Introduction to infectious disease modelling

Sebastian Funk, Gwen Knight, Anton Camacho

Centre for the Mathematical Modelling of Infectious Diseases London School of Hygiene & Tropical Medicine

centre for the mathematical modelling of infectious diseases

1. Introduction

Overview of the course

Day 1

Introduction to infectious disease modelling

Day 2

- PRACTICAL Deterministic models in R
- Introduction to stochastic models

Day 3

- Applications of modelling
- PRACTICAL stochastic models in R

Day 4

• Model fitting and inference (+ PRACTICAL)

The reproduction number R

The number of secondary cases an infectious person generates.

What does this depend on?

The reproduction number R

The number of secondary cases an infectious person generates.

What does this depend on?

- 1. The number of contacts a person has per time, c
- 2. The probability of transmission given contact, p
- 3. The duration of infectiousness, D
- 4. The proportion of contacts that are susceptible, s

The reproduction number R

The number of secondary cases an infectious person generates.

What does this depend on?

- 1. The number of contacts a person has per time, c
- 2. The probability of transmission given contact, p
- 3. The duration of infectiousness, D
- 4. The proportion of contacts that are susceptible, s

A simple model would suggest: $R = c \times p \times D \times s$

The basic reproduction number R_0

The average number of secondary infectious cases resulting from the introduction of a single infectious case into a totally susceptible population

Number of cases decreases

Number of cases increases

R_0 of infectious diseases

Can you arrange these diseases according to their value of R_0 ?

Measles

Ebola

Malaria

HIV

Empirical values of R_0

More empirical values of R_0

Infection	Geographical location	Time period	R_0
Measles	Cirencester, England	1947-50	13-14
	England and Wales	1950-68	16-18
	Kansas, USA	1918-21	5-6
	Ontario, Canada	1912-13	11-12
	Willesden, England	1912-13	11-12
	Ghana	1960-8	14-15
	Eastern Nigeria	1960-8	16-17
Pertussis	England and Wales	1944-78	16-18
	Maryland, USA	1943	16-17
	Ontario, Canada	1912-13	10-11
Chicken pox	Maryland, USA	1913-17	7-8
	New Jersey, USA	1912-21	7-8
	Baltimore, USA	1943	10-11
	England and Wales	1944-68	10-12
Diphtheria	New York, USA	1918-19	4-5
	Maryland, USA	1908-17	4-5
Scarlet fever	Maryland, USA	1908-17	7-8
	New York, USA	1918-19	5-6
	Pennsylvania, USA	1910-16	6-7
Mumps	Baltimore, USA	1943	7-8
	England and Wales	1960-80	11-14
	Netherlands	1970-80	11-14
Rubella	England and Wales	1960-70	6-7
	West Germany	1970-7	6-7
	Czechoslovakia	1970-7	8.9
	Poland	1970-7	11-12
	Gambia	1976	15-16
Poliomyelitis	USA	1955	5-6
	Netherlands	1960	6-7
Human Immunodeficiency Virus (Type I)	England and Wales (male homosexuals)	1981-5	2-5
	Nairobi, Kenya (female prostitutes)	1981-5	11-12
	Kampala, Uganda (heterosexuals)	19857	10-11

 R_0 for a disease can have different values depending on factors such as:

- Population density and contact patterns
- Host factors (e.g., immunity)
- Seasonality
- Control measures

2. Mathematical models

What is a (mathematical) model?

A simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions

Oxford English Dictionary

What is a (mathematical) model?

A simplified description, especially a mathematical one, of a system or process, to assist calculations and predictions

Oxford English Dictionary

Infectious disease model

- a set of equations describing transmission in a population
- an attempt to capture key processes, ignoring unnecessary detail

Why model?

- 1. understand transmission dynamics
 - Examples:
 - who are the risk groups?
 - where are the hotspots?
 - what is the impact of asymptomatic infection?
 - highlight gaps in knowledge, data needs, etc
- 2. assess control strategies
 - Examples
 - limited vaccine supply, how should it be distributed?
 - travel restrictions, etc.
 - school closures?
- 3. predict future course
 - Examples
 - · how many cases do we expect next week?
 - are we approaching the peak of an outbreak?
 - what is the impact of a changing climate?

Purpose of mathematical models

All models are wrong but some are useful

George P. Box

• Divide a population of *N* people into compartments, depending on infection status

• Divide a population of *N* people into compartments, depending on infection status

• Divide a population of *N* people into compartments, depending on infection status

A simple compartmental model

• S: Number of susceptibles

• Divide a population of *N* people into compartments, depending on infection status

- S: Number of susceptibles
- I: Number of infectious

• Divide a population of *N* people into compartments, depending on infection status

- S: Number of susceptibles
- I: Number of infectious
- *S* and *I* are the compartments. They are state variables, i.e. they change over time.

• Divide a population of *N* people into compartments, depending on infection status

- S: Number of susceptibles
- I: Number of infectious
- *S* and *I* are the compartments. They are state variables, i.e. they change over time.
- N = S + I is the population size. N is a parameter, i.e. it does not change.

- λ is called the force of infection
- It is the probability that a susceptible person gets infected per unit time (i.e., per day, week, month year, ...)
- What is this probability?

- λ is called the force of infection
- It is the probability that a susceptible person gets infected per unit time (i.e., per day, week, month year, ...)
- What is this probability?

(Number of contacts per unit time) $ imes$	c
(Probability of transmission) $ imes$	p_{\perp}
(Probability that contact is infectious)	I/N

- λ is called the force of infection
- It is the probability that a susceptible person gets infected per unit time (i.e., per day, week, month year, ...)
- What is this probability?

 $\begin{array}{ll} (\text{Number of contacts per unit time}) \times & c \\ (\text{Probability of transmission}) \times & p \\ (\text{Probability that contact is infectious}) & I/N \end{array}$

- We often write $\beta = c \times p$, so that $\lambda = \beta I/N$
- β is called the infection rate, a parameter

• We have called *I*/*N* the probability that a contact is infectious

- We have called *I*/*N* the probability that a contact is infectious
- This implies that every person in the population has the same probability of getting in infectious contact with everyone else.

- We have called *I*/*N* the probability that a contact is infectious
- This implies that every person in the population has the same probability of getting in infectious contact with everyone else.
- This is called the principle of mass action (from Chemistry)

- We have called *I*/*N* the probability that a contact is infectious
- This implies that every person in the population has the same probability of getting in infectious contact with everyone else.
- This is called the principle of mass action (from Chemistry)
- Is this realistic?

- We have called *I*/*N* the probability that a contact is infectious
- This implies that every person in the population has the same probability of getting in infectious contact with everyone else.
- This is called the principle of mass action (from Chemistry)
- Is this realistic?
 - No think influenza, HIV, Ebola, ...

- We have called *I*/*N* the probability that a contact is infectious
- This implies that every person in the population has the same probability of getting in infectious contact with everyone else.
- This is called the principle of mass action (from Chemistry)
- Is this realistic?
 - No think influenza, HIV, Ebola, ...
 - But: sometimes it is a good model

Writing the SI model as differential equations

 $\lambda = \beta \frac{I}{N}$

• S: Number of people susceptible

Writing the SI model as differential equations

 $\lambda = \beta \frac{I}{N}$

- S: Number of people susceptible
- I: Number of people infectious

- S: Number of people susceptible
- I: Number of people infectious
- How does the number of people susceptible and infectious change over time?

- S: Number of people susceptible
- I: Number of people infectious
- How does the number of people susceptible and infectious change over time?

$$dS/dt = -\lambda S$$

$$\begin{array}{c} \lambda \\ S \\ \hline \end{array} \\ I \\ \end{array} \\ \lambda = \beta \frac{I}{N}$$

- S: Number of people susceptible
- I: Number of people infectious
- How does the number of people susceptible and infectious change over time?

$$\frac{dS}{dt} = -\lambda S$$
$$\frac{dI}{dt} = +\lambda S$$

- S: Number of people susceptible
- I: Number of people infectious
- How does the number of people susceptible and infectious change over time?

If we replace λ as above:

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

$$\frac{dS}{dt} = -\beta \frac{I}{N}S$$
$$\frac{dI}{dt} = +\beta \frac{I}{N}S$$

Properties of the SI model

Properties of the SI model

· Everyone in the population eventually gets infected
Properties of the SI model

· Everyone in the population eventually gets infected

Properties of the SI model

- · Everyone in the population eventually gets infected
- The time this takes depends on the infection rate β

Applications of the SI model

- · Everyone in the population eventually gets infected
- The time this takes depends on the infection rate β

For which infection is this a good model?

Applications of the SI model

- · Everyone in the population eventually gets infected
- The time this takes depends on the infection rate $\boldsymbol{\beta}$

For which infection is this a good model?

Cytomegalovirus (CMV)

Applications of the SI model

- · Everyone in the population eventually gets infected
- The time this takes depends on the infection rate $\boldsymbol{\beta}$

For which infection is this a good model?

- Cytomegalovirus (CMV)
- Herpes simplex virus

Extending the SI model

• The SI model assumes that people who get infected stay infectious forever

Extending the SI model

- The SI model assumes that people who get infected stay infectious forever
- This is not the case for most infections (e.g., influenza, measles, etc.)

Extending the SI model

- The SI model assumes that people who get infected stay infectious forever
- This is not the case for most infections (e.g., influenza, measles, etc.)
- Recovery from infection usually implies (some) immunity

The SIR model

The SIR model

• R: Number of recovered (immune) people

The SIR model

- R: Number of recovered (immune) people
- γ : recovery rate, or the probability of recovery per day (or per week, or per year). This is the inverse of the duration of infection *D*: $\gamma = 1/D$

• S: Number of people susceptible

- S: Number of people susceptible
- I: Number of people infectious

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\lambda S$$

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$\frac{dS}{dt} = -\lambda S$$
$$\frac{dI}{dt} = +\lambda S - \gamma I$$

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\lambda S$$

$$dI/dt = +\lambda S - \gamma I$$

$$dR/dt = +\gamma I$$

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

$$dS/dt = -\beta \frac{I}{N}S$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I$$

- Not everyone in the population eventually gets infected.
- The time and height of the peak, and the total number of people infectious depends on β and γ

- Not everyone in the population eventually gets infected.
- The time and height of the peak, and the total number of people infectious depends on β and γ
- Sometimes almost nobody gets infected

4. The basic and net reproduction numbers

Definition

The average number of secondary infectious cases resulting from the introduction of a single infectious case into a totally susceptible population

• single infectious case: I = 1

- single infectious case: I = 1
- totally susceptible population: S = N

- single infectious case: I = 1
- totally susceptible population: S = N
- force of infection from a single infectious case: $\lambda=\beta\frac{I}{N}=\beta\frac{1}{N}$

- single infectious case: I = 1
- totally susceptible population: S = N
- force of infection from a single infectious case: $\lambda=\beta\frac{I}{N}=\beta\frac{1}{N}$
- number of secondary infectious cases per time: $\lambda S = \beta \frac{1}{N} N = \beta$

- single infectious case: I = 1
- totally susceptible population: S = N
- force of infection from a single infectious case: $\lambda=\beta\frac{I}{N}=\beta\frac{1}{N}$
- number of secondary infectious cases per time: $\lambda S = \beta \frac{1}{N} N = \beta$
- total number of secondary infectious cases:

- single infectious case: I = 1
- totally susceptible population: S = N
- force of infection from a single infectious case: $\lambda = \beta \frac{I}{N} = \beta \frac{1}{N}$
- number of secondary infectious cases per time: $\lambda S = \beta \frac{1}{N} N = \beta$
- total number of secondary infectious cases:

$$R_0 = \beta D = \frac{\beta}{\gamma}$$

Properties of R_0 in the SIR model

How does the number of infected change?

$$dI/dt = \beta \frac{I}{N}S - \gamma I$$

Properties of R_0 in the SIR model

How does the number of infected change?

$$dI/dt = \beta \frac{I}{N}S - \gamma I$$

If we start with a single infectious person ($I = 1, S \approx N$), then we have

$$dI/dt = \beta - \gamma = \frac{1}{\gamma}(R_0 - 1)$$

Properties of R_0 in the SIR model

How does the number of infected change?

$$dI/dt = \beta \frac{I}{N}S - \gamma I$$

If we start with a single infectious person ($I = 1, S \approx N$), then we have

$$dI/dt = \beta - \gamma = \frac{1}{\gamma}(R_0 - 1)$$

The number of infectious will

- increase if $R_0 > 1$
- decrease if $R_0 < 1$

The value of R_0 reveals if a newly introduced disease will spread or die out.

 R_0 and outbreaks

$$R_0 = \beta D = \frac{\beta}{\gamma}$$

The value of R_0 reveals if a newly introduced disease will spread or die out.

 $R_0 = 2$

 R_0 and outbreaks

$$R_0 = \beta D = \frac{\beta}{\gamma}$$

The value of R_0 reveals if a newly introduced disease will spread or die out.

 $R_0 = 0.5$

The net reproduction number

The average number of secondary infectious cases resulting from each infectious case in a given population.

The average number of secondary infectious cases resulting from each infectious case in a given population.

• force of infection from each infectious case: $\lambda = \beta \frac{I}{N}$

The average number of secondary infectious cases resulting from each infectious case in a given population.

- force of infection from each infectious case: $\lambda = \beta \frac{I}{N}$
- number secondary infectious cases per time: $\lambda S = \beta \frac{I}{N}S$

The average number of secondary infectious cases resulting from each infectious case in a given population.

- force of infection from each infectious case: $\lambda = \beta \frac{I}{N}$
- number secondary infectious cases per time: $\lambda S = \beta \frac{I}{N}S$
- total number of secondary infectious cases: $\lambda SD = \frac{\beta}{2} \frac{I}{N}S$

The average number of secondary infectious cases resulting from each infectious case in a given population.

• force of infection from each infectious case: $\lambda = \beta \frac{I}{N}$

- number secondary infectious cases per time: $\lambda S = \beta \frac{I}{N}S$
- total number of secondary infectious cases: $\lambda SD = \frac{\beta}{\gamma} \frac{I}{N}S$
- average number of secondary infectious cases: $\frac{\lambda SD}{I}$

$$R_n = \frac{\beta}{\gamma} \frac{S}{N} = R_0 \frac{S}{N}$$

The average number of secondary infectious cases resulting from each infectious case in a given population.

- force of infection from each infectious case: $\lambda = \beta \frac{I}{N}$
- number secondary infectious cases per time: $\lambda S = \beta \frac{I}{N}S$
- total number of secondary infectious cases: $\lambda SD = \frac{\beta}{\gamma} \frac{I}{N}S$
- average number of secondary infectious cases: $\frac{\lambda SD}{I}$

$$R_n = \frac{\beta}{\gamma} \frac{S}{N} = R_0 \frac{S}{N}$$

The net reproduction number is the basic reproduction number multiplied with the proportion of the population that is currently susceptible.

Properties of R_n in the SIR model

$$R_n = \frac{\beta}{\gamma} \frac{S}{N}$$

How does the number of infectious change over time?

$$dI/dt = \beta \frac{I}{N}S - \gamma I$$

We can rewrite this as

$$dI/dt = I\gamma(R_n - 1)$$

Properties of R_n in the SIR model

$$R_n = \frac{\beta}{\gamma} \frac{S}{N}$$

How does the number of infectious change over time?

$$dI/dt = \beta \frac{I}{N}S - \gamma I$$

We can rewrite this as

$$dI/dt = I\gamma(R_n - 1)$$

The number of infectious will

- increase if $R_n > 1$
- decrease if $R_n < 1$

The value of R_n determines if, at any time, a disease will increase or decrease.

R_n and outbreaks

The value of R_n determines if, at any time, a disease will increase or decrease.

 $R_0 = 2$

R_n and outbreaks

The value of R_n determines if, at any time, a disease will increase or decrease.

• At the beginning of the outbreak, $R_n = R_0$

R_n and outbreaks

The value of R_n determines if, at any time, a disease will increase or decrease.

 $R_0 = 2$

- At the beginning of the outbreak, $R_n = R_0$
- At the peak of the outbreak, $R_n = 1$

$$R_n = R_0 \frac{S}{N}$$

$$R_n = R_0 \frac{S}{N}$$

• Vaccination reduces the proportion of susceptibles $\frac{S}{N}$

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?
- To get $R_n < 1$, we must bring the proportion of susceptibles to smaller than $\frac{1}{R_0}$

$$v = 1 - \frac{1}{R_0}$$

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?
- To get $R_n < 1$, we must bring the proportion of susceptibles to smaller than $\frac{1}{R_0}$
- That is, we need to vaccinated at least a proportion

$$v = 1 - \frac{1}{R_0}$$

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?
- To get $R_n < 1$, we must bring the proportion of susceptibles to smaller than $\frac{1}{R_0}$
- That is, we need to vaccinated at least a proportion

$$v = 1 - \frac{1}{R_0}$$

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?
- To get $R_n < 1$, we must bring the proportion of susceptibles to smaller than $\frac{1}{R_0}$
- That is, we need to vaccinated at least a proportion

$$v = 1 - \frac{1}{R_0}$$

• This is called the herd immunity threshold.

$$R_n = R_0 \frac{S}{N}$$

- Vaccination reduces the proportion of susceptibles $\frac{S}{N}$
- How far do we need to reduce this proportion to make sure a disease cannot cause an outbreak?
- To get $R_n < 1$, we must bring the proportion of susceptibles to smaller than $\frac{1}{R_0}$
- That is, we need to vaccinated at least a proportion

$$v = 1 - \frac{1}{R_0}$$

- This is called the herd immunity threshold.
- Important: You do not have to vaccinate everyone (herd immunity)

Examples: The herd immunity threshold

Infectious disease	Herd immunity threshold (%)
Malaria	99
Measles	90-95
Whooping cough	90-95
Chickenpox	85-90
Mumps	85-90
Rubella	82-87
Polio	82-87
Diphtheria	82-87
Smallpox	70-80
Influenza	40-60

- Not everyone in the population eventually gets infected
- If $R_0 > 1$, the infection spreads and then dies out

For which infection is this a good model?

- Not everyone in the population eventually gets infected
- If $R_0 > 1$, the infection spreads and then dies out

For which infection is this a good model?

• Plague in Bombay?

- Not everyone in the population eventually gets infected
- If $R_0 > 1$, the infection spreads and then dies out

For which infection is this a good model?

- Plague in Bombay?
- Measles?

- Not everyone in the population eventually gets infected
- If $R_0 > 1$, the infection spreads and then dies out

For which infection is this a good model?

- Plague in Bombay?
- Measles?
- Influenza?

5. Modelling endemic diseases

• Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population

- Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population
- For this to happen, the infection needs to always find new susceptibles (*S*)

- Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population
- For this to happen, the infection needs to always find new susceptibles (*S*)
- How do new susceptibles appear in a population?

- Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population
- For this to happen, the infection needs to always find new susceptibles (*S*)
- How do new susceptibles appear in a population?
 - births ("childhood diseases")

- Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population
- For this to happen, the infection needs to always find new susceptibles (*S*)
- How do new susceptibles appear in a population?
 - births ("childhood diseases")
 - loss of immunity (examples: Cholera, many others)

- Infectious diseases often do not just cause an outbreak, but can become endemic, or established in the population
- For this to happen, the infection needs to always find new susceptibles (*S*)
- How do new susceptibles appear in a population?
 - births ("childhood diseases")
 - loss of immunity (examples: Cholera, many others)
 - immigration (not usually a significant factor)

The SIRS model

The SIRS model

 δ: rate of immunity loss, or the probability of losing immunity per day (or per week, or per year). This is the inverse of the duration of immunity *M*:

The SIRS model

 δ: rate of immunity loss, or the probability of losing immunity per day (or per week, or per year). This is the inverse of the duration of immunity *M*:

 $\delta = \frac{1}{M}$

Writing the SIRS model as differential equations

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

Writing the SIRS model as differential equations

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\lambda S + \delta R$$

Writing the SIRS model as differential equations

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$\frac{dS}{dt} = -\lambda S + \delta R$$
$$\frac{dI}{dt} = +\lambda S - \gamma I$$
Writing the SIRS model as differential equations

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$\frac{dS}{dt} = -\lambda S + \delta R$$
$$\frac{dI}{dt} = +\lambda S - \gamma I$$
$$\frac{dR}{dt} = +\gamma I - \delta R$$

Writing the SIRS model as differential equations

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$\begin{split} dS/dt &= -\beta \frac{I}{N}S + \delta R \\ dI/dt &= +\beta \frac{I}{N}S - \gamma I \\ dR/dt &= +\gamma I - \delta R \end{split}$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

$$dS/dt = -\beta \frac{I}{N}S + \delta R$$
$$dI/dt = +\beta \frac{I}{N}S - \gamma I$$
$$dR/dt = +\gamma I - \delta R$$

• The infection becomes endemic (does not die out)

• The infection becomes endemic (does not die out)

• The infection becomes endemic (does not die out)
Properties of the SIRS model

- The infection becomes endemic (does not die out)
- The number of people infectious at any time depends on $\beta,\,\gamma$ and δ

Properties of the SIRS model

- The infection becomes endemic (does not die out)
- The number of people infectious at any time depends on $\beta,\,\gamma$ and δ
- If $\delta = 0$, this is the SIR model, and the disease dies out

R_n and endemic diseases

The value of R_n determines if, at any time, a disease will increase or decrease.

 $R_0 = 2$

R_n and endemic diseases

The value of R_n determines if, at any time, a disease will increase or decrease.

$$R_0 = 2$$

• At the beginning, $R_n = R_0$

R_n and endemic diseases

The value of R_n determines if, at any time, a disease will increase or decrease.

- At the beginning, $R_n = R_0$
- At endemic level, $R_n = 1$

Applications of the SIRS model

- Immunity is lost (after a while)
- The infection reaches an endemic level

For which infection is this a good model?

Applications of the SIRS model

- Immunity is lost (after a while)
- The infection reaches an endemic level

For which infection is this a good model?

Cholera?

Applications of the SIRS model

- Immunity is lost (after a while)
- The infection reaches an endemic level
- For which infection is this a good model?
 - Cholera?
 - Measles?

• Measles infection confers lifelong immunity (SIR model?)

- Measles infection confers lifelong immunity (SIR model?)
- Occurred in 2-year cycles

- Measles infection confers lifelong immunity (SIR model?)
- Occurred in 2-year cycles
- New susceptibles through births ("childhood" disease)

• ν is the per-capita birth rate

- ν is the per-capita birth rate
- μ is the per-capita death rate. It is the inverse of the life expectancy L

$$\mu = \frac{1}{L}$$

- ν is the per-capita birth rate
- μ is the per-capita death rate. It is the inverse of the life expectancy L

$$\mu = \frac{1}{L}$$

• If $\mu = \nu$: population size *N* stays constant

- ν is the per-capita birth rate
- μ is the per-capita death rate. It is the inverse of the life expectancy L

$$\mu = \frac{1}{L}$$

- If $\mu = \nu$: population size *N* stays constant
- If $\nu > \mu$: population grows

- ν is the per-capita birth rate
- μ is the per-capita death rate. It is the inverse of the life expectancy L

$$\mu = \frac{1}{L}$$

- If $\mu = \nu$: population size *N* stays constant
- If $\nu > \mu$: population grows
- If $\mu < \nu$: population shrinks

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\lambda S + \nu N$$

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$\frac{dS}{dt} = -\lambda S + \nu N - \mu S$$
$$\frac{dI}{dt} = +\lambda S - \gamma I - \mu I$$

- S: Number of people susceptible
- I: Number of people infectious
- R: Number of people recovered
- How does the number of people susceptible, infectious and recovered change over time?

$$dS/dt = -\lambda S + \nu N - \mu S$$
$$dI/dt = +\lambda S - \gamma I - \mu I$$
$$dR/dt = +\gamma I - \mu R$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

$$\begin{split} dS/dt &= -\lambda S + \nu N - \mu S \\ dI/dt &= +\lambda S - \gamma I - \mu I \\ dR/dt &= +\gamma I - \mu R \end{split}$$

• The infection appears in cycles

• The infection appears in cycles

• The infection appears in cycles

- The infection appears in cycles
- The height and frequency of cycles depends on β , γ and ν

R_n and cycles

The value of R_n determines if, at any time, a disease will increase or decrease.

 $R_0 = 10$

R_n and cycles

The value of R_n determines if, at any time, a disease will increase or decrease.

• At the beginning, $R_n = R_0$

R_n and cycles

The value of R_n determines if, at any time, a disease will increase or decrease.

- At the beginning, $R_n = R_0$
- At endemic level, Rn oscillates around 1

The cycle begins again

What about measles?

What about measles?

• In the SIR model with births/deaths, the endemic cycles decline over time
What about measles?

What about measles?

- stable cycles occur if contact rate β changes periodically
- so-called seasonal forcing by the school year (transmission is low in the summer vacation)

What about measles?

- stable cycles occur if contact rate β changes periodically
- so-called seasonal forcing by the school year (transmission is low in the summer vacation)
- it can be shown that the interepidemic period T (the time between peaks of infection) is given by

$$T \approx 2\pi \sqrt{\frac{D}{b(R_0-1)}}$$

Interepidemic periods - theory vs data

		Inter-epidemic period	
Infection	Location	Calculated	Observed
Measles	England and Wales 1948-68	2	2
	Aberdeen, Scotland 1883-1902	2	2
	Baltimore, USA 1900-27	2	2
	Paris, France 1880-1910	2	2
	Yaounde Cameroon, 1968-75	1-2	1
	llesha, Nigeria, 1958-61	1-2	1
Rubella	Manchester, UK 1916-83	4-5	3.5
	Glasgow, Scotland, 1929-64	4-5	3.5
Mumps	England and Wales 1948-82	3	3
	Baltimore, USA 1928-73	3-4	2-4
Polio	England and Wales, 1948-65	4-5	3-5
Smallpox	India, 1868-1948	4-5	5
Chickenpox	New York City, USA, 1928-72	3-4	2-4
	Glasgow, Scotland, 1929-64	3-4	2-4
Scarlet fever	England and Wales, 1897-1978	4-5	3-6
Diphtheria	England and Wales, 1897-1979	4-5	4-6
Pertussis	England and Wales, 1970-82	3-4	3-4

Compartmental models can be easily extended

Compartmental models can be easily extended

• Maternal immunity

Compartmental models can be easily extended

- Maternal immunity
- Carrier states (asymptomatic infection)

Compartmental models can be easily extended

- Maternal immunity
- Carrier states (asymptomatic infection)
- Disease-related mortality

Simple vs. complex models

Compartmental models can be easily extended

- Maternal immunity
- Carrier states (asymptomatic infection)
- Disease-related mortality
- Heterogeneity (age, risk, space, social context, etc...)

Simple vs. complex models

Compartmental models can be easily extended

- Maternal immunity
- Carrier states (asymptomatic infection)
- Disease-related mortality
- Heterogeneity (age, risk, space, social context, etc...)

Simple vs. complex models

• More complex models need more (good) data

Compartmental models can be easily extended

- Maternal immunity
- Carrier states (asymptomatic infection)
- Disease-related mortality
- Heterogeneity (age, risk, space, social context, etc...)

Simple vs. complex models

- More complex models need more (good) data
- Without good data, simple models are recommended

Why model?

- 1. understand transmission dynamics
- 2. assess control strategies
- 3. predict future course

Why model?

- 1. understand transmission dynamics
- 2. assess control strategies
- 3. predict future course

- Modelling can be used to make powerful predictions, many of which have been confirmed by field data
- We have seen how to build simple models to describe the spread of an infection in a population
- Models are frequently used to investigate the impact of interventions such as vaccination.

Models must be challenged

Simple

Complicated

Models must be challenged

Simple

Complicated

- What is wrong with the model?
- What are the assumptions; are they reasonable?
- · How would you improve the model?
- Are the right data available?

7. Summary

Summary I

- A mathematical model of an infectious disease is a mathematical description (through rules and equations) of the dynamical process of infectious disease transmission in a population.
- Compartmental models divide the population into compartments. They describe the model with state variables and parameters
- Two basic compartmental models are the SI model and the SIR model
- We can simulate these models using differential equations
- The value of *R*₀ reveals if a newly introduced disease will spread or die out.
- The value of R_n determines if, at any time, a disease will increase or decrease.
- The proportion of the population one needs to vaccinate to prevent outbreaks is $1 \frac{1}{R_0}$ (herd immunity threshold)

Summary II

- Endemic diseases are ones that are established in a population, and do not die out
- The simple SI or SIR models do not describe endemic diseases, because there is no source of new susceptibles
- The SIRS model describes diseases that can be endemic through *loss of immunity" (e.g., influenza)
- The SIR model can describe endemic diseases if we include births
- The SIR model with births produces cycles
- Sustained cycles only occur when there is seasonal forcing (e.g., school year)