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1. Introduction




Overview of the course
Day 1

« Introduction to infectious disease modelling

Day 2
« PRACTICAL — Deterministic models in R
« Introduction to stochastic models
Day 3
 Applications of modelling
« PRACTICAL — stochastic models in R
Day 4
« Model fitting and inference (+ PRACTICAL)
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What does this depend on?

1. The number of contacts a person has per time, ¢
2. The probability of transmission given contact, p
3. The duration of infectiousness, D

4. The proportion of contacts that are susceptible, s

A simple model would suggest: R=cxpx D x s



The basic reproduction number R,

The average number of secondary infectious cases resulting
from the introduction of a single infectious case into a totally
susceptible population

Ry <1 Ry >1
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Number of cases decreases Number of cases increases



R, of infectious diseases
Can you arrange these diseases according to their value of Ry?

Malaria



Empirical values of R,

Malaria Measles HIV Ebola
R, 10-100 R, 5-18 Ro 2-12 Ry 1.5-2.5
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More empirical values of Ry

Infection Geographical location Time period Ry
Meases Cirencester, England 1947- %0 1314
England and Wales 1950-68 16-18
Kansas, USA 1918-24 5-6
Ontario, Canada 1912-13 "
Willesden, England 1912-13 1-12
Ghana 1960-% 14-15
Eastern Nigeria 19608 1517
Pertussis England and Wales 194478 16-18
Maryland, USA 1943 16-17
Ontario, 1912-13 10-11
Chicken pox Maryland, USA 191317 T8
New Jersey, USA 1912-21 14
Baltumore, USA 1943 10-11
England and Wales 194568 10-12
Diphtheria New York, USA 1918-19 45
Maryland, USA 1908-17 45
Scarlet fever Maryland, USA 190817 7-8
New York, USA 1918-19 56
Peansylvania, USA 1910-16 67
Mumps Baltimore, 1943 7-8
England and Wales 1960-80 1n-14
Netl 1970-80 1n-14
Rubella England and Wales 1960-70 67
West Germany 19707 67
Caechoslovakia 1970-7 9
Poland 19707 n-n
Gambia 197 15-16
Poliomyelitis USA 1958 56
Netherlands 1960 67
Human 1 England and Wales 1981-5 2-5
Virus (Type 1) (male homosexuals)
Nairobi, Kenya 1981-5 1n-n
(female prostitutes)
Kampala, Uganda 1985-7 10-11



Different R, values for a given diseases

Ry for a disease can have different values depending on
factors such as:

» Population density and contact patterns

« Host factors (e.g., immunity)

« Seasonality

« Control measures



2. Mathematical models




What is a (mathematical) model?

B

A simplified description, especially a mathematical
one, of a system or process, to assist calculations and
predictions

Oxford English Dictionary
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What is a (mathematical) model?

A simplified description, especially a mathematical
one, of a system or process, to assist calculations and
predictions

Oxford English Dictionary
Infectious disease model

« a set of equations describing transmission in a population

« an attempt to capture key processes, ignoring
unnecessary detail
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Why model?

1. understand transmission dynamics
» Examples:

* who are the risk groups?
* where are the hotspots?
* what is the impact of asymptomatic infection?

* highlight gaps in knowledge, data needs, etc

2. assess control strategies
* Examples

* limited vaccine supply, how should it be distributed?
* travel restrictions, etc.
¢ school closures?

3. predict future course
» Examples

* how many cases do we expect next week?
* are we approaching the peak of an outbreak?
* what is the impact of a changing climate?



Purpose of mathematical models

All models are wrong but some are useful

George P. Box



3. Compartmental models




Compartmental models

« Divide a population of N people into compartments,
depending on infection status
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Compartmental models
« Divide a population of N people into compartments,
depending on infection status

A simple compartmental model

« S Number of susceptibles

e I Number of infectious

» Sand I are the compartments. They are state variables,
i.e. they change over time.

N = S+ Iis the population size. Nis a parameter, i.e. it
does not change.
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» \is called the force of infection
« It is the probability that a susceptible person gets infected
per unit time (i.e., per day, week, month year, ...)
« What is this probability?
(Number of contacts per unit time) x c

(Probability of transmission) x p
(Probability that contact is infectious) I/N



The force of infection in the SI model

» )\ is called the force of infection

« It is the probability that a susceptible person gets infected
per unit time (i.e., per day, week, month year, ...)

« What is this probability?

(Number of contacts per unit time) x c
(Probability of transmission) x p
(Probability that contact is infectious) I/N

« We often write § = ¢ x p, so that A = gI/N
« B is called the infection rate, a parameter
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infectious
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« We have called I/ N the probability that a contact is
infectious

 This implies that every person in the population has the
same probability of getting in infectious contact with
everyone else.

« This is called the principle of mass action (from Chemistry)
* |s this realistic?

* No - think influenza, HIV, Ebola, ...
» But: sometimes it is a good model
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Writing the SI model as differential equations
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« S Number of people susceptible
« I Number of people infectious

« How does the number of people susceptible and
infectious change over time?

dS/dt = —\S
dI/dt = +AS



Writing the SI model as differential equations

A
S/_\

I A=p

=

« 5: Number of people susceptible
« I Number of people infectious

« How does the number of people susceptible and
infectious change over time?

If we replace A as above:

I
dS/dt = —f.S

I
dl/dt = +B~.5
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Simulating the SI model using differential equations

dS/ dt = —,B%S

I
I[/dt = +8—
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Simulating the SI model using differential equations

I

ds/dt = —f—S
I

dl/dt = +B~.5

1000

750

=S

500

Number

0 10

20 30
Time
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A
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S 1
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« Everyone in the population eventually gets infected
» The time this takes depends on the infection rate 8
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« Everyone in the population eventually gets infected
« The time this takes depends on the infection rate 3

For which infection is this a good model?
« Cytomegalovirus (CMV)
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Applications of the SI model

» Everyone in the population eventually gets infected
« The time this takes depends on the infection rate 3

For which infection is this a good model?
« Cytomegalovirus (CMV)
e Herpes simplex virus

. S
" aﬁ + R ?.!?"".’.h

.,',.-u haits v 49’"‘
-"”e o O~




Extending the SI model

« The SI model assumes that people who get infected stay
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Extending the SI model

« The SI model assumes that people who get infected stay
infectious forever

 This is not the case for most infections (e.g., influenza,
measles, etc.)

« Recovery from infection usually implies (some) immunity



The SIR model
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The SIR model

« R: Number of recovered (immune) people

« ~: recovery rate, or the probability of recovery per day (or
per week, or per year). This is the inverse of the duration
of infection D: v =1/D
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I Number of people infectious
R: Number of people recovered

How does the number of people susceptible, infectious
and recovered change over time?
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Writing the SIR model as differential equations
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« S Number of people susceptible
I. Number of people infectious
R: Number of people recovered

How does the number of people susceptible, infectious
and recovered change over time?

dS/dt = —\S
dlfdt = +XS —~1
dR/dt = 11



Writing the SIR model as differential equations

=5

=l~

« S: Number of people susceptible
I Number of people infectious
R: Number of people recovered

How does the number of people susceptible, infectious
and recovered change over time?

dS) dt —ﬂ%S

1
I/dt = 85—~
dI/dt +ﬁNS vy
dR/dt = +~1
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« Not everyone in the population eventually gets infected.

« The time and height of the peak, and the total number of
people infectious depends on 4 and ~

« Sometimes almost nobody gets infected
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The basic reproduction number in the SIR model
The average number of secondary infectious cases resulting
from the introduction of a single infectious case into a totally
susceptible population

S

=
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« single infectious case: I=1

totally susceptible population: §= N

force of infection from a single infectious case:
A=0%=5%

« number of secondary infectious cases per time:
AS=BxN=4

total number of secondary infectious cases:

_3p=8
Ry=pD=5
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Properties of R in the SIR model

How does the number of infected change?
dljdt = LS —~I

If we start with a single infectious person (I = 1,5 = N), then
we have

dIfdt= -~ =L(Ry—1)

The number of infectious will
e increase if Ry > 1
e decreaseif Ry < 1

The value of Ry reveals if a newly introduced disease will
spread or die out.
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The value of Ry reveals if a newly introduced disease will
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The net reproduction number
The average number of secondary infectious cases resulting
from each infectious case in a given population.
A Y

S 1 R

force of infection from each infectious case: A = 84
¢ number secondary infectious cases per time: AS = 6%5

total number of secondary infectious cases: ASD = %%S
- average number of secondary infectious cases: 252
Ry = 7 N = Roxy N

The net reproduction number is the basic reproduction number
multiplied with the proportion of the population that is currently
susceptible.
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Properties of R, in the SIR model

R,=£2%
How does the number of infectious change over time?
dljdt = B£S —~I
We can rewrite this as
dl/dt = Iv(R, — 1)

The number of infectious will
* increase if R, > 1
» decreaseif R, <1

The value of R, determines if, at any time, a disease will
increase or decrease.
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R,, and outbreaks
The value of R,, determines if, at any time, a disease will
increase or decrease.
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Ry =2
At the beginning of the outbreak, R,, = Ry
At the peak of the outbreak, R, =1



The herd immunity threshold



The herd immunity threshold

Ry = Ro%

 Vaccination reduces the proportion of susceptibles %



The herd immunity threshold

Ry = Ro%

 Vaccination reduces the proportion of susceptibles %

« How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?



The herd immunity threshold
S

 Vaccination reduces the proportion of susceptibles %

« How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?

» To get R, < 1, we must bring the proportion of
susceptibles to smaller than Rio



The herd immunity threshold
S

 Vaccination reduces the proportion of susceptibles %

« How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?

» To get R, < 1, we must bring the proportion of
susceptibles to smaller than Rio

« That is, we need to vaccinated at least a proportion



The herd immunity threshold
S

 Vaccination reduces the proportion of susceptibles %

« How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?

» To get R, < 1, we must bring the proportion of
susceptibles to smaller than Rio

« That is, we need to vaccinated at least a proportion



The herd immunity threshold
S

 Vaccination reduces the proportion of susceptibles %
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The herd immunity threshold
S

 Vaccination reduces the proportion of susceptibles %

« How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?

» To get R, < 1, we must bring the proportion of
susceptibles to smaller than Rio

« That is, we need to vaccinated at least a proportion

—1_ 1
v=1 R

* This is called the herd immunity threshold.

« Important: You do not have to vaccinate everyone (herd
immunity)



Examples: The herd immunity threshold

Infectious disease Herd immunity threshold (%)
Malaria 99

Measles 90-95
Whooping cough 90-95
Chickenpox 85-90
Mumps 85-90
Rubella 82-87
Polio 82-87
Diphtheria 82-87
Smallpox 70-80

Influenza 40-60
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Applications of the SIR model

« Not everyone in the population eventually gets infected
« If Ry > 1, the infection spreads and then dies out

For which infection is this a good model?
« Plague in Bombay?
» Measles?
* Influenza?
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Endemic infectious diseases

« Infectious diseases often do not just cause an outbreak,
but can become endemic, or established in the population

« For this to happen, the infection needs to always find new
susceptibles (5)

« How do new susceptibles appear in a population?

* births (“childhood diseases”)
* loss of immunity (examples: Cholera, many others)
» immigration (not usually a significant factor)
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1 R

« S Number of people susceptible
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« R: Number of people recovered
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Writing the SIRS model as differential equations

S R

« S Number of people susceptible

e I Number of people infectious

¢ R: Number of people recovered

How does the number of people susceptible, infectious
and recovered change over time?

I
dS/dt = —F5.S+ R

I
dl/dt = +ﬂNS— ’}/I
dR/dt = +~I—6R
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« The infection becomes endemic (does not die out)

» The number of people infectious at any time depends on
8, ~vandé

« If § =0, this is the SIR model, and the disease dies out



R,, and endemic diseases
The value of R,, determines if, at any time, a disease will
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The value of R,, determines if, at any time, a disease will
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Ro=2
+ At the beginning, R, = Ry
« At endemic level, R, =1
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What about measles?
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« Measles infection confers lifelong immunity (SIR model?)
« Occurred in 2-year cycles
« New susceptibles through births (“childhood” disease)
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The SIR model with births (and deaths)
vIN

\ A v
TR

* v is the per-capita birth rate

« 1 is the per-capita death rate. It is the inverse of the life
expectancy L

Sl

/"L:

 If u = v: population size N stays constant
» If v > u: population grows
 If u < v: population shrinks
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Properties of the SIR model with births/deaths
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¢ The infection appears in cycles
» The height and frequency of cycles depends on 3, v and v
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Ry =10
» At the beginning, R, = Ry
« At endemic level, R, oscillates around 1
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=500, y=50,v=0.02

« In the SIR model with births/deaths, the endemic cycles
decline over time
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What about measles?

40,000 I
30,000 I
20,000 I
10,000

cases

1950 1960 1970 1980 1990

- stable cycles occur if contact rate g changes periodically

 so-called seasonal forcing by the school year
(transmission is low in the summer vacation)

- it can be shown that the interepidemic period T (the time
between peaks of infection) is given by

~ /[ D
T~ 27 B(Ro—T)



Interepidemic periods — theory vs data

Inter-epidemic period

Infection Location Calculated Observed
Measles England and Wales 1948-68 2 2
Aberdeen, Scotland 1883-1902 2 2
Baltimore, USA 1900-27 2 2
Paris, France 1880-1910 2 2
Yaounde Cameroon, 1968-75 1-2 1
llesha, Nigeria, 1958-61 1-2 1
Rubella Manchester, UK 1916-83 4-5 3.5
Glasgow, Scotland, 1929-64 4-5 3.5
Mumps England and Wales 1948-82 3 3
Baltimore, USA 1928-73 3-4 2-4
Polio England and Wales, 1948-65 4-5 3-5
Smallpox India, 1868-1948 4-5 5
Chickenpox New York City, USA, 1928-72 3-4 2-4
Glasgow, Scotland, 1929-64 3-4 2-4
Scarlet fever England and Wales, 1897-1978 4-5 3-6
Diphtheria England and Wales, 1897-1979 4-5 4-6

Pertussis England and Wales, 1970-82 3-4 3-4
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Extending simple models

Compartmental models can be easily extended

« Maternal immunity

« Carrier states (asymptomatic infection)

» Disease-related mortality

« Heterogeneity (age, risk, space, social context, etc...)

Simple vs. complex models
« More complex models need more (good) data
» Without good data, simple models are recommended
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Why model?

1. understand transmission dynamics
2. assess control strategies
3. predict future course

« Modelling can be used to make powerful predictions,
many of which have been confirmed by field data

» We have seen how to build simple models to describe the
spread of an infection in a population

» Models are frequently used to investigate the impact of
interventions such as vaccination.
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Models must be challenged

Simple Complicated

« What is wrong with the model?

What are the assumptions; are they reasonable?
« How would you improve the model?

Are the right data available?



/7.Summary




Summary |

« A mathematical model of an infectious disease is a
mathematical description (through rules and equations) of
the dynamical process of infectious disease transmission
in a population.

« Compartmental models divide the population into
compartments. They describe the model with state
variables and parameters

« Two basic compartmental models are the SI model and
the SIR model

« We can simulate these models using differential equations

« The value of Ry reveals if a newly introduced disease will
spread or die out.

« The value of R,, determines if, at any time, a disease will
increase or decrease.

« The proportion of the population one needs to vaccinate to
prevent outbreaks is 1 — Rio (herd immunity threshold)



Summary |l

» Endemic diseases are ones that are established in a
population, and do not die out

« The simple Sl or SIR models do not describe endemic
diseases, because there is no source of new susceptibles

« The SIRS model describes diseases that can be endemic
through *loss of immunity” (e.g., influenza)

« The SIR model can describe endemic diseases if we
include births

« The SIR model with births produces cycles

« Sustained cycles only occur when there is seasonal
forcing (e.g., school year)
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