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Outline or Why ? What ? How !

J Why look at mesoscopic level of networks ?

J What structures underlie real life networks ?
R K Pan & SS, EPL (2009); R K Pan, N Chatterjee & SS, PLoS ONE (2010)

J How do such structures affect network dynamics ?

(synchronization, spin ordering, etc)
S Dasgupta, R K Pan & SS, PRE Rapid (2009); SS & S Poria, Pramana (201 |)

J Why do such structures arise in nature ?
R K Pan & SS, PRE Rapid (2007); N Pradhan, S Dasgupta & SS, EPL (201 1)

Significant for understanding coordination processes such
as consensus formation & adoption of innovations



Modular Networks: dense connections within certain sub-
networks (modules) & relatively few connections between

modules

Modules: A mesoscopic organizational

principle of networks

Going beyond motifs but more detailed than global description (L, C etc.)
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Ubiquity of modular networks

Modular Biology (Hartwell et al, Nature 1999)
Functional modules as a critical level of biological
organization

Modules in biological networks are |
often associated with specific functions
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The “Modular” Mind of a
Worm

Bessereau Lab, ENS, Paril;E

#

e Elegans: 959 cells, out of which 302 are neurons




Structu re Of the Focus on the 282
nervous System non-pharyngeal neurons

SCC: strongly connected component
IN: in-component

Pharynx OUT: out-component

(20 neurons)

Nerve ring
Head SCC

0
Anterior (G1) %39;;% Iili?ldlgs

Dorsal (G2) Lumbar (G9)

Lateral (G3) Dorsorectal (G8) \
entral (G4)

Tail

Ventral Cord (G10 Pre—anal (G7)

G: Ganglia (clusters of neighboring

neurons) in the C. elegans nervous system NEUrONS g k pan et al, PLoS One (2010)



Functional circuits of C Elegans

Tap Withdrawal Circuit

® Touch sensitivity ALM  PVD

® Egg laying

® Thermotaxis Movie,
Lockery Lab
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Connectivity of the somatic nervous system

Synaptic Gap-junctional
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Question:

Is the network modular ?
How do you determine the modules if the connections
are not localized within corresponding ganglia ?



Measuring modularity __
How to quantify the degree of modularity ? / ?{QC\}(;
One suggested measure: |

1 kik;
0=77) |4
i

f}t.l.ﬂ..f, (Newman, EPJB, 2004)

4;;
] EL

A: Adjacency matrix

L : Total number of links

k.: degree of i-th node

c;: label of module to which i-th node belongs

For directed & weighted networks:

lI'IEIl:]llt
W E : 58| : ,
O W Wij N Oc;c; (LY = >_ijWi )

W: Welght matrlx
s, : strength of i-th node

Modules determined through a generalization of the
spectral method (Leicht & Newman, 2008)



The Modular Structure of the Network

Optimal decomposition of the somatic nervous system into 6 modules
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® Dense interconnectivity within neurons in a module, relative to connections
between neurons in different modules

® The modules are not simply composed of one type of neurons (e.g., a purely
sensory neuron or motor neuron or interneuron module does not exist)



Modules

Modules and Spatial Localization
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Q. Does the existence of
ganglia explain the modules ?
Ans. NO

Most ganglia are composed of
neurons belonging to many
different modules

Overlap Fraction

Q. Do constraints related to physical
adjacency of neurons (e.g.,
minimization of wiring length)
completely explain the modular
organization ?

Ans. NO

1 Ganglion



Optimizing for wiring cost and communication

efficiency
Communication g = | javg path length, £ = 2 /IN(N-1) 3,,d,
efficiency
Wiring cost DW =3._d. for all connected neurons

=)

High Efficiency
High wiring cost

Low Efficiency
Low wiring cost

D &

(“dedicated wire” model)

Trade-off between increasing

communication efficiency and
C Elegans  passosasEIEaEEmes decreasing wiring cost
f %‘5 _ L 1 | The network is sub-optimal !
§ 03 | b - F$ x | = presence of other constraints
% 0as L1 . (possibly related to function)
. %‘gfgn_ing cost cu?ﬁm governing network organization
35 L | . | .

400

600
Wiring cost (DW)
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Overlap Fraction

Modules and Functional Circuits

(F1) mechanosensation

0.5.

F7) tap withdrawal

Modules

Overlap between module & functional circuit

(F2) egg laying measured by fraction of neurons common

(F3) thermotaxis Closeness among functional ckts in 6-D “modular” space
(F4) chemosensation =>F2 close to (F4,F5,F6) Supported by exptl observation:
(F5) feeding presence of food detected through chemosensory

(F6) exploration neurons modulates the egg-laying rate in C. elegans
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Mesoscopic network structure can alert us to
critical functional role of certain neurons

C. Elegans Randomized
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Importance of connector hubs: possibly integrating local activity for
coherent response, 21 out of 23 already implicated in critical functions

Prediction: AVKL and SMBVL are likely important for some
as yet undetermined function



Q. What mesoscopic structure ?
Ans. Modular

Q. How do such structures affect dynamics ?

Over networks, such dynamics can be of
[ synchronization

] consensus or opinion formation

J information or epidemic spreading

. adoption of innovations




A simple model of modular networks

Module = random network Adjacency matrix

2s0f -
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Model parameter r : Ratio of inter- to intra-modular connectivity

The modularity of the network is changed keeping avg degree constant



Modular networks = Small-World Networks

Structural measures for characterizing SW networks:

Communication g - lavg path length, € = 2 IN(N-1) Zi>idii

efficiency
Clustering  C = fraction of observed to potential triads
coefficient =(1/N) X.2n./ k; (k- 1)
0.4-”"*"*1.1 ﬁ&eﬁ&acm&ed;

Watts-Strogatz and e eee T TN Hodular
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Then how can you tell them apart ?

Dynamics on Watts-Strogatz network different

from that on Modular networks

Consider ordering or alignment of orientation on su;IAetworks
e.g., Ising spin model: dynamics minimizes H=- 2 J;; S; (t) S, (t)

Network topology

modauid 10D d

. Time required;for
“gm ' global ordering
. diverges as r —

V.t

0

34

107° 10




Universality

Almost identical multiple time scale behavior is seen
for nonlinear oscillator synchronization

Consider synchronization on modular networks
e.g., Kuramoto oscillators: d6, /dt = w + (1/k;) 2K sin (6, - 6 )

Network topology
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Universality: Presence of delay
Delays in coupling also show the multiple time-scales

in synchronization

N=512, m=16, <k> = 14, r = 0.02

200 - -
(b) _or -0

coupling term changes to

N
> 2 fay(t - 6t) — it

Constant delay
(all inter- & intra-modular links)

Random inter-modular delay



Laplacian Analysis

Time-evolution of a network of n identical oscillators

T; = F(z;) + ¢ Z LijH ()
1=1

Coupling strength Laplacian
L;; = k;, the degree of node 1,
L;; = —1 if nodes 7 and j are connected

= 0, otherwise.

Laplacian Eigenvalues: () = \; < \y < ... < )\,

Pecora & Carroll, 1998: A synchronized state is linearly stable iff the
eigenratio Ay /Ao < ap/a4 , ratio of bounds of effective couplings

— Network with smaller \ - /Aosmore likely to show stable synchronization

Dynamics of normal modes around synch #i(t) =) Bi6; = ¢i(0)exp ™' i=1,....N
i



Eigenvalue spectra of the Laplacian

Shows the existence of spectral gap = distinct time scales

Modular network Laplacian spectra Spectral gap in modular

r=0.001 r=0.01 r=0.1 networks diverges with
B 107 gap - decreasing r
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Watts-Strogatz network Laplacian spectra 10" 10 10°

r

Existence of distinct time-scales in Modular networks

No such distinction in Watts-Strogatz small-world networks



Prob ( FPT)

Diffusion process on modular networks

Random walker moving from one node to randomly chosen nghbring node
Transition probability matrix for random walk = normalized Laplacian

Also shows the existence of 2 distinct time scales:
e fast intra-modular diffusion Relevant for diffusion of
* slower inter-modular diffusion innovation or epidemics

Distrn of first passage times for rnd walks  Localization of eigenmodes of

to reach a target node starting from a transition matrix
source node -~ ER Random FER —
Intermodular | 150+ ?9355999 'E"E"E‘G'EII
[~ Intramedular | el | L
™~ . .II II1
-2 \\ S0 ! I E
10 \\ . r 1
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107 . Within modules Between modules
10 10 L, diffusion diffusion

First Passage Time , FPT



How about “real” SW networks ?

Macaque

The networks of
cortical connections in
mammalian brain have
been shown to have
small-world structural

properties
10° Our analysis reveals
their dynamical
) 1[]1\ - prop.erties t(.) be
P consistent with
_ °{  modular “small-world”
10— 10" —— networks

Fast synchronization of neuronal activity within a module :
The mechanism for efficient neural information processing ?



S Sinha and S Poria, Pramana: | Phys (201 1)
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Hierarchical modular organization

introduces more dynamical time scales

pz

i ——— ———"

M

14,h =3,q=4,r=0.03
ley

1024, (k) =

N=

=
—Ee— O
i —
e
=1 B
]
i e -
—=F [
2
o e |
QZ, -
3] e -
noz .
=Zzc
ee |
H e (=]
=
E s =
E & & |
] »* - -
] ™ *
] * -
I
] E ® Tm -
7w " oe -
] ™ -
] ™ . |
= . »— *»— 'O
[ar] (] — -—
o o [
-— - -—
1 ‘aLUI} UORRZILOIYIUAS
"o
=

*U SI9ISN|P PAZILOIYSUAS JO Jaquinp

Time T



Consequences of meso-level
structure on Dynamics

Example: consensus formation

How does individual behavior at micro-level
relate to social phenomena at macro level ?

Order-disorder transitions in Social Coordination



The emergence of novel phase of
collective behavior

Spin models of statistical physics: simple models of
coordination or consensus formation

¢-o-¢-o4

*Choice dynamics: decision based on
¢¢ ¢4 4

information about choice of majority in
. ¢ X ¢ local neighborhood

*Spin orientation: mutually exclusive choices

Simplest case: 2 possible choices

Ising model with FM interactions: each agent can
only be in one of 2 states (Yes/No or +/-)



Types of possible order in modular
network of Ising spins

Modular order M, =0, p #0 Global order M, # 0, j1 # 0

(b)

Avg magnetic moment / module /¢ = (| Z@-ES ol

s=1,..., Ny
Total or global magnetic moment )/, — ZE o;



Problem:

Long transient to global order can be mistaken as modular order !

Possible Phase Diagrams

Can modular order be seen as a phase at all ?



Phase diagram: two transitions

.T;ﬂ. — 2}_[‘2 ;;"[:”J[EB) r — 0.002 |
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There will be a phase corresponding to modular but no
global order (coexistence of contrary opinions) even when all
mutual interactions are FM (favor consensus) !



Even when 7" < T9
strongly modular network takes very long to show global
order

—Time required to achieve consensus increases
rapidly for a strongly modular social organization

But then ...
How do certain innovations get adopted rapidly ?

Possible modifications to the dynamics:
Different strengths for inter/intra couplings



The Strength of Weak Ties:

Differing Coupling Strengths Between &

Within Modules

Marc Granovetter

Group/Network

Group members, because of their

freguent interaction, tend to think

alike over time. This reduces the

diversity of ideas, and in worst-case
: o5 leads to "groupthink”

Weak Ties

Weak ties are relaticnships between
members of different groups. They are
utilized infrequently and therefore
don't need a lot of management to
stay healthy. They lead to a diversity of
ideas, as they tie together disparate
mades of thought.

Strong Ties

Strong ties are relationships between
people who work, live, or play together.
They are utilized frequently and need a
lot of management to stay healthy.
Cwer time, people with strong ties tend
to think alike, as they share their ideas
all the time.




Global Synchronization is 10°

r = 0.004 L g_T=-
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networks (Jeong et al, PRE 2005)



Why modularity ?

We had earlier shown that optimization under multiple (and often
conflicting) network constraints can give rise to modularity
Pan and Sinha, PRE 76, 045103(R) (2007)

*Minimizing link cost, i.e., total # links L
*Minimizing average path length {
*Minimizing instability A

max

Minimizing link cost and avg path length yields ...
... a star-shaped network with single hub
But unstable !

Instability A,___~ Ymax degree
(i.e., degree of the hub ~ N)

Answer: go modular !
...as stability increases by
decreasing the degree of hub

nodes A~ V[N/#modules]

Increasing stability, average path length



Why modularity ?

But also....

Possible utility of modularity in
increasing robustness of
network dynamical attractors

Far “*‘;" ."
A \"‘.ﬁ.ﬂ"" 1
i

i »&Q-{;:

E.g., in the dynamics of
attractor network models
having multiple stable states
“memorized” patterns)

Memories = attractors
of network dynamics




Hopfield Model: An Attractor Network
Model for Associative Memory

Hopfield and Tank, PNAS, 1982.

1 Network of inter-connected binary
state “neurons”

d x, ={-1 or OFF,+| or ON}. x. _
s : P Wiy — Wy
J Activation of the neurons are defined O X;
= A \—»
by X; Sgn(zj Wii X ) @
* Sgn(q) =-1,ifq<0;=+I|
otherwise
* T=0 or deterministic dynamics

1 Symmetric connection weights,

J w.=0 (No self connections)



Learning
Modifying the synaptic weights by Hebb rule

N

efficient enough to trigger

% Mmoo voger  Hebb’s hypothesis (1949)
Nl Neurons that fire together, wire together

Tt 1 M

N T e N S W _ 5 P P
“Lmesimed Heavy simultaneous |J _ | J
- =} achvity occurs N

in both neurons
fi P en component of the p* binary pattern
_/k Four stored patterns in simulation
~..0 Neuron's synapse,
“4 strengthened by
this simultaneous

activity, triggers
an action potential.

Donald O Hebb (1904-85)

http://thebrain.mcgill.ca




Recall dynamics of Hopfield Network

Start from arbitrary initial configuration of {x}
(JWhat final state does the network converge ?

dEvaluate an ‘energy’ value associated with the
. 1
network state: E - __Z > w, X X

(J System converges to an attractor which is a
local/global minimum of E

| L
BN It B e e e
| | S |

http://fourier.eng.hmc.edu




Consequences of meso-level
structure on Dynamics

Modular structure = robust dynamics in
attractor networks

Convergence to an attractor corresponding to any of
the stored patterns (recall) is most efficient when the
network has an optimal modular structure (r = r.)



The attractor landscape of the network
changes with modularity

Isolated Modules Modular Homogeneous
r<<r, r ~r, r=|
High-basin Low-basin High-basin

entropy entropy entropy




Result:

Size of basins of attraction of stored patterns, v...
N=1024, n=128, <k> = 120

. g o
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0.2} vop=4 | 10.2
[= p= 8
* p=10]; __ ]
0 e e . o e en L LA T
0.001 0.01 0.1 1 0.01 0.1 1 0
r r

...change non-monotonically with modularity (r)

Largest at an optimal value r_~ (n-1)/(N-n) ~ 0.14



At optimal modularity, time of convergence to
stored patterns faster than that to mixed states

5

2 4

e 7l

»  3F

U 5

= 2r

=

cor

# stored patterns, p = 4 Of

N=1024, n=128, <k>= 120 % 5[
o

L |

ZE

(_} L

=

5

0-
10

Multiple time-scales in a modular network =
Fast convergence to a stored sub-pattern within
a module + slower convergence at network level




Conclusions:

1 Meso-level organization — such as modularity — is ubiquitous
in complex networks

 Example: C. elegans nervous system, where nodes connecting
distinct modules appear to be critical for system function

(1 Dynamics on modular networks (but not in ER or WS
networks) show distinct, separate time-scales

1 manifested as Laplacian spectral gap seen in real networks
(e.g., cortico-cortical brain networks)

1 Modular organization may arise through multi-constraint
optimization

1 Advantageous for global stability of network dynamical
attractors
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