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Outline  or  Why ? What ? How ? Outline  or  Why ? What ? How ? 

WhyWhy look at look at mesoscopicmesoscopic level of networks ?level of networks ?

WhatWhat structures underlie real life networks ?structures underlie real life networks ?

HowHow do such structures affect network dynamics ?do such structures affect network dynamics ?
(synchronization, spin ordering, etc)(synchronization, spin ordering, etc)

WhyWhy do such structures arise in nature ?do such structures arise in nature ?

Significant for understanding coordination processes such Significant for understanding coordination processes such 
as consensus formation & adoption of innovationsas consensus formation & adoption of innovations

R K Pan & SS, EPL (2009); R K Pan, N Chatterjee & SS, R K Pan & SS, EPL (2009); R K Pan, N Chatterjee & SS, PLoSPLoS ONE (2010)ONE (2010)

S S DasguptaDasgupta, R K Pan & SS, PRE Rapid (2009); SS & S , R K Pan & SS, PRE Rapid (2009); SS & S PoriaPoria, , PramanaPramana (2011)(2011)

R K Pan & SS, PRE Rapid (2007); N R K Pan & SS, PRE Rapid (2007); N PradhanPradhan, S , S DasguptaDasgupta & SS, EPL (2011)& SS, EPL (2011)



Modular NetworksModular Networks: dense connections : dense connections withinwithin certain subcertain sub--
networks (networks (modulesmodules) & relatively few connections ) & relatively few connections betweenbetween
modulesmodules

Modules: A Modules: A mesoscopicmesoscopic organizational organizational 
principle of networksprinciple of networks
Going beyond Going beyond motifsmotifs but more detailed than but more detailed than globalglobal description (description (LL, , CC etc.)etc.)

Kim & Park, WIREs Syst Biol & Med, 2010

MicroMicro MesoMeso MacroMacro



Chesapeake Bay Chesapeake Bay foodwebfoodweb
((UlanowiczUlanowicz et al)et al)

Metabolic network of Metabolic network of E coliE coli
((GuimeraGuimera & & AmaralAmaral))

Modular Biology Modular Biology (Hartwell et al, Nature 1999)(Hartwell et al, Nature 1999)
Functional modules as a critical level of biological Functional modules as a critical level of biological 
organizationorganization

Ubiquity of modular networksUbiquity of modular networks

Modules in biological networks are Modules in biological networks are 
often associated with specific functionsoften associated with specific functions



The The ““ModularModular”” Mind of a Mind of a 
WormWorm Be
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C. C. ElegansElegans: 959 cells, out of which 302 are neurons: 959 cells, out of which 302 are neurons

0.1 mm0.1 mm



Structure of the Structure of the 
nervous systemnervous system

PharynxPharynx
(20 neurons)(20 neurons)

Neurons

Focus on the 282 Focus on the 282 
nonnon--pharyngeal neuronspharyngeal neurons

G: Ganglia (clusters of neighboring G: Ganglia (clusters of neighboring 
neurons) in the C. neurons) in the C. eleganselegans nervous systemnervous system

Nerve ringNerve ring

SCC: strongly connected componentSCC: strongly connected component
IN: inIN: in--componentcomponent
OUT: outOUT: out--componentcomponent

R K Pan et al, PLoS One (2010)



Functional circuits of C Functional circuits of C ElegansElegans

•• Touch sensitivityTouch sensitivity

•• Egg layingEgg laying

•• ThermotaxisThermotaxis

•• ChemosensoryChemosensory

••DefecationDefecation

•• LocomotionLocomotion
whenwhen

Satiated: FeedingSatiated: Feeding
Hungry: ExplorationHungry: Exploration
Escape behavior: Tap withdrawalEscape behavior: Tap withdrawal

Movie,
Lockery Lab

AVMAVM

ALMALM PVDPVD

PLMPLM

AVAAVAAVBAVB

DVADVAPVCPVC
AVDAVD

REVREVFWDFWD

Sensory neuronSensory neuron

Inter neuronInter neuron

Motor neuronMotor neuron

Tap Withdrawal CircuitTap Withdrawal Circuit



SynapticSynaptic GapGap--junctionaljunctional

Connectivity of the somatic nervous systemConnectivity of the somatic nervous system

Question:Question:
Is the network modular ?Is the network modular ?
How do you determine the modules if the connections How do you determine the modules if the connections 
are not localized within corresponding ganglia ?are not localized within corresponding ganglia ?



Measuring modularityMeasuring modularity

(Newman, EPJB, 2004)  (Newman, EPJB, 2004)  

A: Adjacency matrix
L : Total number of links 
ki : degree of i-th node
ci : label of module to which i-th node belongs

One suggested measure:One suggested measure:

A

BC

D

Modules determined through a generalization of the Modules determined through a generalization of the 
spectral method (spectral method (LeichtLeicht & Newman, 2008)& Newman, 2008)

For directed & weighted networks:

W: Weight matrix
si : strength of i-th node

(                    )  (                    )  

How to quantify the degree of modularity ?How to quantify the degree of modularity ?



The Modular Structure of the NetworkThe Modular Structure of the Network
Optimal decomposition of the somatic nervous system into 6 modulOptimal decomposition of the somatic nervous system into 6 moduleses

•• Dense interconnectivity within neurons in a module, relative toDense interconnectivity within neurons in a module, relative to connections connections 
between neurons in different modulesbetween neurons in different modules
•• The modules are not simply composed of one type of neurons (e.gThe modules are not simply composed of one type of neurons (e.g., a purely ., a purely 
sensory neuron or motor neuron or interneuron module does not exsensory neuron or motor neuron or interneuron module does not exist) ist) 



Modules and Spatial LocalizationModules and Spatial Localization

Q. Do constraints related to physical Q. Do constraints related to physical 
adjacency of neurons (e.g., adjacency of neurons (e.g., 
minimization of wiring length) minimization of wiring length) 
completely explain the modular completely explain the modular 
organization ?organization ?
Ans. NOAns. NO

Q. Does the existence of Q. Does the existence of 
ganglia explain the modules ?ganglia explain the modules ?
Ans. NOAns. NO
Most ganglia are composed of Most ganglia are composed of 
neurons belonging to many neurons belonging to many 
different modules  different modules  



Optimizing for wiring cost and communication Optimizing for wiring cost and communication 
efficiencyefficiency

E  = 1 /E  = 1 /avgavg path length, path length, ℓℓ = 2 /N(N= 2 /N(N--1) 1) ∑∑i>i>jjddijij
Communication Communication 

efficiencyefficiency
Wiring costWiring cost DW  = DW  = ∑∑i>i>jjddijij for all connected neuronsfor all connected neurons

C. C. ElegansElegans

((““dedicated wirededicated wire”” model)model)

TradeTrade--off between increasing off between increasing 
communication efficiency and communication efficiency and 
decreasing wiring costdecreasing wiring cost

The network isThe network is subsub--optimal !optimal !
⇒⇒ presence of other constraints presence of other constraints 
(possibly related to function)(possibly related to function)
governing network organizationgoverning network organization



Modules and Functional CircuitsModules and Functional Circuits
Overlap between module & functional circuit Overlap between module & functional circuit 
measured by fraction of neurons commonmeasured by fraction of neurons common
Closeness among functional Closeness among functional cktsckts in 6in 6--D D ““modularmodular”” space space 
⇒⇒F2 close to (F4,F5,F6)      F2 close to (F4,F5,F6)      Supported by Supported by exptlexptl observationobservation: : 
presence of food detected through chemosensory presence of food detected through chemosensory 
neurons modulates the eggneurons modulates the egg--laying rate in C. laying rate in C. eleganselegans



MesoscopicMesoscopic network structure can alert us to network structure can alert us to 
critical functional role of certain neuronscritical functional role of certain neurons

C. C. ElegansElegans RandomizedRandomized

PredictionPrediction: AVKL and SMBVL are likely important for some : AVKL and SMBVL are likely important for some 
as yet undetermined functionas yet undetermined function

globalglobal
hubshubs

locallocal
hubshubs connectorconnector

hubshubs

Importance of connector hubs: possibly integrating local activitImportance of connector hubs: possibly integrating local activity for y for 
coherent response, 21 out of 23 already implicated in critical fcoherent response, 21 out of 23 already implicated in critical functionsunctions



QQ. . HowHow do such do such structuresstructures affect affect dynamicsdynamics ??

Q. Q. WhatWhat mesoscopicmesoscopic structure ?structure ?
Ans.Ans. ModularModular

Over networks, such dynamics can be of Over networks, such dynamics can be of 
synchronization synchronization 
consensus or opinion formationconsensus or opinion formation
information or epidemic spreadinginformation or epidemic spreading
adoption of innovationsadoption of innovations



A simple model of modular networksA simple model of modular networks

Model parameter Model parameter r r : Ratio of inter: Ratio of inter-- to intrato intra--modular connectivitymodular connectivity

Adjacency matrixAdjacency matrixModule Module ≡≡ random networkrandom network

The modularity of the network is changed keeping The modularity of the network is changed keeping avgavg degree constantdegree constant



Modular networks Modular networks ≡≡ SmallSmall--World NetworksWorld Networks

E  = 1 /E  = 1 /avgavg path length, path length, ℓℓ = 2 /N(N= 2 /N(N--1) 1) ∑∑i>i>jjddijij
Communication Communication 

efficiencyefficiency
Clustering Clustering 
coefficientcoefficient

Structural measures for characterizing SW networks:Structural measures for characterizing SW networks:

C  = fraction of observed to potential triads  C  = fraction of observed to potential triads  
= (1 /N) = (1 /N) ∑∑ii2n2ni i / / kkii ((kkii -- 1)1)

Watts-Strogatz and 
Modular networks 
behave similarly as 
function of p or r
(Also between-ness 
centrality, edge 
clustering, etc)



Consider Consider orderingordering or alignment of orientation on such networksor alignment of orientation on such networks
e.g., e.g., IsingIsing spin model: dynamics spin model: dynamics minimizes H= minimizes H= -- ∑∑ JJijij SSii (t) (t) SSjj (t) (t) 

Then how can you tell them apart ?Then how can you tell them apart ?
Dynamics on WattsDynamics on Watts--StrogatzStrogatz network different network different 
from that on Modular networksfrom that on Modular networks Network topologyNetwork topology

2 distinct time scales in Modular networks: t 2 distinct time scales in Modular networks: t modularmodular & t & t globalglobal

Global orderGlobal order

Modular orderModular order

Time required for Time required for 
global ordering global ordering 
diverges as diverges as rr →→00



Consider synchronization on modular networksConsider synchronization on modular networks
e.g., e.g., KuramotoKuramoto oscillators: oscillators: ddθθii //dtdt = w + (1/k= w + (1/kii))∑∑KKijij sin (sin (θθjj -- θθ ii))

UniversalityUniversality
Almost identical multiple time scale behavior is seen Almost identical multiple time scale behavior is seen 
for nonlinear oscillator synchronizationfor nonlinear oscillator synchronization Network topologyNetwork topology

2 distinct time scales in Modular networks: t 2 distinct time scales in Modular networks: t modularmodular & t & t globalglobal



Universality: Presence of delayUniversality: Presence of delay
Delays in coupling also show the multiple timeDelays in coupling also show the multiple time--scales scales 
in synchronizationin synchronization

N=512, m=16, <k> = 14, r = 0.02N=512, m=16, <k> = 14, r = 0.02

coupling term changes tocoupling term changes to

Constant delayConstant delay
(all inter(all inter-- & intra& intra--modular links)modular links)

Random interRandom inter--modular delaymodular delay



LaplacianLaplacian AnalysisAnalysis
TimeTime--evolution of a network of evolution of a network of nn identical oscillatorsidentical oscillators

Coupling strengthCoupling strength LaplacianLaplacian

LaplacianLaplacian EigenvaluesEigenvalues: : 
PecoraPecora & Carroll, 1998: & Carroll, 1998: A synchronized state is linearly stable A synchronized state is linearly stable iffiff thethe
eigenratioeigenratio , ratio of bounds of effective co, ratio of bounds of effective couplingsuplings

⇒⇒ Network with smaller            more likely to show stable syncNetwork with smaller            more likely to show stable synchronizationhronization

Dynamics of normal modes around synchDynamics of normal modes around synch



EigenvalueEigenvalue spectra of the spectra of the LaplacianLaplacian
Shows the existence of spectral gap Shows the existence of spectral gap ⇒⇒ distinct time scalesdistinct time scales

Modular network Modular network LaplacianLaplacian spectraspectra

Existence of distinct timeExistence of distinct time--scales in Modular networksscales in Modular networks
No such distinction in WattsNo such distinction in Watts--StrogatzStrogatz smallsmall--world networksworld networks

gapgap

No gapNo gap

WattsWatts--StrogatzStrogatz network network LaplacianLaplacian spectraspectra

Spectral gap in modular Spectral gap in modular 
networks diverges with networks diverges with 
decreasing rdecreasing r



Localization of Localization of eigenmodeseigenmodes of of 
transition matrixtransition matrix

Within modulesWithin modules
diffusiondiffusion

Between modulesBetween modules
diffusiondiffusion

Diffusion process on modular networksDiffusion process on modular networks

Also shows the existence of 2Also shows the existence of 2 distinct time scales:distinct time scales:
•• fast intrafast intra--modular diffusion modular diffusion 
•• slower interslower inter--modular diffusionmodular diffusion

ERER

WSWS

ModularModular

DistrnDistrn of first passage times for of first passage times for rndrnd walks walks 
to reach a target node starting from a to reach a target node starting from a 
source nodesource node

Random walker moving from one node to randomly chosen Random walker moving from one node to randomly chosen nghbringnghbring nodenode
Transition probability matrix for random walk Transition probability matrix for random walk ≡≡ normalized normalized LaplacianLaplacian

Relevant for diffusion of Relevant for diffusion of 
innovation or epidemicsinnovation or epidemics



How about How about ““realreal”” SW networks ?SW networks ?
The networks of The networks of 
cortical connections in cortical connections in 
mammalian brain have mammalian brain have 
been shown to have been shown to have 
smallsmall--worldworld structural structural 
propertiesproperties

Our analysis reveals Our analysis reveals 
their dynamical their dynamical 
properties to be properties to be 
consistent with consistent with 
modular modular ““smallsmall--worldworld””
networks networks 

gapgap gapgap

Fast synchronization of neuronal activity within a module : Fast synchronization of neuronal activity within a module : 
The mechanism for efficient neural information processing ?The mechanism for efficient neural information processing ?



Hierarchical modular organizationHierarchical modular organization
introduces more dynamical time scalesintroduces more dynamical time scales

S Sinha and S Poria, Pramana: J Phys (2011)



How does individual behavior at microHow does individual behavior at micro--level level 
relate to social phenomena at macro level ?relate to social phenomena at macro level ?

OrderOrder--disorder transitions in Social Coordination disorder transitions in Social Coordination 

Consequences of Consequences of mesomeso--level level 
structure on Dynamicsstructure on Dynamics

Example: consensus formationExample: consensus formation



••Spin orientationSpin orientation: mutually exclusive choices: mutually exclusive choices

IsingIsing model with FM interactions: model with FM interactions: each agent can each agent can 
only be in one of 2 states (Yes/No or +/only be in one of 2 states (Yes/No or +/--))

The emergence of novel phase of The emergence of novel phase of 
collective behaviorcollective behavior

Spin models of statistical physics: simple models of Spin models of statistical physics: simple models of 
coordination or consensus formation coordination or consensus formation 

••Choice dynamicsChoice dynamics: decision based on : decision based on 
information about choice of majority in information about choice of majority in 
local neighborhoodlocal neighborhood

Simplest case: 2 possible choicesSimplest case: 2 possible choices



Types of possible order in modular Types of possible order in modular 
network of network of IsingIsing spinsspins

Modular orderModular order Global orderGlobal order

AvgAvg magnetic moment / module magnetic moment / module 
Total or global magnetic momentTotal or global magnetic moment

NN spins, spins, nnmm modulesmodules

FM interactions:FM interactions: J J > 0> 0



Problem:Problem:

Long transient to global order can be mistaken as modular order Long transient to global order can be mistaken as modular order !!

r

T

Tg
c

0 1 r0 1 r0 1

T T

Can modular order be seen as a phase at all ?Can modular order be seen as a phase at all ?

Tg
c Tg

c

Possible Phase DiagramsPossible Phase Diagrams



r = 0.002

There will be a phase corresponding to There will be a phase corresponding to modular modular butbut no no 
global orderglobal order ((coexistence of contrary opinionscoexistence of contrary opinions) even when ) even when all all 
mutual interactions are FMmutual interactions are FM ((favor consensusfavor consensus) !) !

Phase diagram: two transitionsPhase diagram: two transitions

T

S Dasgupta et al, PRE Rapid (2009)



Even whenEven when
strongly modular network takes very long to show global strongly modular network takes very long to show global 
order order 

⇒⇒Time required to achieve consensus increases Time required to achieve consensus increases 
rapidly for a strongly modular social organizationrapidly for a strongly modular social organization

But then But then ……
How do certain innovations get adopted rapidly ?How do certain innovations get adopted rapidly ?

Possible modifications to the dynamics:Possible modifications to the dynamics:
Different strengths for inter/intra couplingsDifferent strengths for inter/intra couplings



Marc Marc GranovetterGranovetter
The Strength of Weak TiesThe Strength of Weak Ties: : 
Differing Coupling Strengths Between & Differing Coupling Strengths Between & 
Within ModulesWithin Modules



Global Synchronization is Global Synchronization is 
easier with stronger intereasier with stronger inter--
community linkscommunity links……

……But nonBut non--monotonic behavior monotonic behavior 
of relaxation time with ratio of relaxation time with ratio 
of strengths of shortof strengths of short-- & long& long--
range spin couplings range spin couplings 
Not seen in WattsNot seen in Watts--StrogatzStrogatz SW SW 
networks (networks (JeongJeong et al, PRE 2005)et al, PRE 2005)



Why modularity ?Why modularity ?
We had earlier shown that optimization under multiple (and oftenWe had earlier shown that optimization under multiple (and often
conflicting) network constraints can give rise to modularityconflicting) network constraints can give rise to modularity

Pan and Sinha, PRE Pan and Sinha, PRE 76,76, 045103(R) (2007)045103(R) (2007)

••Minimizing link cost, i.e., total # links LMinimizing link cost, i.e., total # links L
••Minimizing average path length Minimizing average path length ℓℓ
••Minimizing instability Minimizing instability λλmaxmax

Minimizing link cost and Minimizing link cost and avgavg path length yields path length yields ……
…… a a starstar--shaped network with single hub shaped network with single hub 

Increasing stability, average path lengthIncreasing stability, average path length

 = 0.4  = 0.8  = 1
But But unstableunstable !!
Instability Instability λλmaxmax ~ ~ √√max degree max degree 
(i.e., degree of the hub ~ N)(i.e., degree of the hub ~ N)

Answer:Answer: go modular !go modular !
……as stability increases by as stability increases by 
decreasing the degree of hub decreasing the degree of hub 
nodes nodes λλmaxmax ~ ~ √√[N/#modules][N/#modules]



Why modularity ?Why modularity ?
But alsoBut also……..
Possible utility of modularity in Possible utility of modularity in 
increasing robustness of increasing robustness of 
network dynamical attractorsnetwork dynamical attractors

E.g., in the dynamics of E.g., in the dynamics of 
attractor network modelsattractor network models
having multiple stable states having multiple stable states 
((““memorizedmemorized”” patterns)patterns)

1s

3s

2s

4s

Memories Memories ≡≡ attractors attractors 
of network dynamicsof network dynamics



Hopfield ModelHopfield Model: An Attractor Network : An Attractor Network 
Model for Associative MemoryModel for Associative Memory

Network of interNetwork of inter--connected binary connected binary 
statestate ““neuronneuronss””
xxii ={={--1 or OFF,+1 or ON}.1 or OFF,+1 or ON}.
Activation of the neurons are defined Activation of the neurons are defined 
by by xxii = = sgn(sgn(∑∑jj wwjiji xxjj ))

SgnSgn (q) = (q) = −−1, if q < 0; = +1 1, if q < 0; = +1 
otherwiseotherwise
T=0 or deterministic dynamics T=0 or deterministic dynamics 

Symmetric connection weights, Symmetric connection weights, 
i.e.i.e. wwijij = = wwjiji

wwiiii=0 (No self connections)=0 (No self connections)

HopHopfifield and Tank, PNAS,eld and Tank, PNAS, 1982.1982.

xxii

xxjj



http://thebrain.mcgill.ca

LearningLearning
Modifying the synaptic weights by Modifying the synaptic weights by HebbHebb rulerule

Donald O Hebb (1904-85)

Neurons that fire together, wire togetherNeurons that fire together, wire together
HebbHebb’’ss hypothesis (1949)hypothesis (1949)

∑
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：： iithth component of the component of the ppthth binary pattern binary pattern 
p

iξ

““ ”” iithth neuron is excitedneuron is excited xxii==11
““·· ”” iithth neuron is resting    neuron is resting    xxii==00

Four stored patterns in simulationFour stored patterns in simulation



Recall dynamics of Hopfield NetworkRecall dynamics of Hopfield Network
Start from arbitrary initial configuration of {x}Start from arbitrary initial configuration of {x}
What final state does the network converge ?What final state does the network converge ?
Evaluate an Evaluate an ‘‘energyenergy’’ value associated with the value associated with the 
network state: network state: 

System converges to an attractor which is a System converges to an attractor which is a 
local/global minimum of local/global minimum of EE
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http://fourier.eng.hmc.edu



Modular structure Modular structure ⇒⇒ robust dynamics in robust dynamics in 
attractor networksattractor networks

Convergence to an attractor corresponding to any of Convergence to an attractor corresponding to any of 
the stored patterns (recall) is most efficient when the the stored patterns (recall) is most efficient when the 
network has an network has an optimaloptimal modular structure (r modular structure (r ≈≈ rrcc ))

Consequences of Consequences of mesomeso--level level 
structure on Dynamicsstructure on Dynamics



ModularModular
r r  ≈ ≈ rrcc

HomogeneousHomogeneous
r = 1r = 1

LowLow--basin basin 
entropyentropy

HighHigh--basin basin 
entropyentropy

Isolated ModulesIsolated Modules
r << r << rrcc

HighHigh--basin basin 
entropyentropy

The attractor landscape of the network The attractor landscape of the network 
changes with modularitychanges with modularity



N=1024, n=128, <k> = 120

In a module

In the Network

Result:Result:
Size of basins of attraction of stored patterns, Size of basins of attraction of stored patterns, vv……

……change change nonnon--monotonicallymonotonically with modularity (with modularity (r)r)

Largest at an Largest at an optimaloptimal value value rrcc∼∼ (n(n--1)/(N1)/(N--n) ~ 0.14n) ~ 0.14



# stored patterns, p = 4
N=1024, n=128, <k> = 120

At optimal modularityAt optimal modularity, time of convergence to , time of convergence to 
stored patterns faster than that to mixed statesstored patterns faster than that to mixed states

Multiple timeMultiple time--scales in a modular networkscales in a modular network ⇒⇒
Fast convergence to a stored subFast convergence to a stored sub--pattern within pattern within 
a modulea module + + slower convergence at network levelslower convergence at network level



MesoMeso--level organization level organization –– such as modularity such as modularity –– is ubiquitous is ubiquitous 
in complex networksin complex networks

Example: C. Example: C. eleganselegans nervous system, where nodes connecting nervous system, where nodes connecting 
distinct modules appear to be critical for system functiondistinct modules appear to be critical for system function

Dynamics on modular networks (but not in ER or WS Dynamics on modular networks (but not in ER or WS 
networks) show distinct, separate timenetworks) show distinct, separate time--scalesscales

manifested as manifested as LaplacianLaplacian spectral gap seen in real networks spectral gap seen in real networks 
(e.g., (e.g., corticocortico--cortical brain networks)cortical brain networks)

Modular organization may arise through multiModular organization may arise through multi--constraint constraint 
optimizationoptimization

Advantageous for global stability of network dynamical Advantageous for global stability of network dynamical 
attractorsattractors

Conclusions: Conclusions: 
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