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1. Introduction



Overview of the course

Day 1

• Introduction to infectious disease modelling

Day 2

• PRACTICAL – Deterministic models in R
• Introduction to stochastic models

Day 3

• Applications of modelling
• PRACTICAL – stochastic models in R

Day 4

• Model fitting and inference (+ PRACTICAL)



The reproduction number R

The number of secondary cases an infectious person
generates.

What does this depend on?

1. The number of contacts a person has per time, c
2. The probability of transmission given contact, p
3. The duration of infectiousness, D
4. The proportion of contacts that are susceptible, s

A simple model would suggest: R = c × p × D × s
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The basic reproduction number R0

The average number of secondary infectious cases resulting
from the introduction of a single infectious case into a totally
susceptible population

R0 < 1

Number of cases decreases

R0 > 1

Number of cases increases



R0 of infectious diseases
Can you arrange these diseases according to their value of R0?

Ebola

HIVMalaria

Measles



Empirical values of R0

Ebola
R0 1.5-2.5

HIVMalaria
R0 10-100

Measles
R0 5-18 R0 2-122
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More empirical values of R0



Different R0 values for a given diseases

R0 for a disease can have different values depending on
factors such as:

• Population density and contact patterns
• Host factors (e.g., immunity)
• Seasonality
• Control measures



2. Mathematical models



What is a (mathematical) model?

A simplified description, especially a mathematical
one, of a system or process, to assist calculations and
predictions

Oxford English Dictionary

Infectious disease model
• a set of equations describing transmission in a population
• an attempt to capture key processes, ignoring

unnecessary detail

file:///Users/seb/Research/Figures/model_railway124w.png


What is a (mathematical) model?

A simplified description, especially a mathematical
one, of a system or process, to assist calculations and
predictions

Oxford English Dictionary
Infectious disease model

• a set of equations describing transmission in a population
• an attempt to capture key processes, ignoring

unnecessary detail

file:///Users/seb/Research/Figures/model_railway124w.png


Why model?

1. understand transmission dynamics
• Examples:

• who are the risk groups?
• where are the hotspots?
• what is the impact of asymptomatic infection?

• highlight gaps in knowledge, data needs, etc
2. assess control strategies

• Examples
• limited vaccine supply, how should it be distributed?
• travel restrictions, etc.
• school closures?

3. predict future course
• Examples

• how many cases do we expect next week?
• are we approaching the peak of an outbreak?
• what is the impact of a changing climate?



Purpose of mathematical models

All models are wrong but some are useful

George P. Box



3. Compartmental models



Compartmental models
• Divide a population of N people into compartments,

depending on infection status

A simple compartmental model

S I

λ

• S: Number of susceptibles
• I: Number of infectious
• S and I are the compartments. They are state variables,

i.e. they change over time.
• N = S + I is the population size. N is a parameter, i.e. it

does not change.
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The force of infection in the SI model

S I

λ

• λ is called the force of infection
• It is the probability that a susceptible person gets infected

per unit time (i.e., per day, week, month year, …)
• What is this probability?

(Number of contacts per unit time) ×
(Probability of transmission) ×
(Probability that contact is infectious)

c
p
I/N

• We often write β = c × p, so that λ = βI/N
• β is called the infection rate, a parameter
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The principle of mass action

S I

λ
λ = β I

N

• We have called I/N the probability that a contact is
infectious

• This implies that every person in the population has the
same probability of getting in infectious contact with
everyone else.

• This is called the principle of mass action (from Chemistry)
• Is this realistic?

• No – think influenza, HIV, Ebola, …
• But: sometimes it is a good model
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Writing the SI model as differential equations

S I

λ
λ = β I

N

• S: Number of people susceptible
• I: Number of people infectious
• How does the number of people susceptible and

infectious change over time?

If we replace λ as above:

dS/dt = −β
I
NS

dI/dt = +β
I
NS



Simulating the SI model using differential equations

dS/dt = −β
I
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dI/dt = +β
I
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• Everyone in the population eventually gets infected

• The time this takes depends on the infection rate β
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• Everyone in the population eventually gets infected
• The time this takes depends on the infection rate β
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• Herpes simplex virus
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• The SI model assumes that people who get infected stay
infectious forever

• This is not the case for most infections (e.g., influenza,
measles, etc.)

• Recovery from infection usually implies (some) immunity
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The SIR model

S I R

λ γ

• R: Number of recovered (immune) people
• γ: recovery rate, or the probability of recovery per day (or

per week, or per year). This is the inverse of the duration
of infection D: γ = 1/D
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• Not everyone in the population eventually gets infected.
• The time and height of the peak, and the total number of

people infectious depends on β and γ
• Sometimes almost nobody gets infected
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4. The basic and net
reproduction numbers
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The average number of secondary infectious cases resulting
from the introduction of a single infectious case into a totally
susceptible population
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The basic reproduction number in the SIR model
The average number of secondary infectious cases resulting
from the introduction of a single infectious case into a totally
susceptible population

S I R

λ γ

λ = β I
N

• single infectious case: I = 1

• totally susceptible population: S = N
• force of infection from a single infectious case:
λ = β I

N = β 1
N

• number of secondary infectious cases per time:
λS = β 1

NN = β

• total number of secondary infectious cases:

R0 = βD = β
γ



Properties of R0 in the SIR model

How does the number of infected change?

dI/dt = β I
NS − γI

If we start with a single infectious person (I = 1,S ≈ N), then
we have

dI/dt = β − γ = 1
γ (R0 − 1)

The number of infectious will
• increase if R0 > 1

• decrease if R0 < 1

The value of R0 reveals if a newly introduced disease will
spread or die out.
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The net reproduction number
The average number of secondary infectious cases resulting
from each infectious case in a given population.

S I R

λ γ

• force of infection from each infectious case: λ = β I
N

• number secondary infectious cases per time: λS = β I
NS

• total number of secondary infectious cases: λSD = β
γ

I
NS

• average number of secondary infectious cases: λSD
I

Rn = β
γ

S
N = R0

S
N

The net reproduction number is the basic reproduction number
multiplied with the proportion of the population that is currently
susceptible.



Properties of Rn in the SIR model

Rn = β
γ

S
N

How does the number of infectious change over time?

dI/dt = β I
NS − γI

We can rewrite this as

dI/dt = Iγ(Rn − 1)

The number of infectious will
• increase if Rn > 1

• decrease if Rn < 1

The value of Rn determines if, at any time, a disease will
increase or decrease.
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The herd immunity threshold

Rn = R0
S
N

• Vaccination reduces the proportion of susceptibles S
N

• How far do we need to reduce this proportion to make
sure a disease cannot cause an outbreak?

• To get Rn < 1, we must bring the proportion of
susceptibles to smaller than 1

R0

• That is, we need to vaccinated at least a proportion
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Examples: The herd immunity threshold

Infectious	disease Herd immunity	threshold	(%)

Malaria 99

Measles 90-95

Whooping	cough 90-95

Chickenpox 85-90

Mumps 85-90

Rubella 82-87

Polio 82-87

Diphtheria 82-87

Smallpox 70-80

Influenza 40-60



Applications of the SIR model

• Not everyone in the population eventually gets infected
• If R0 > 1, the infection spreads and then dies out

For which infection is this a good model?

• Plague in Bombay?
• Measles?
• Influenza?
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5. Modelling endemic
diseases



Endemic infectious diseases

• Infectious diseases often do not just cause an outbreak,
but can become endemic, or established in the population

• For this to happen, the infection needs to always find new
susceptibles (S)

• How do new susceptibles appear in a population?

• births (“childhood diseases”)
• loss of immunity (examples: Cholera, many others)
• immigration (not usually a significant factor)
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• δ: rate of immunity loss, or the probability of losing
immunity per day (or per week, or per year). This is the
inverse of the duration of immunity M:
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S I R

λ γ

δ

• δ: rate of immunity loss, or the probability of losing
immunity per day (or per week, or per year). This is the
inverse of the duration of immunity M:

δ = 1
M
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• R: Number of people recovered
• How does the number of people susceptible, infectious

and recovered change over time?
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Rn and cycles
The value of Rn determines if, at any time, a disease will
increase or decrease.
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A closer look at cycles

Susceptibles increase (births)

Infected increase
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A closer look at cycles
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Infected increase rapidly
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A closer look at cycles

Susceptibles decrease

Infected peak

Rn decrease
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• In the SIR model with births/deaths, the endemic cycles
decline over time



What about measles?

0

10,000

20,000

30,000

40,000

1950 1960 1970 1980 1990

ca
se

s



What about measles?

0

10,000

20,000

30,000

40,000

1950 1960 1970 1980 1990

ca
se

s

• stable cycles occur if contact rate β changes periodically
• so-called seasonal forcing by the school year

(transmission is low in the summer vacation)

• it can be shown that the interepidemic period T (the time
between peaks of infection) is given by



What about measles?

0

10,000

20,000

30,000

40,000

1950 1960 1970 1980 1990

ca
se

s

• stable cycles occur if contact rate β changes periodically
• so-called seasonal forcing by the school year

(transmission is low in the summer vacation)
• it can be shown that the interepidemic period T (the time

between peaks of infection) is given by

T ≈ 2π
√

D
b(R0−1)



Interepidemic periods – theory vs data

  Inter-epidemic period 
Infection Location Calculated Observed 
Measles England and Wales 1948-68 2 2 
 Aberdeen, Scotland 1883-1902 2 2 
 Baltimore, USA 1900-27 2 2 
 Paris, France 1880-1910 2 2 
 Yaounde Cameroon, 1968-75 1-2 1 
 Ilesha, Nigeria, 1958-61 1-2 1 
Rubella  Manchester, UK 1916-83 4-5 3.5 
 Glasgow, Scotland, 1929-64 4-5 3.5 
Mumps England and Wales 1948-82 3 3 
 Baltimore, USA 1928-73 3-4 2-4 
Polio England and Wales, 1948-65 4-5 3-5 
Smallpox India, 1868-1948 4-5 5 
Chickenpox New York City, USA, 1928-72 3-4 2-4 
 Glasgow, Scotland, 1929-64 3-4 2-4 
Scarlet fever England and Wales, 1897-1978 4-5 3-6 
Diphtheria England and Wales, 1897-1979 4-5 4-6 
Pertussis England and Wales, 1970-82 3-4 3-4 

 



6. Extending simple
models
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1. understand transmission dynamics
2. assess control strategies
3. predict future course

• Modelling can be used to make powerful predictions,
many of which have been confirmed by field data

• We have seen how to build simple models to describe the
spread of an infection in a population

• Models are frequently used to investigate the impact of
interventions such as vaccination.
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7. Summary



Summary I

• A mathematical model of an infectious disease is a
mathematical description (through rules and equations) of
the dynamical process of infectious disease transmission
in a population.

• Compartmental models divide the population into
compartments. They describe the model with state
variables and parameters

• Two basic compartmental models are the SI model and
the SIR model

• We can simulate these models using differential equations
• The value of R0 reveals if a newly introduced disease will

spread or die out.
• The value of Rn determines if, at any time, a disease will

increase or decrease.
• The proportion of the population one needs to vaccinate to

prevent outbreaks is 1− 1
R0

(herd immunity threshold)



Summary II

• Endemic diseases are ones that are established in a
population, and do not die out

• The simple SI or SIR models do not describe endemic
diseases, because there is no source of new susceptibles

• The SIRS model describes diseases that can be endemic
through *loss of immunity“ (e.g., influenza)

• The SIR model can describe endemic diseases if we
include births

• The SIR model with births produces cycles
• Sustained cycles only occur when there is seasonal

forcing (e.g., school year)
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