛ/dH ,Λ/dH , 0,KR ,M0)

I Endemic equilibrium
E ∗(Y ∗H ,A

∗
H ,N

∗
H ,Y

∗
V ,N

∗
V ,M

∗)

Equilibrium analysis
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Basic reproduction number

I R0 =
βHVβVH(1− p)ΛK (r − θp(Λ/dH))

rdH(θp(Λ/dH) + dV )(ν + α + dH)

I It is cumulation of K(r−θp(Λ/dH))βHV
r(ν+α+dH) and (1−p)ΛβVH

dH(φp(Λ/dH)+dV )

I R0
′(p) < 0

I
∂p

∂λ
> 0 and

∂p

∂M0
> 0.
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The mathematical model
Model for vector borne diseases

Critical coverage

pc =
R00

(
1 + θΛ

rdH

)
+ θΛ

dV dH
+

√[
R00

(
1 + θΛ

rdH

)
+ θΛ

dHdV

]2

− 4ΛθR00(R00−1)
rdh

2ΛθR00
rdH

where R00 =
βHVβVHΛK

dHdV (ν + α + dH)
.
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The mathematical model
Model for vector borne diseases

Stability analysis

Theorem

The DVFE always exists and is locally asymptotically stable if
r < θp(Λ/dH). Whenever r is greater than θp(Λ/dH), DVFE be-
comes unstable and DFE exists which is stable until R0 < 1.

Proof
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The mathematical model
Model for vector borne diseases

Stability analysis contd...

Theorem

The endemic equilibrium, if exists, is locally asymptotically stable
provided the following conditions hold,

β2
HV Y∗

V
2λ2

(βHV Y∗
V

+ ν + α + dH )(λM∗ + λ0 + dH )2
<

4

45
min

{
(βHV Y∗

V + ν + α + dH )

5M∗2
,

βHV Y∗
V dH

αM∗2
,
φ2

0(βHV Y∗
V + ν + α + dH )

6φ2(N∗
H
− Y∗

H
− A∗

H
)2

}
, (2.3)

5β2
HV (N∗

H − Y∗
H − A∗

H )2

(βHV Y∗
V

+ ν + α + dH )(βVHY∗
H

+ θA∗
H

+ dV )2
< min

{
(βHV Y∗

V + ν + α + dH )

5β2
VH

(N∗
V
− Y∗

V
)2

,

(λM∗ + λ0 + dH )k1

6θ2Y∗
V

2

}
, (2.4)

β2
VHY∗

H
2

βVHY∗
H

+ θA∗
H

+ dV
k3 <

(λM∗ + λ0 + dH )r2

6K2θ2
k1. (2.5)

Proof
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The mathematical model
Model for vector borne diseases

Stability analysis contd...

Theorem

The endemic equilibrium is globally asymptotically stable in Ω, pro-
vided the following inequalities hold,

β2
HV Y∗

V
2λ2

(βHV Y∗
V

+ ν + α + dH )(λ0 + dH )2
<

4

45
min

{
(βHV Y∗

V + ν + α + dH )

5M2
R

,

βHV Y∗
V dH

αM2
R

,
φ2

0(βHV Y∗
V + ν + α + dH )

6φ2(N∗
H
− Y∗

H
− A∗

H
)2

}
, (2.6)

5β2
HV Λ2

(βHV Y∗
V

+ ν + α + dH )d2
V
d2
H

< min

{
(βHV Y∗

V + ν + α + dH )

5β2
VH

(N∗
V
− Y∗

V
)2

,
(λ0 + dH )p1

6θ2Y∗
V

2

}
,

(2.7)

β2
VHΛ2

d2
H
dV

p3 <
(λ0 + dH )r2

6K2θ2
p1. (2.8)

Proof
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Numerical simulation

I Parameter values:
Λ = 3, r = 0.5, K = 15000, βHV = 0.0008, βVH = 0.000002,
λ = 0.001, λ0 = 0.05, ν = 0.15, α = 0.005, dH = 0.00005,θ =
0.00000001, dV = 0.05, φ = 0.0015, φ0 = 0.22, M0 = 5.

I Components of endemic equilibrium :
Y ∗H = 589, A∗H = 66, N∗H = 1023, Y ∗V = 311, N∗V = 13499,
M∗ = 9.

I Eigenvalues:
−0.4499, −0.4293, −0.2164, −0.0582, −0.0251 and −0.0052.

I R0 = 168.47 and pc = 0.9944.
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The mathematical model
Model for vector borne diseases

Numerical simulation contd...

Global stability of E ∗ in AH − YV −M space
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Numerical simulation contd...

Variation of reproduction number, R0 w.r.t. λ and θ.
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The mathematical model
Model for vector borne diseases

Numerical simulation contd...

Variation of variables w.r.t. time for different values of λ
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The mathematical model
Model for vector borne diseases

Numerical simulation contd...

Variation of variables w.r.t. time for different values of φ
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for vector borne diseases

Numerical simulation contd...

Variation of variables w.r.t. time for different values of θ

Anupama Sharma IMSc-Chennai, Nov. 25, 2015 39



Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for HIV/AIDS

Modeling the interplay between transmission

of HIV/AIDS and awareness with a case

study of India
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for HIV/AIDS

Scenario HIV/AIDS epidemic in India

I PLWHA: 23.9 lakh

I Adult prevalence: 0.31 %.

I According BSS 2006

An average of 72.45% people exposed to the media
are aware about HIV prevention whereas 14.3% who
are not exposed to the media.

I Nearly 68% of Indian population lives in rural areas.

I Interpersonal communication through Self Help Groups, An-
ganwadi workers, ANM, ASHA, NGOs, etc.
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

The mathematical model
Model for HIV/AIDS

Variable considered

I Susceptible population, X

I Infected population, Y

I Aware susceptible population, Xa

I Aware infected population, Ya

I Awareness programs by media, M
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The mathematical model
Model for HIV/AIDS

The model

dX

dt
= µN − βX (Y + pYa)

N
− λ1XM − γ1

X (Xa + Ya)

N
− µX ,

dY

dt
= β

X (Y + pYa)

N
− λ2YM − γ2

Y (Xa + Ya)

N
− (µ+ α)Y ,

dXa

dt
= λ1XM + γ1

X (Xa + Ya)

N
− β pXa(Y + pYa)

N
− µXa, (3.1)

dYa

dt
= β

pXa(Y + pYa)

N
+ λ2YM + γ2

Y (Xa + Ya)

N
− (µ+ α)Ya,

dM

dt
= φ

Y

N
− φ0M,

where, X (0) > 0, Y (0) > 0, Xa(0) > 0, Ya(0) ≥ 0, M(0) ≥ 0.
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The mathematical model
Model for HIV/AIDS

The model contd...

Using X
N = S , Y

N = I , Xa
N = Sa, and Ya

N = Ia, we obtain the scaled
system comprising the fractions of populations as,

dS

dt
= µ− βSI − λ1SM − γ1S(Sa + Ia)− µS ,

dI

dt
= βSI − λ2IM − γ2I (Sa + Ia)− µI ,

dSa

dt
= λ1SM + γ1S(Sa + Ia)− µSa, (3.2)

dIa
dt

= λ2IM + γ2I (Sa + Ia)− µIa,

dM

dt
= φI − φ0M.

Region of attraction:

Ω =

{
(I ,Sa, Ia,M) ∈ R4

+ : 0 ≤ I + Sa + Ia < 1, 0 ≤ M <
φ

φ0

}
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The mathematical model
Model for HIV/AIDS

Equilibria obtained

The model system exhibits three equilibria namely:

I Disease and awareness free equilibrium E0(0, 0, 0, 0),

I Disease free equilibrium E1(0, 1− µ/γ1, 0, 0),

This equilibrium exists provided γ1 > µ.

I Endemic equilibrium E ∗(I ∗,S∗a , I
∗
a ,M

∗),

It exists if β > µ and (γ1γ2 + µγ1 − µβ − µγ2) < 0.
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The mathematical model
Model for HIV/AIDS

Basic reproduction number

I R i
0 =

β

µ
and Ra

0 =
γ1

µ

I Relation:

Ra
0 < ζR i

0,

where ζ =

(
1 + γ2

β

1 + γ2
µ

)
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The mathematical model
Model for HIV/AIDS

Stability analysis

Theorem

1. The Disease and awareness free equilibrium is locally stable iff
R i

0 < 1 and Ra
0 < 1.

2. Disease free equilibrium exits iff Ra
0 > 1 and is locally stable

provided ζR i
0 < Ra

0 .

Theorem

The endemic equilibrium E ∗, whenever exists, is locally asymptoti-
cally stable provided, A1 > 0, A3 > 0, A1A2 > A3.
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The mathematical model
Model for HIV/AIDS

A case study of India

According to 2006 technical report of NACO, the adult prevalence
in the initial phase of HIV/AIDS epidemic are given in the following
table:

Year Adult prevalence (%)
1989 0.010
1990 0.017
1991 0.03
1992 0.05
1993 0.09
1994 0.16
1995 0.26
1996 0.35
1997 0.43
1998 0.47
1999 0.48
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

I The NACP-II, started in the year 1999.

I No attention on behavioral changes was paid till then.

I {
Ẋ = µN − βXY /N − µX ,
Ẏ = βXY /N − (α + µ)Y .

(3.3)

I µ = 1/34 = 0.0294 and α = 0.0706.
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I {
Ẋ = µN − βXY /N − µX ,
Ẏ = βXY /N − (α + µ)Y .

(3.3)

I µ = 1/34 = 0.0294 and α = 0.0706.
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

HIV/AIDS model fitting for the adult prevalence in India (initial phase).
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

I β = 0.3089

I Best fit (with R-squared = 0.98) for parameter values:

λ1 = 0.8, λ2 = 0.5, γ1 = 0.5, γ2 = 0.25, φ = 50,
φ0 = 0.02, p = 0.4.

I Initial start:

I (0) = 0.004,Sa(0) = 0.001, Ia(0) = 0,M(0) = 2.
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

HIV/AIDS model fitting for the adult prevalence in India.
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

HIV/AIDS prevalence simulation under different scenarios
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

Semi-relative sensitivity solutions.
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

Logarithmic sensitivity solutions.
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The mathematical model
Model for HIV/AIDS

A case study of India contd...

Future projections of HIV epidemic in India.
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Conclusions

I Prevalence-elastic media campaigns can only control the epi-
demic not eradicate it.

I Sustained media campaigns must be devised for eradication of
disease.

I Swift dissemination of awareness via word-of-mouth can also
eradicate disease.

I Media-induced behavioral changes can perturb the stable en-
demic equilibrium.
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Future research

Social contact structure is highly heterogeneous.

Is homogenous/random mixing adequate to reflect the
reality ?

NETWORK MODELS

• Scale-free • Modular • Multiplex
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Future research

Social contact structure is highly heterogeneous.

Is homogenous/random mixing adequate to reflect the
reality ?

NETWORK MODELS

• Scale-free • Modular • Multiplex
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Thank You
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The existence of equilibrium E0 is trivial. We prove the existence of E∗ in
detail. In equilibrium E∗(Y ∗,X ∗a ,N

∗,M∗), the values of Y ∗, X ∗a , N∗ and M∗

are obtained by solving the following algebraic equations(for Y 6= 0):

β(N − Y − Xa)− (ν + α + d) = 0, (1)

λ(N − Y − Xa)M − λ0Xa − dXa = 0, (2)

A− dN − αY = 0, (3)

φY − φ0M = 0. (4)

Using equations (1) and (4) in equation (2) , we get,

Xa =
λφ(ν + α + d)Y

βφ0(λ0 + d)
. (5)
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Further, using equations (3), (4) and (5) in equation (1), we get

A− αY
d

− Y − λφ(ν + α + d)Y

βφ0(λ0 + d)
=

(ν + α + d)

β
. (6)

This yields the value of Y as

Y =
(βA− d(ν + α + d))

dβ(1 + α
d

+ φλ(ν+α+d)
φ0β(λ0+d)

)

= Y ∗(say), (7)

which is positive provided R0 > 1. Finally using this value of Y = Y ∗ in
equations (3), (4) and (5), we get positive values of N,M and Xa respectively.

Back
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The Jacobian matrix ‘J’ for the model system (1.2) is as follows:

J =


a11 −βY βY 0
−λM −(λM + λ0 + d) λM λ(N − Y − Xa)
−α 0 −d 0
φ 0 0 −φ0

 .
where, a11 = β(N − 2Y − Xa)− (ν + α + d)
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Now the Jacobian matrix ‘J’, evaluated at the equilibrium E0 is given by

JE0 =


β(A/d)− (ν + α + d) 0 0 0

0 −(d + λ0) 0 λ(A/d)
−α 0 −d 0
φ 0 0 −φ0

 .

I Eigenvalues of matrix JE0 are (β(A/d)− (ν +α+ d)), −(λ0 + d), −d and
−φ0.

I One eigenvalue of this matrix i.e., (β(A/d) − (ν + α + d)), is positive
whenever E∗ exits (i.e., R0 > 1).

I Thus if E∗ exists, then E0 is a saddle point with stable manifold locally in
the Xa−N−M space and with unstable manifold locally in the Y -direction.

I Thus E0 is unstable whenever E∗ exists.
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Furthermore, to establish the local stability of endemic equilibrium E∗, we eval-
uate the Jacobian matrix ‘J’ at equilibrium E∗ as

JE∗ =


βY ∗ −βY ∗ βY ∗ 0
−λM∗ −(λM∗ + λ0 + d) λM∗ λ(N∗ − Y ∗ − X ∗a )
−α 0 −d 0
φ 0 0 −φ0

 .
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The characteristic equation for matrix JE∗ is given by,

ψ4 + A1ψ
3 + A2ψ

2 + A3ψ + A4 = 0, (8)

where,

A1 =βY ∗ + λM∗ + λ0 + φ0 + 2d ,

A2 =βY ∗(λ0 + φ0 + α + 2d) + (λM∗ + λ0 + d)(φ0 + d) + φ0d ,

A3 =βY ∗φ0(α + d) + βY ∗(φ0 + α + d)(λ0 + d) + βY ∗λ(N∗ − Y ∗ − X ∗a )φ

+ (λM∗ + λ0 + d)φ0d ,

A4 =βY ∗φ0(λ0 + d)(φ0 + d) + βY ∗λ(N∗ − Y ∗ − X ∗a )φd .

Now, it is apparent from here that all the Ai ’s for i = 1, 2, 3, 4 are positive. Thus,

it follows from Routh-Hurwitz criterion that all the roots of equation (8) are either

be negative or with negative real part provided, A1A2A3−A2
3−A2

1A4 > 0.

Back
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Consider the following positive definite function,

V = (Y−Y ∗−Y ∗ ln
Y

Y ∗
)+

m1

2
(Xa−X ∗a )2+

m2

2
(N−N∗)2)+

m3

2
(M−M∗)2

(9)
where m1, m2 and m3 are some positive constants to be chosen
appropriately later on. On differentiating ‘V ’ with respect to ‘t’ we
get,

V̇ = (Y−Y ∗)
Ẏ

Y
+m1(Xa−X ∗a )Ẋa+m2(N−N∗)Ṅ +m3(M−M∗)Ṁ,

(10)
where ˙ represents differentiation w.r.t. time. Now the value of V̇
along the solutions of model system (1.2) is computed as,

V̇ = −β(Y − Y ∗)2 −m1(λM + λ0 + d)(Xa − X ∗a )2 −m2d(N − N∗)2

− m3φ0(M −M∗)2 − (β + m1λM)(Y − Y ∗)(Xa − X ∗a )

+(−m2α + β)(Y − Y ∗)(N − N∗) + m3φ(Y − Y ∗)(M −M∗)

+ m1λM(Xa − X ∗a )(N − N∗) + m1λ(N∗ − X ∗a −M∗)(Xa − X ∗a )(M −M∗).
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On choosing m2 = β/α and making some simple algebraic manipulations we get,

V̇ = −m1λM(Xa − X ∗a )2 − β(Y − Y ∗)2 −m1(λ0 + d)(Xa − X ∗a )2

−βd
α

(N − N∗)2 − m3φ0(M −M∗)2 − (β + m1λM)(Y − Y ∗)(Xa − X ∗a )

+m3φ(Y − Y ∗)(M −M∗) + m1λM(Xa − X ∗a )(N − N∗)

+m1λ(N∗ − X ∗a −M∗)(Xa − X ∗a )(M −M∗).

Now V̇ will be negative definite inside the region of attraction Ω, provided

β <
m1(λ0 + d)

3
(11)

m1λ
2M2

R <
β(λ0 + d)

3
(12)

m3φ
2 <

2βφ0

3
(13)

m1λ
2M2

R <
βd(λ0 + d)

α
(14)

m1λ
2(N∗ − X ∗a −M∗)2 <

m3φ0(λ0 + d)

2
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From inequality (13), we may choose a positive value of m3 as m3 =
4βφ0

9φ2
.

Thereafter, from rest of the inequalities, we may choose positive m1 if the fol-
lowing inequality holds.

3λ2

(λ0 + d)2
< min

{
1

3M2
R

,
d

αM2
R

,
2φ2

0

9(N∗ − Y ∗ − X ∗a )2

}
. (16)

Finally using the fact that MR =
φA

φ0d
(see region of attraction), the above

inequality (16) reduces to inequality (1.6). Back
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To obtain the equilibria of model system (2.2), we solve the following
algebraic equations, which are obtained by setting growth rate of all
the variables equal to zero.

βHV (NH − YH − AH)YV − (ν + α + dH)YH = 0, (1)

λ(NH − YH − AH)M − (λ0 + dH)AH = 0, (2)

Λ− αYH − dHNH = 0, (3)

βVH(NV − YV )YH − (θAH + dV )YV = 0, (4)

rNV

(
1− NV

K

)
− θAHNV = 0, (5)

φYH − φ0(M −M0) = 0. (6)
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The existence of E0 and E1 is trivial. So, here we discuss the existence of E∗

only. For this purpose, using equations (2), (3) and (6), we obtain

AH =
λ(Λ− (α + dH)YH)(φYH + φ0M0)

dH(λ(φYH + φ0M0) + φ0(λ0 + dH))
= g(YH)(say). (7)

Further, for NV 6= 0, equation (5) yields

NV =
K

r
(r − θg(YH)). (8)

From equations (4) and (8), we obtain

YV =
βVHK(r − θg(YH))YH

r(βVHYH + θg(YH) + dV )
. (9)
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Finally using all these values in equation (1) for YH 6= 0, we get a function f (YH)
as

f (YH) = βHVβVH

(
Λ− αYH

dH
− YH − g(YH)

)
K(r − θg(YH))

r(βVHYH + θg(YH) + dV )

−(ν + α + dH) = 0. (10)

The investigation of function f (YH) leads to following observations,

(i) f (0) = βHVβVH
(1− p)ΛK(r − θp(Λ/dH))

rdH(θp(Λ/dH) + dV )
− (ν + α+ dH), which is positive

provided
βHVβVH(1− p)ΛK(r − θp(Λ/dH))

rdH(θp(Λ/dH) + dV )(ν + α + dH)
> 1. (11)

(ii) f ( Λ
α+dH

) = −(ν + α + dH), which is negative.
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Therefore, we may obtain a unique positive value of YH in the interval (0,Λ/(α+

dH)) provided f ′(YH) < 0. Let us denote this positive value of YH as Y ∗H .

Furthermore, the substitution of this value in equations (3), (6), and (7), yields

the equilibrium values of NH ,M,AH as N∗H ,M
∗,A∗H . Finally, using value of Y ∗H

in (8) and (9), we get a positive value of NV and YV as N∗V and Y ∗V provided

r > θg(Y ∗H ) i.e., r > θA∗H . Back
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The Jacobian matrix ‘J’ for model system (2.2) is given by:

J=



−a11 −βHV YV βHV YV a14 0 0
−λM −a22 λM 0 0 a26

−α 0 −dH 0 0 0
a41 −θYV 0 −a44 βVHYH 0

0 −θNV 0 0 r − 2r NV
K − θAH 0

φ 0 0 0 0 −φ0


where,
a11 = βHV YV + ν + α + dH , a14 = βHV (NH − YH − AH), a22 =
λM + λ0 + dH ,
a26 = λ(NH − YH − AH), a41 = βVH(NV − YV ), a44 = βVHYH +
θAH + dV .
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The Jacobian matrix ‘J’, evaluated at the equilibrium E0 is given by

JE0 =



−(ν + α + dH) 0 0 βHV
(1−p)Λ

dH
0 0

−λM0 −a22 λM0 0 0 a26

−α 0 −dH 0 0 0

0 0 0 −(θ pΛ
dH

+ dV ) 0 0

0 0 0 0 r − θ pΛ
dH

0

φ 0 0 0 0 −φ0


where,
a22 = λM0 + λ0 + dH , a26 = λ (1−p)Λ

dH
.

It is apparent that the eigenvalues of JE0 are −(ν+α+ dH), −(λM0 +λ0 + dH),

−dH , −(θ pΛ
dH

+ dV ), r − θ pΛ
dH

and −φ0. Therefore, all eigenvalues of JE0 are

negative provided r < θp(Λ/dH). Hence, JE0 is stable until r < θp(Λ/dH) and it

becomes unstable if r > θp(Λ/dH) i.e., E1 exists. Thus, if E1 exists, then E0 is a

saddle point with stable manifold locally in the YH − AH −NH − YV −M space

and unstable manifold locally in the NV -direction. Thus E0 is unstable whenever

E1 exists.
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Further, the Jacobian matrix ‘J’, evaluated at equilibrium E1 is,

JE1 =



−(ν + α + dH) 0 0 βHV
(1−p)Λ

dH
0 0

−λM0 −a221 λM0 0 0 λ (1−p)Λ
dH

−α 0 −dH 0 0 0

βVH 0 0 −(θ pΛ
dH

+ dV ) 0 0

0 −(θK(r − θ pΛ
dH

))/r 0 0 −(r − θ pΛ
dH

) 0

φ 0 0 0 0 −φ0


where, a221 = (λM0 + λ0 + dH)

Form JE1 it is found that four eigenvalues i.e., −(λM0 + λ0 + dH), −dH , −(r −
θp(Λ/dH)), −φ0 are negative.
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The rest two eigenvalues are roots of following quadratic equation

ξ2 + q1ξ + q2 = 0, (12)

where,
q1 = ν + α + dH + θp(Λ/dH) + dV ,

q2 = −βHVβVH
(1− p)ΛK(r − θp(Λ/dH))

rdH(θ(Λ/dH)p + dV )
+ (ν + α + dH).

It is noted that if q2 > 0, then the roots of equation (12) are either negative or

with negative real part. On the contrary if q2 < 0, then one root of equation

(12) is positive. In this case, E1 has an unstable manifold locally either in YH -

direction or in YV -direction and stable manifold locally in AH − NH − NV −M

space. It is interesting to note here that q2 becomes negative if R0 > 1, which

implies the existence of E∗. So we infer that E1 becomes unstable whenever E∗

exits. Back
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Consider a Liapunov’s function as,

V =
1

2
y 2

1 +
k1

2
a2

1 +
k2

2
n2

1 +
k3

2
y 2

2 +
k4

2N∗V
n2

2 +
k5

2
m2, (13)

where, k1, k2, k3, k4 and k5 are positive constants to be chosen ap-
propriately. Here y1, a1, n1, y2, n2, and m are small perturbations in
YH ,AH ,NH ,YV ,NV and M around the equilibrium E ∗, respectively.
Now differentiating ‘V ’ with respect to ‘t’, we get

V̇ = y1ẏ1 + k1a1ȧ1 + k2n1ṅ1 + k3y2ẏ2 +
k4

N∗V
n2ṅ2 + k5mṁ, (14)

where ˙ represents differentiation w.r.t. time.
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Using the linearized system of model system (2.2) corresponding to E∗, we get

V̇ = y1[−a∗11y1 − βHVY ∗a1 + βHVY
∗n1 + a∗14y2]

+k1a1[−λM∗y1 − a∗22a1 + λM∗n1 + a∗26m]

+k2n1[−αy1 − dHn1]

+k3y2[a∗41y1 − θY ∗V a1 − a∗44y2 + βVHY
∗
Hn2]

+k4n2[−θa1 − (r/K)n2]

+k5m[φy1 − φ0m].

Here, a∗ij denotes the values of aij in Jacobian matrix JE∗ evaluated at E∗.
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After choosing k2 =
βHV Y∗

V
α

, a little algebraic manipulation yields,

V̇ = −a∗11y
2
1 − k1a

∗
22a

2
1 − k2dHn

2
1 − k3a

∗
44y

2
2 − k4(r/K)n2

2 − k5φ0m
2

+y1a1[−βHVY ∗V − k1λM
∗] + y1y2[a∗14 + k3a

∗
41] + y1m[k5φ]

+a1n1[k1λM
∗] + a1y2[−k3θY

∗
V ] + a1n2[−k4θ] + a1m[k1a

∗
26]

+y2n2[k3βVHY
∗
H ].
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Now, V̇ will be negative definite provided the following inequalities are satisfied,

β2
HVY

∗
V

2 <
2

15
k1a
∗
11a
∗
22, (15)

k1λ
2M∗2 <

2

15
a∗11a

∗
22, (16)

a∗14
2 <

1

5
k3a
∗
11a
∗
44, (17)

k3a
∗
41

2 <
1

5
a∗11a

∗
44, (18)

k5φ
2 <

2

5
a∗11φ0, (19)

k1λ
2M∗2 <

2

3

βHVY
∗
V dHa

∗
22

α
, (20)

k3θ
2Y ∗V

2 <
1

6
k1a
∗
22a
∗
44, (21)

k4θ
2 <

1

3
k1

r

K
a∗22, (22)

k1a
∗
26

2 <
1

3
k5a
∗
22φ0, (23)

k3β
2
VHY

∗
H

2 <
1

2
k4

r

K
a∗44. (24)
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From inequality (19), we can choose k5 =
2a∗11φ0

6φ2
. Now using this value of k5,

we can choose a positive value of k1 from inequalities (15), (16), (20) and (23),
as

15

2

β2
HVY

∗
V

2

a∗11a
∗
22

< k1 < min

{
2

15

a∗11a
∗
22

λ2M∗2 ,
2

3

βHVY
∗
V dHa

∗
22

λ2M∗2α
,

1

3

k5φ0a
∗
22

a∗26
2

}
. (25)
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Using inequalities (17), (18) and (21), a positive value of k3 can be chosen as

5a∗14
2

a∗11a
∗
44

< k3 < min

{
a∗11a

∗
44

5a∗41
2 ,

a∗22a
∗
44k1

6θ2Y ∗V
2

}
. (26)

Finally using values of k1 and k3 as chosen above, in inequalities (22) and (24)
we may choose a positive value of k4 provided following inequality holds,

β2
VHY

∗
H

2

a∗44

k3 <
r 2a∗22

6K 2θ2
k1. (27)

Hence the proof. Back
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Consider the following positive definite function,

W =
1

2
(YH − Y ∗H)2 +

p1

2
(AH − A∗H)2 +

p2

2
(NH − N∗H)2 +

p3

2
(YV − Y ∗V )2

+ p4(NV − N∗V − N∗V ln
NV

N∗V
) +

p5

2
(M −M∗)2 (28)

where the coefficients p1, p2, p3, p4 and p5 are positive constants to
be chosen suitably later on. Differentiating (28) with respect to ‘t’
we get,

Ẇ = (YH − Y ∗H)ẎH + p1(AH − A∗H)ȦH + p2(NH − N∗H)ṄH + p3(YV − Y ∗V )ẎV

+ p4(NV − N∗V )
ṄV

NV
+ p5(M −M∗)Ṁ, (29)

where ˙ represents differentiation w.r.t. time.
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Epidemic and media campaigns: Understanding the interplay from mathematical standpoint

Evaluating Ẇ along the solutions of model system (2.2), we get

Ẇ = (YH − Y ∗H )[βHV {(NH − YH − AH)YV − (N∗H − Y ∗H − A∗H)Y ∗V } − (ν + α + dH)(YH − Y ∗H )]

+p1(AH − A∗H)[λ{(NH − YH − AH)M − (N∗H − Y ∗H − A∗H)M∗}
−(λ0 + dH)(AH − A∗H)] + p2(NH − N∗H)[−dH(NH − N∗H)− α(YH − Y ∗H )]

+p3(YV − Y ∗V )[βVH{YH(NV − YV )− Y ∗H (N∗V − Y ∗V )}
−θ(AHYV − A∗HY

∗
V )− dV (YV − Y ∗V )]

+p4(NV − N∗V )[− r

K
(NV − N∗V )− θ(AH − A∗H)]

+p5(M −M∗)[φ(YH − Y ∗H )− φ0(M −M∗)]. (30)
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On rearranging the terms and setting p2 =
βHVY

∗
V

α
, Ẇ reduces to,

Ẇ = −(βHVY
∗
V + ν + α + dH)(YH − Y ∗H )2 − p1(λM + λ0 + dH)(AH − A∗H)2

−βHV dHY
∗
V

α
(NH − N∗H)2 − p3(βVHYH + θAH + dV )(YV − Y ∗V )2

−p4
r

K
(NV − N∗V )2 − p5φ0(M −M∗)2

+[βHV (NH − YH − AH) + p3βVH(N∗V − Y ∗V )](YH − Y ∗H )(YV − Y ∗V )

−[βHVY
∗
V + p1λM](YH − Y ∗H )(AH − A∗H) + [p5φ](YH − Y ∗H )(M −M∗)

+[p1λM](AH − A∗H)(NH − N∗H)− [p3θY
∗
V ](AH − A∗H)(YV − Y ∗V )

−[p4θ](AH − A∗H)(NV − N∗V ) + [p1λ(N∗H − Y ∗H − A∗H)](AH − A∗H)(M −M∗)

+[p3βVHYH ](YV − Y ∗V )(NV − N∗V ).
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Using region of attraction Ω, we infer that Ẇ will be a negative definite provided
the following inequalities hold:

β2
HVY

∗
V

2
<

2

15
p1(βHVY

∗
V + ν + α + dH)(λ0 + dH), (31)

p1λ
2M2

R <
2

15
(βHVY

∗
V + ν + α + dH)(λ0 + dH), (32)

β2
HV Λ2

d2
H

<
1

5
p3(βHVY

∗
V + ν + α + dH)dV , (33)

p3β
2
VH(N∗V − Y ∗V )2 <

1

5
(βHVY

∗
V + ν + α + dH)dV , (34)

p5φ
2 <

2

5
(βHVY

∗
V + ν + α + dH)φ0, (35)
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p1λ
2M2

R <
2

3

βHVY
∗
V dH(λ0 + dH)

α
, (36)

p3θ
2Y ∗V

2
<

1

6
p1(λ0 + dH)dV , (37)

p4θ
2 <

1

3
p1

r(λ0 + dH)

K
, (38)

p1λ
2(N∗H − Y ∗H − A∗H)2 <

1

3
p5φ0(λ0 + dH), (39)

p3
Λ2β2

VH

d2
H

<
1

2
p4

rdV
K
, (40)
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From (35), a positive value of p5 can be chosen as p5 =
2(βHVY

∗
V + ν + α + dH)φ0

6φ2
.

Further, using inequalities (31), (32), (36) and (39), we may choose a positive
value of p1 as follows

15

2

β2
HVY

∗
V

2

(βHVY
∗
V + ν + α+ dH)(λ0 + dH)

< p1 < min

{
2(βHVY

∗
V + ν + α+ dH)(λ0 + dH)

15λ2M2
R

,

2βHVY
∗
V (λ0 + dH)dH

3αλ2M2
R

,
φ0(λ0 + dH)p5

3λ2(N∗H − Y ∗H − A∗H)2

}
.

(41)

Further, from inequalities (33), (34) and (37), we can choose a positive value of p3 as,

5β2
HV Λ2

(βHVY
∗
V + ν + α+ dH)dV d

2
H

< p3 < min

{
(βHVY

∗
V + ν + α+ dH)dV

β2
VH(N∗V − Y ∗V )2

,

p1(λ0 + dH)dV

6θ2Y ∗V
2

}
. (42)
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Using positive values of p1 and p3 as obtained from (41) and (42) in inequalities
(38) and (40) respectively, we may choose a positive value of p4 if the following
inequality is satisfied,

β2
VHΛ2

d2
HdV

p3 <
(λ0 + dH)r 2

6K 2θ2
p1. (43)

Hence, we made the assertion that W is a Liapunov’s function for model system

(2.2), provided conditions (2.6), (2.7) and (2.8) hold. Back
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