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Useful references

I A wonderful book:

Linda J.S. Allen
An introduction to stochastic processes with applications to biology
CRC Press (2010).

I The mathematical model of T cell homeostasis was
introduced in the following reference:

E.R. Stirk, CM-P and H.A. van den Berg
Stochastic niche structure and diversity maintenance in the T cell repertoire
Journal of theoretical biology 255 237–249 (2008).

I The mathematical model of bivariate clonotype competition
was introduced in the following reference:

E.R. Stirk, G. Lythe, H.A. van den Berg and CM-P
Stochastic competitive exclusion in the maintenance of the naive T cell repertoire
Journal of theoretical biology, 265 396–410 (2010).
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Continuous time Markov chains (CTMC)

Let {X(t)}, where t ∈ [0,+∞), be a collection of discrete random
variables with values in a finite S = {0, 1, 2, . . . , N} or infinite
S = {0, 1, 2, . . .} state space. The index set, time, is continuous:
[0,+∞).

Definition
The stochastic process {X(t)}, where t ∈ [0,+∞), is called a
continuous time Markov chain (CTMC) if it satisfies the following
condition: for any sequence of real numbers satisfying
0 ≤ t0 < t1 < . . . < tn < tn+1 and i0, . . . , in+1 ∈ S:

P
(
X(tn+1) = in+1 | X(t0) = i0, . . . ,X(tn) = in

)
= P
(
X(tn+1) = in+1 | X(tn) = in

)
. (1)

This is the Markov Property: the transition to state in+1 at time
tn+1 depends only on the value of the state at the most recent time
tn, and does not depend on the past (or history of the process).
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Probability distribution
Each random variable {X(t)} has an associated probability
distribution {pi(t)}i∈S , with pi(t) = P{X(t) = i} with i ∈ S.

Definition
For the random variables {X(s)} and {X(t)}, where s < t, we
define the transition probabilities as:

pji(t, s) = P{X(t) = j | X(s) = i} for i, j ∈ S .

Definition
For i, j ∈ S and s < t, we say that the transition probabilities are
stationary or homogeneous if they do not depend explicitly on s or
t, but depend only on the length of the time interval, t− s, that is:

pji(t−s) = P{X(t) = j | X(s) = i} = P{X(t−s) = j | X(0) = i} .
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Transition probabilities
We denote the matrix of transition probabilities (or the transition
matrix) as

P(t) = (pji(t)) , (2)

which is a stochastic matrix for all t ≥ 0.

Properties of the transition probabilities

I pji(t) ≥ 0 , ∀t ∈ [0,+∞[ , ∀i, j ∈ S .
I For a fixed, but fiducial i ∈ S, we have∑

j∈S
pji(t) = 1 for t ≥ 0 , ∀i ∈ S .

I The probability that there is a transition from state i to some
other state at time t equals one, for all t ∈ [0,+∞[ and for all
i ∈ S.
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Transition probabilities: solutions of the Kolmogorov equations

Theorem
The transition probabilities

pji(t+ ∆t) = P{X(t+ ∆t) = j | X(0) = i}

satisfy the forward and backward Kolmogorov equations.

pji(t + ∆t) =
∑
k∈S

pjk(∆t) pki(t) forward Kolmogorov equations ,

=
∑
k∈S

pjk(t) pki(∆t) backward Kolmogorov equations .
(3)
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Proof of the forward Kolmogorov equations

pji(t + ∆t) = P{X(t + ∆t) = j | X(0) = i} =
∑
k∈S

P{X(t + ∆t) = j,X(t) = k | X(0) = i}

here we make use of the conditional probability property to get

=
∑
k∈S

P{X(t + ∆t) = j | X(t) = k and X(0) = i} P{X(t) = k | X(0) = i}

now we use the Markov property

=
∑
k∈S

P{X(t + ∆t) = j | X(t) = k} P{X(t) = k | X(0) = i}

we now use the general definition for the transition probabilities to get

=
∑
k∈S

pjk(∆t) pki(t) .

We obtain the forward Kolmogorov equations: pji(t + ∆t) =
∑
k∈S

pjk(∆t) pki(t) .
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Homework: Derive the backward Kolmogorov equations

pji(t + ∆t) =
∑
k∈S

pjk(t) pki(∆t) backward Kolmogorov equations . (4)
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Birth and death processes: special type of Markov processes

I Birth and death processes are a special type of Markov
processes.

I Transitions are only allowed as follows in the infinite case:
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I Transitions are only allowed as follows in the finite case:
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Birth and death process

I A continuous time birth and death process is a CTMC, X(t),
with either a finite {0, 1, 2, . . . , N} or infinite {0, 1, 2, . . . , }
state space.

I A birth and death process has the following transition
probabilities as ∆t→ 0+:

pji(∆t) = P{X(t + ∆t) = j | X(t) = i}

=


λi∆t + o(∆t) j = i + 1 ,

µi∆t + o(∆t) j = i− 1 ,

1− (λi + µi)∆t + o(∆t) j = i

o(∆t) j 6= i− 1, i, i + 1 .

(5)

I We denote λi= birth rate and µi= death rate, when the
population has size i. λi, µi ≥ 0 and o(∆t) is the Landau
order symbol:

lim
∆t→0+

o(∆t)
∆t

= 0 . (6)
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Forward Kolmogorov equations: birth and death process I

I Let pn(t) = P{X(t) = n | X(t0 = 0) = n0} ∀n ∈ S and with
initial condition n0 ∈ S at time t0 = 0.

I The forward Kolmogorov differential equations for pn(t) can
be derived directly from the transition probabilities of Eq. (5).

I Assuming ∆t is sufficiently small, we consider pn(t+ ∆t), and
make use of the forward Kolmogorov equations:

pn(t + ∆t) = pn−1(t)[λn−1∆t + o(∆t)] + pn+1(t)[µn+1∆t + o(∆t)]

+ pn(t)[1− (λn + µn)∆t + o(∆t)] +
∑

k 6=n−1,n,n+1

pk(t)o(∆t)

= pn−1(t)λn−1∆t + pn+1(t)µn+1∆t

+ pn(t)[1− (λn + µn)∆t] + o(∆t) , ∀n ∈ S except n = 0, N .

(7)

I If n = 0 and assuming µ0 = 0, we can write
p0(t + ∆t) = p1(t)µ1∆t + p0(t)(1− λ0∆t) + o(∆t) . (8)
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Forward Kolmogorov equations: birth and death process II
I In the case of a finite state space, where n = N is the

maximum population size and assuming that λN = 0, we have
pN (t + ∆t) = pN−1(t)λN−1∆t + pN (t)(1− µN∆t) + o(∆t) . (9)

I We can now derive the forward Kolmogorov differential
equations making use of the transition probabilities of the
previous slides.

I We obtain from Equation (7)

pn(t + ∆t)− pn(t)
∆t

= pn−1(t)λn−1 + pn+1(t)µn+1 − pn(t)(λn + µn) +
o(∆t)

∆t
.
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Forward Kolmogorov equations: birth and death process III

I We then take the limit as ∆t→ 0+, where
lim∆t→0+

o(∆t)
∆t = 0

dpn(t)
dt

= lim
∆t→0

pn(t + ∆t)− pn(t)
∆t

= λn−1pn−1(t) + µn+1pn+1(t)− (λn + µn)pn(t) ,
(10)

for 1 ≤ n ≤ N − 1.
I Using Equation (8) we obtain:

dp0(t)
dt

= µ1p1(t)− λ0p0(t) . (11)

I Using Equation (9) we obtain:

dpN (t)
dt

= λN−1pN−1(t)− µNpN (t) . (12)
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Stationary probability distribution

I A positive stationary probability distribution can be defined for
a general continuous time birth and death chain:

π = (π0, π1, π2, . . . , )T ,

where the transition probability matrix, P satisfy:

P(t)π = π ,
∑
n∈S

πn = 1 , and πn ≥ 0 ,

for t ≥ 0 and n ∈ S.
I If the state space, S, of the birth and death process is infinite,

a unique positive stationary probability distribution, {πn}n∈S ,
exists under certain conditions.
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Theorem
Suppose the continuous time Markov chain {X(t)}, t ≥ 0, is a
general birth and death process satisfying Equation (5). If the
state space is infinite {0, 1, 2, . . .}, a unique positive stationary
probability distribution, {πn}n∈S , exists iff (if and only if) µn > 0
and λn−1 > 0 for n = 1, 2, . . . , and

+∞∑
n=1

λ0λ1 . . . λn−1

µ1µ2 . . . µn
< +∞ . (13)

The stationary probability distribution is given by

πn =
λ0λ1 . . . λn−1

µ1µ2 . . . µn
π0 , for i = 1, 2, . . . (14)

and
π0 =

1

1 +
∑+∞

n=1
λ0λ1...λn−1
µ1µ2...µn

. (15)
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Theorem
If the state space is finite {0, 1, 2, . . . , N}, then a unique positive
stationary probability distribution, {πn}n∈S , exists if and only if

µn > 0 , λn−1 > 0 ,

for n = 1, 2, . . . , N . The stationary probability distribution is given
by Equations (14) and (15), where the index n and the summation
on n extend from 1 to N .
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Stochastic extinction

I In a simple birth and death process with λ0 = 0 (remember
µ0 = 0), the zero state, n = 0, is absorbing.

I Eventually the distribution for the total population size is
concentrated at zero.

I A positive stationary probability distribution does not exist in
this case.

I Furthermore, the zero state is absorbing and eventually the
total population will become extinct as t→ +∞. If
p0(t) = P(X(t) = 0|X(0) = n0 ≥ 1), we have

lim
t→+∞

p0(t) = 1 .

I What are the conditions for total population extinction in a
general birth and death process?
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Theorem
Let µ0 = 0 = λ0 in a general birth and death process with
X(0) = n0 ≥ 1. Suppose µn > 0 and λn > 0 for n = 1, 2, . . ..
Then, if

+∞∑
n=1

µ1µ2 . . . µn
λ1λ2 . . . λn

= +∞ , (16)

we have limt→+∞ p0(t) = 1 , and if

+∞∑
n=1

µ1µ2 . . . µn
λ1λ2 . . . λn

< +∞ , (17)

then we have

lim
t→+∞

p0(t) =
∑+∞
k=n0

µ1µ2...µk
λ1λ2...λk

1 +
∑+∞
n=1

µ1µ2...µn
λ1λ2...λn

. (18)
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Expected times to extinction

I Suppose {X(t)}, t ≥ 0, is a continuous time birth and death
process with X(0) = n0 ≥ 1, satisfying λ0 = 0 = µ0 and
λn > 0 and µn > 0 for n = 1, 2, . . ..

I Furthermore, we assume that limt→+∞ p0(t) = 1.
I The expected time to extinction τn0 = E(τ0,n0) satisfies:

τn0 =

{
1
µ1

+
∑+∞

n=2
λ1λ2...λn−1
µ1...µn

, n0 = 1 ,

τ1 +
∑n0−1

n=1

[
µ1...µn
λ1...λn

∑+∞
k=n+1

λ1...λk−1
µ1...µk

]
, n0 = 2, 3, . . . .

(19)

I The extinction time is finite if
∑+∞
n=2

λ1λ2...λn−1
µ1...µn

< +∞ .
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The limiting conditional probability distribution

I Prior to extinction at n = 0 occurring, the probability
distribution of a birth and death process may remain
approximately stationary for a long period of time, if
extinction times are relatively large.

I We define the following conditional probabilities:
qn(t) = P(X(t) = n | X(t) 6= 0) =

pn(t)
1− p0(t)

∀n ≥ 1 . (20)

I These conditional probabilities satisfy:

dqn(t)
dt

=
1

1− p0

dpn

dt
+

pn

1− p0

1
1− p0

dp0

dt

= λn−1qn−1 − (λn + µn)qn + µn+1qn+1 + qn(µ1q1) , for n > 1 .
(21)

I In the case n = 1, we have
dq1

dt
= q2µ2 − q1(λ1 + µ1) + q1(q1µ1) . (22)
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Quasi-stationary probability distribution

I A distribution {q̄n}n≥1 is called a quasi-stationary probability
distribution (QSD) if it is a solution of the previous equations,
where the time derivatives are set equal to zero.

Limiting conditional probability distribution

I The limiting conditional probability distribution (LCD) of the
process is defined as limt→+∞ qn(t) ∀n ≥ 1.

I Since the LCD is independent of time, it is also a QSD.
I If state space, S, is infinite, there may be no QSD, and if a

QSD does exist, it is not necessarily unique.
I The LCD can be approximated analytically by making two

different assumptions.
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Approximations to the LCD

I Assume µ1 = 0.
I This is a good approximation when the mean time to

extinction is long.
I Replace the death rate µn by µn−1 to allow for one immortal

individual.
I Allowing for one immortal individual is a better approximation

when the mean extinction time is short.
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History of a T cell

Stem cell

Common
lymphoid
progenitor
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Immature thymocyte

Mature thymocyte

Naive T cell

Foreign antigen (T cell activation)

Effector T cell

PERIPHERY

(or mature T cell)
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Development of T cells in the thymus
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The T cell receptor and T cell development

T cell development in the thymus: space and time
Developing T cells spend at most two weeks in the thymus.
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An exquisitely stringent test: less than 5% chance to pass

T cells interact with special cells that present ligand (that can bind
to TCR) on their surface:
I if no TCR signal ⇒ death by neglect,
I if strong TCR signal ⇒ death by apoptosis (negative

selection), and
I if intermediate TCR signal ⇒ export to the periphery

(positive selection).
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Immunological evidence

I A protective immune system requires a T cell population that
can respond to foreign antigens.

I The host cannot predict the precise pathogen-derived antigens
that will be encountered in the future.

Homeostatic regulation of naïve T cells in the periphery

I The human mature naive T cell repertoire consists of a
constant number of cells (≈ 1011) distributed over a large
number (107 − 108) of different T cell clonotypes.

I T cells compete for proliferation signals furnished by
professional antigen-presenting cells. The immune system
guarantees coexistence and persistence of different T cell
clonotypes.

I A decline in the size and diversity of the T cell population is a
hallmark of the ageing process ⇒ T cell clonotype extinction.
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Surface of APCs

MHC molecule

self peptide

thymic APC

pMHC 

foreign peptide

peripheral APC

Antigen presenting cells (APCs)

I APCs present peptides (or
antigens) on their surface by
means of an MHC molecule.

I We denote by pMHC the
complex formed by a
peptide-MHC molecule.

I We describe APCs as a
collection of arrays of pMHCs,
each of them denoted an
antigen presentation profile of
the APC (APP).
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Surface of T cells: TCRs

T cell

T cell

T cell

TCR clonotype 1

TCR clonotype 2

TCR clonotype 3 

T cells: T cell receptor (TCR)

I T cells have on their surface
receptors (TCRs) for ligand pMHC.
Each T cell expresses only one type
of TCR ≡ clonotype.

I TCR diversity ≈ 107 − 108 is
randomly generated by genetic
recombination.

I Inevitably some clonotypes (all
T cells with identical TCR
molecules), recognise one or more
self peptides and can generate
autoimmune responses.
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Mathematical setup of the multi-variate stochastic model

I We want to model the number of T cells (of a given
clonotype) with a stochastic approach.

I The variable that describes the number of T cells (of the
given clonotype) at time t is represented as X(t), with t = 0
the initial time.

I The state space is S = {0, 1, 2, 3, . . .}. This represents the
values X(t) can take at any time (number of cells).

I The stochastic (Markov process) model is determined
uniquely by the transition probabilities:

P (X(t+ ∆t) = m | X(t) = n) with n,m ∈ S .

I Birth and death Markov process:
0

µ1
�
λ0=0

1
µ2
�
λ1

2
µ3
�
λ2

3
µ4
�
λ3
· · ·

µn−1
�
λn−2

n− 1
µn
�
λn−1

n
µn+1
�
λn

n+ 1 · · ·
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T cells require homeostatic signals from self pMHCs to proliferate

I T cells are defined by their clonotype i (TCR molecule).
I ni(t) is the number of T cells of clonotype i at time t.
I µi is the death rate per single T cell of clonotype i.
I λi is the birth rate per single T cell of clonotype i.
I A given self peptide-MHC molecule (pMHC) is labelled by

index q ∈ Q, with Q the set of all self pMHCs.
I Qi is the set of self pMHCs from which T cells of clonotype i

receive a signal, which triggers one round of cell division.
I Cq is the set of T cells that receive a signal to divide from self

pMHC q.
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Self pMHCs and T cell clonotypes (T cells expressing identical TCRs)

Self pMHCs T cell clonotypes

i

Qi
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T cells that receive a signal from self pMHC q

Self pMHCs T cell clonotypes

q

Cq
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T cell clonotype competition for self pMHCs

Self pMHCs T cell clonotypes

q
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|Cq| = ni + niq
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Competition for self pMCHs that can bind TCR of clonotype i

I Given i, we need to identify the set Qi.
I Given q ∈ Qi, we need to identify clonotypes that compete

with i.
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Outline

1 General theory of continuous time Markov chains (CTMC)

2 Birth and death processes

3 Continuous time birth and death processes with absorbing states

4 A brief introduction to T cell immunology

5 Mathematical model of naive T cell homeostasis

6 Exact stochastic model of naive T cell homeostasis

7 Mean field model: two approximations

8 Thanks and acknowledgements
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Multi-variate Markov dynamics: an example I



1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 1 0 1 0 0
0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0


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Multi-variate Markov dynamics: an example II

n6

n5

n4

n3

n2

n1

q8

q7

q6

q5

q4

q3

q2

q1

I Suppose that n(t) = (15, 7, 9, 0, 11, 1) .
I P(next event is a death) = Ω(t)

Ω(t)+Λ(t) .

I Ω(t) = µ (15 + 7 + 9 + 0 + 11 + 1) .
I Λ(t) = Λ1(t) + Λ2(t) + · · ·+ Λ6(t) .

I Λ1(t) = γ
(

15
15 + 15

15+11

)
,Λ2(t) = γ

(
7

7+9+0

)
,Λ3(t) = γ

(
9
9 + 9

7+9+0

)
,

I Λ4(t) = 0,Λ5(t) = γ
(

11
11 + 11

15+11 + 11
11

)
,Λ6(t) = γ

(
1
1

)
.

I P(birth in clonotype 1) = Λ1(t)
Ω(t)+Λ(t) .

I P(death in clonotype 3) = 9 µ
Ω(t)+Λ(t) .

I Gillespie algorithm: time is incremented by ∆t = − log(u)
Ω(t)+Λ(t) .

44 / 63



CTMC Birth and death Extinction Immunology Mathematical model Exact model Mean field model Thanks

Model of large-scale clonal competition

With probability p, pMHC q is recognised by T cell clonotype i,
independently of all other pairs. µ = 1.0, γ = 10.0
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Self pMHC signal: one round of T cell division

I γq is the proliferation rate from self pMCH q.
I Cq is the set of T cells that receive a proliferation signal (to

go through one round of cell division) from self pMHC q.
I Qi is the set of self pMHCs from which T cells of clonotype i

receive a signal that triggers one round of cell division.
I If q ∈ Qi, then |Cq| = ni + niq ≥ ni.
I ni is the number of T cells of clonotype i.
I niq is the number of T cells, other than clonotype i, that

receive proliferation signal to divide once from self pMHC q.
I The birth rate per T cell of clonotype i is

(assume γq = γ)
λi =

∑
q∈Qi

γq
|Cq | =

∑
q∈Qi

γ
|Cq | =

∑
q∈Qi

γ
ni+niq . (?)
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More on this partition

I Qi =
⋃+∞
r=0 Qir .

I Qir is the subset of self pMHCs in Qi that provide
proliferation signals to T cells of clonotype i and r other
different T cell clonotypes.

I Qir ∩Qir′ = ∅ , for r 6= r′, and
∑
q∈Qi =

∑+∞
r=0

∑
q∈Qir .

I λi =
∑
q∈Qi

γ
ni+niq =

∑+∞
r=0

∑
q∈Qir

γ
ni+niq .

Mean field approximation (two hypotheses)

I
∑
q∈Qir

γ
ni+niq = γ |Qir| Eq∈Qir

[
1

ni+niq

]
.

I Eq∈Qir
[

1
ni+niq

]
≈ 1

Eq∈Qir [niq ]+ni . (H1)
I Eq∈Qir [niq] = r〈n〉 , with 〈n〉 the average clonotype size

(average number of T cells per clonotype). (?) (H2)
I The cardinality of the set Qir (for fixed i and r) can be

computed from the binomial distribution.
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Cardinality of Qir

I NC is the number of clonotypes in the periphery.
I p · |i is the probability that a self pMHC randomly chosen from

Qi belongs to Qi′ , with i′ a different and random clonotype.
I |Qir| can be computed from the binomial distribution.

Competition for self pMHCs

I The different r clonotypes are chosen from NC − 1 different
ones. The probability of success is p · |i.

I |Qir| = |Qi|
(NC−1

r

)
pr· |i (1− p · |i)NC−1−r .

I If NC � 1 and p · |i � 1, we have |Qir| = |Qi|
νri e

−νi

r! .

I Define the niche overlap νi = p · |i (NC − 1) ≈ p · |i NC .
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Meaning of the mean field approximation

I The cells of clonotype i are competing with many T cells
belonging to a large number of other clonotypes in the
repertoire.

I Individual competitive interactions with other clones are weak:
access to any given self pMHC does not have a significant
impact on the fate of the clone.

I The clone experiences interactions with very many other
clones, each of which is virtually inconsequential by itself.

I The cross-reactivity of a given TCR can be 106, that is, a
single TCR can “see” 106 different pMHCs.
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Continuous time Markov chain for a given T cell clonotype

I The number of T cells of a given clonotype is modeled as a
continuous time birth and death process: X(t).

I State space and transitions (birth and death events):
0

µ1
�
λ0=0

1
µ2
�
λ1

2
µ3
�
λ2

3
µ4
�
λ3
· · ·

µn−1
�
λn−2

n− 1
µn
�
λn−1

n
µn+1
�
λn

n+ 1 · · ·

I µn ≡ µ n is the death rate from state n.
I λn ≡ ϕne−ν

∑+∞
r=0

νr

r!
1

r〈n〉+n is the birth rate from state n. (?)
I µ is the death rate per single T cell.
I ϕ is the proliferation rate per single T cell.
I ν is the average number of clonotype competitors of the given

clonotype.
I 〈n〉 is the average number of T cells per clonotype.
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Extinction is certain

0
µ1
�
λ0=0

1
µ2
�
λ1

2
µ3
�
λ2

3
µ4
�
λ3
· · ·

µn−1
�
λn−2

n− 1
µn
�
λn−1

n
µn+1
�
λn

n+ 1 · · ·

I We assume X(0) = n0 > 0, the thymic output at time t = 0.
I Denote by pm(t) = P(X(t) = m|X(0) = n0) for m ≥ 0.
I
∑+∞
m=0 pm(t) = 1 .

I It can be shown that (first lecture)

dpn(t)
dt

= −(µn + λn)pn(t) + µn+1pn+1(t) + λn−1pn−1(t) .

I The probability of absorption into state 0 from any state
m ≥ 1 is one. Extinction is certain if (first lecture)

+∞∑
k=1

k∏
n=1

µn
λn

= +∞ .
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Expected time until extinction

I If extinction is certain, the mean time until extinction from
state m ≥ 1, τm, is finite if

∑+∞
n=1 ρn < +∞ .

I τm =
∑+∞
n=1 ρn +

∑m−1
s=1 as

∑+∞
k=s+1 ρk , where

ak =
k∏

n=1

µn
λn

, ρ1 = 1
µ1

, and ρk = λ1 · · ·λk−1
µ1 · · ·µk

∀k ≥ 2 .

I The expected time to clonotype extinction given thymic
output X(0) = n0 > 0 is τn0 .

I For m ≥ 1, τm ≥ τ1. This implies that the time scale for
extinction is determined by τ1.
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Theorem
Stationary probability distribution
I The unique stationary solution of the forward Kolmogorov

equations is characterised by limt→+∞ p0(t) = 1 .
I The stationary probability distribution is given by

(p∗0, p∗1, p∗2, · · · ) = (1, 0, 0, · · · ) .

Question
What can we say about the time evolution of X(t) before
extinction takes place?
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Conditional probability distribution

I Before extinction takes place, we define the conditional
probability for n ≥ 1

qn(t) = P(X(t) = n|no extinction) .

I qn(t) = pn(t)
1−p0(t) , ∀n ≥ 1 .

I
∑+∞
n=1 qn(t) = 1 .

I It can be shown that

dqn(t)
dt

= −(λn + µn) qn(t) + µn+1 qn+1(t) + λn−1 qn−1(t)

+ µ1 q1(t) qn(t) .
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Quasi-stationary probability distribution

I A sequence {q∗1, q∗2, q∗3, · · · } is called a quasi-stationary
probability distribution if

0 = −(λn + µn)q∗n + µn+1q
∗
n+1 + λn−1q

∗
n−1 + µ1q

∗
1q
∗
n ,

with q∗0 = 0, for each n ≥ 1, q∗n ≥ 0 and
∑+∞
n=1 q

∗
n = 1.

I For general birth and death population rates, there is no
analytic solution.
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Approximation I to the LSD – Ingemar Nasell

I Remove absorbing state and set µ1 = 0.
I Π(1)

m = λ1λ2···λm−1
µ2µ3···µm Π(1)

1 , ∀m ≥ 2 .
I τ1 sets the time scale for absorption. This is a good

approximation if τ1 � µ1.

1
µ2
↼
⇁
λ1

2
µ3
↼
⇁
λ2

3
µ4
↼
⇁
λ3
· · ·

µn−1
↼
⇁
λn−2

n− 1
µn
↼
⇁
λn−1

n

µn+1
↼
⇁
λn

n+ 1 · · ·
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Approximation II to the LSD – Ingemar Nasell

I Remove absorbing state and replace µn by µn−1 in the
original Markov chain.

I Π(2)
m = λ1λ2···λm−1

µ1µ2···µm−1
Π(2)

1 , ∀m ≥ 2 .
I τ1 sets the time scale for absorption. This is a good

approximation if τ1 ≈ µ1.

1
µ1
↼
⇁
λ1

2
µ2
↼
⇁
λ2

3
µ3
↼
⇁
λ3
· · ·

µn−2
↼
⇁
λn−2

n− 1
µn−1
↼
⇁
λn−1

n

µn
↼
⇁
λn

n+ 1 · · ·
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Two extreme competition limits

Hard niche (ν � 1)

I On average, T cells of the given clonotype compete very little
for self pMHC (small number of competitors).

Soft niche (ν � 1)

I On average, T cells of the given clonotype compete a lot for
self pMHCs (large number of competitors).
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Analytic results

Hard niche (ν � 1)

I Parameter x = ϕ
µ .

I Π(1)
m = xm

m!(ex−1) , ∀m ≥ 1.
I 〈n〉Π(1) = x

1−e−x .

I Π(2)
m = xm−1

(m−1)!ex , ∀m ≥ 1.
I 〈n〉Π(2) = 1 + x.
I τ1 µ = ex−1

x .

Soft niche (ν � 1)

I Parameter y = ϕ
µν〈n〉 < 1.

I Π(1)
m = − ym

m log(1−y) , ∀m ≥ 1.
I 〈n〉Π(1) = − y

(1−y) log(1−y) .

I Π(2)
m = (1− y)ym−1, ∀m ≥ 1.

I 〈n〉Π(2) = 1
1−y .

I τ1 µ = − log(1−y)
y .
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Outline
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