VLF Basics	SM-like VLF	2HDM	Singlet Model	Little Higgs	Composite Higgs	Warped Model	LHC Limits

Current Status of Vector-like Fermions

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai, India

Looking for BSM Physics IISc, Bangalore, Dec 2016

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model	LHC Limits
Talk C	Outline						

- General aspects of vector-like fermions (VLFs)
- BSM scalars and VLFs
 - Model independent, 2HDM, Little Higgs, Singlet model

- Indirect signatures of VLFs
 - in EW precision obs.; hgg, $h\gamma\gamma$ shifts at the LHC
- VLF LHC (Direct) signatures
 - $b'_{(-1/3)}$, $t'_{(2/3)}$, $\chi_{(5/3)}$ Recent LHC limits
- VI F Dark Matter

VLF Basics ●00	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model	LHC Limits
VLF properties	;						
Motiva	ition						

Vector-like fermions are present in many BSM scenarios

• extra dimensions, composite Higgs, little Higgs, top see-saw, ...

Here we will consider

• some example effective models of vector-like fermions (VLF)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

VLF Basics 0●0	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model	LHC Limits			
VLF properties										
Vector	like ψ									

- Theory with fermions vectorlike under SU(3), SU(2), U(1):
 - χ (rep) and χ^c (conjugate rep) both present
 - can write vectorlike mass term $\mathcal{L} \supset -M~\chi\chi^{\rm c} + h.c.$

[contrast with SM (chiral theory): Higgs VEV needed to get fermion masses]

- *M* could be related to EW scale (or not)
 - Eg. of connection to EW scale: extraDim $M = M_{KK} \sim TeV$, composite Higgs $M = M_{comp} \sim TeV$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

VLF Basics	SM-like VLF	2HDM	Singlet Model	Little Higgs	Composite Higgs	Warped Model	LHC Limits
000							
VLF properties	5						

Implications of VL Theory

Vectorlike fermions	Chiral (4-gen) fermions			
M allowed by EW symmetry	<i>m</i> only after EWSB = $\lambda \langle H \rangle$			
can be arbitrarily heavy	Landau pole in Yukawa coupling λ			
CC + NC tree-level decays	only CC tree-level decays			
loops decoupling	some loops nondecoupling			

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

• Nice decoupling behavior : $S, T, U, h \rightarrow \gamma \gamma, gg \rightarrow h, ...$

• For instance $h\gamma\gamma$, ggh couplings

$2\overline{2} + 1\overline{1} + 1\overline{1}$: VL extn. of SM (VSM)

VLF Basics

SM-like VLF

[S.Ellis, R.Godbole, SG, J.Wells; 1404.4398 [hep-ph], JHEP 09 (2014) 130]

Warped Model

LHC Limits

•
$$VSM \equiv VLQ (\mathcal{X}_Q, \xi_U, \Upsilon_D) \oplus VLL (\mathcal{X}_L, \xi_N, \Upsilon_E)$$

• where $\mathcal{X} = (2, Y_{\chi});$ $\Upsilon = (1, Y_{\chi} - 1/2);$ $\xi = (1, Y_{\chi} + 1/2)$
 $\mathcal{L}_{Yuk} \supset -\lambda_{\xi} \bar{\mathcal{X}} \cdot H^* \xi - \lambda_{\Upsilon} \bar{\mathcal{X}} H \Upsilon + h.c.$
 $Y_{\chi} = \pm Y_{SM} \text{ assignments:}$ $\boxed{\begin{array}{c|c} Y_{\chi} & -1/2 & -1/6 & 1/6 & 1/2 \\ \hline Q_1, Q_4 & 0 & 1/3 & 2/3 & 1 \\ \hline Q_2, Q_3 & -1 & -2/3 & -1/3 & 0 \\ \end{array}}$
 $\mathcal{L}_{mass} \supset -(\bar{\mathcal{X}}_1 \quad \bar{\xi}) \begin{pmatrix} M_{\chi} & \tilde{m} \\ \tilde{m} & M_{\xi} \end{pmatrix} \begin{pmatrix} \mathcal{X}_1 \\ \xi \end{pmatrix} - (\bar{\mathcal{X}}_2 \quad \tilde{\Upsilon}) \begin{pmatrix} M_{\chi} & m \\ m & M_{\Upsilon} \end{pmatrix} \begin{pmatrix} \mathcal{X}_2 \\ \Upsilon \end{pmatrix}$

Diagonalize and obtain W^a_μ , B_μ and h couplings We assume tiny VL-SM mixing Yukawa terms

VLF Basics 000	SM-like VLF ●00	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model	LHC Limits
EWPT & Hig	gs Observables						
Observ	vables						

Precision electroweak observables (S, T, U)

Modifications to hgg, $h\gamma\gamma$ couplings: $\sigma(gg \to h)$ $\Gamma(h \to \gamma\gamma)$ $\sigma(gg \to h)$ $\sigma(gg \to \gamma\gamma)$ $\sigma(gg \to \gamma\gamma)$ $\sigma(gg \to h)$ $\sigma(gg \to \gamma\gamma)$ $\sigma(gg \to \gamma\gamma)$ We compute ratios $\frac{\Gamma_{h \to gg}}{SM}$, $\frac{\Gamma_{h \to \gamma\gamma}}{SM}$ using leading-order expressions QCD corrections to ratios small: [Furlan '11] [Gori, Low '13] $VBE = \Gamma(\gamma\gamma)$ $ggh = \Gamma_{gg}$ $ggh = \Gamma_{gg}$ $ggh = \Gamma_{gg}$ $\Gamma(\gamma)$ μ_{ggh} $\Gamma(\gamma)$ $\sigma(ggh \to \gamma)$

 $\mu_{\gamma\gamma}^{VBF} \approx \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} \; ; \quad \mu_{ZZ}^{ggh} \approx \frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}} \; ; \quad \mu_{\gamma\gamma}^{ggh} \approx \frac{\Gamma_{gg}}{\Gamma_{gg}^{SM}} \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} \; ; \quad \frac{\mu_{\gamma\gamma}^{ggh}}{\mu_{ZZ}^{ggh}} \approx \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} \approx \mu_{\gamma\gamma}^{VBF}$

VLF Basics 000	SM-like VLF ○●○	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model	LHC Limits
EWPT & Hig	gs Observables						
$2\bar{2} + 1$	1 + 11	: VSI	M				

VLF Basics 000	SM-like VLF 00●	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model	LHC Limits
EWPT & Hig	gs Observables						
$2\bar{2} + 1$	$\overline{1} + 1\overline{1}$: VSI	M				

 $M_Q = M_U = M_D, \quad M_L = M_E = M_N, \quad \lambda_U = \lambda_D \equiv \lambda_Q, \quad \lambda_E = \lambda_N \equiv \lambda_L, \quad \Upsilon_Q = 1/6, \quad \Upsilon_L = -1/2$

Effective Model: 2HDM-II + VLQ

[SG, T. Mukherjee, S. Sadhukhan: PRD 93, 055004 (2016)]

• SU(2) doublet ψ + singlet ξ

• Eg: $\mathcal{L} \supset y_1 \bar{\psi}_L \Phi_1^c \xi_R + \tilde{y}_1 \bar{\psi}_R \Phi_2 \xi_L + h.c.$

FIG. 26. For the $MVQU_{12}$ model, regions of the m_A - tan β parameter space excluded at the 95% C.L. from $\phi \rightarrow \tau^+ \tau^-$ decay when only A is present (left), and when A and H are degenerate and both present (right), with $y_1 = \tilde{y}_1 = 1$, $M_{\psi} = M_{\chi} = 800$ GeV (dark blue region), 1000 GeV (light blue and dark blue regions). All shaded regions are excluded in the 2HDM-II.

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model ●○○	Little Higgs 000	Composite Higgs 000	Warped Model	LHC Limits									
The Model																
Singlet	t scalar	and $^{\circ}$	√LFs		Singlet scalar and VLFs											

[SG, T. Mukherjee: In progress]

Add
$$SU(2)$$
 singlets: Φ (scalar), ψ (VLL), U (VLQ)
 $\mathcal{L}_{mass} \supset -M_h^2 H^{\dagger} H - M_{\phi}^2 \Phi^{\dagger} \Phi - M_{\psi} \bar{\psi} \psi - M_U \bar{U} U$
 $\mathcal{L}_{int} \supset -\kappa \Phi^{\dagger} \Phi H^{\dagger} H - \frac{\mu}{\sqrt{2}} \hat{\phi} H^{\dagger} H - \frac{y_{\psi}}{\sqrt{2}} \hat{\phi} \bar{\psi} \psi - \frac{y_U}{\sqrt{2}} \hat{\phi} \bar{U} U$

• ϕgg coupling due to VLQ

• $gg \rightarrow \phi$ at the LHC (singlet production)

• $\phi\gamma\gamma$ coupling due to VLQ

• $\phi \rightarrow \gamma \gamma$ signal at the LHC (singlet detection)

- If $Q_{\psi}=$ 0, ψ can be dark matter
 - Relic density set by $\psi\psi \rightarrow \phi \rightarrow \gamma\gamma$, gg (self annihilation)
 - Direct detection $\psi N \to \psi N$: t-channel ϕ exchange (due to ϕgg coupling)

$gg \rightarrow \phi \rightarrow \gamma \gamma$ due to VLF

Figure 5: In the $SVU\psi$ model for $Y_{\psi} = 0$, $Y_U = 2/3$, the contours of $\sigma_{\phi} * BR_{\gamma\gamma}$ (in fb), and regions of $\kappa_{\Gamma}^2 < 0.1$ (red), $0.1 < \kappa_{\Gamma}^2 < 0.5$ (blue), $0.5 < \kappa_{\Gamma}^2 < 1$ (gray), $1 < \kappa_{\Gamma}^2 < 2$ (green), $2 < \kappa_{\Gamma}^2 < 3$ (pink), $\kappa_{\Gamma}^2 > 3$ (orange); parameters not along the axes are fixed at $s_h = 0.01$, $M_{\psi} = 475$ GeV, $M_U = 1200$ GeV, $M_{\phi} = 1000$ GeV $y_{\psi} = 1$, $y_U = 5$. Unitarity constraint on y_{ψ} for $y_U = 5$ is shown

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model ○○●	Little Higgs 000	Composite Higgs 000	Warped Model	LHC Limits				
Singlet VLF dark matter											
VLF d	ark mat	ter									

Figure 9: In the $SVU\psi$ model for $Y_{\psi} = 0$, $Y_U = 2/3$, $M_{\phi} = 1000$ GeV contours of $\Omega_{dm} =$ 0.1, 0.25, 0.3, with the colored bands showing σ_{DD} as marked, for $y_U = 5$, $M_U = 1200$ GeV, and with the parameters not varied along the axes fixed at $s_h = 0.01$ and $M_{\psi} = 475$ GeV. The red horizontal line shows the unitarity constraint for $y_{II} = 5$, and the thick red line shows the 8 TeV LHC *hh* channel constraint.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs ●00	Composite Higgs 000	Warped Model	LHC Limits			
The LSS Model										
Little	Higgs N	lodel								

[SG, T. Mukherjee, S. Sadhukhan: PRD 94, 015034 (2016)] Implement collective symmetry breaking

- Higgs is a pseudo Goldstone boson
- no Λ^2 divergent contribution at 1-loop

• Gauge sector & Yukawa couplings specially constructed

A case study: Low, Skiba, Smith (LSS) Model, 2002 : SU(6)/Sp(6)

- Coset: $35 21 = 14 \rightarrow PNGB$ (Higgs included)
- Gauge sector: $SU(2)_1 \otimes SU(2)_2 \rightarrow SU(2)$
- Vector-like fermions

• SU(2) doublet:
$$Q' = \begin{pmatrix} t' \\ b' \end{pmatrix}$$
; SU(2) singlets: ψ'_t , ψ'_b

• In LSS model, Higgs sector is a 2HDM

$$V \supset m_{1}^{2} \left| \phi_{1} \right|^{2} + m_{2}^{2} \left| \phi_{2} \right|^{2} + \left(b^{2} \phi_{1}^{T} \cdot \phi_{2} + h.c. \right) + \lambda_{5}^{\prime} \left| \phi_{1}^{T} \cdot \phi_{2} \right|^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Scalars are: h, H, A, H^{\pm} ; We focus on neutral scalars

- Seek hWW, hZZ SM like
 - Alignment limit: $\cos(\beta \alpha) \approx \frac{\pi}{2}$; [Gunion, Haber, 2002]
 - *HWW*, $HZZ \approx \text{zero!}$
- Also seek htt SM like
- AWW, AZZ are zero at tree-level : \mathcal{CP} inv

$$\langle \phi_1 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v_1 \end{array} \right); \quad \langle \phi_2 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} v_2 \\ 0 \end{array} \right); \quad \tan\beta = \frac{v_1}{v_2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 00●	Composite Higgs 000	Warped Model	LHC Limits
The LSS Mode	el						

Effects from VLF on A, H

<ロト <回ト < 注ト < 注ト

æ

The Minimal Composite Higgs Model (MCHM)

[Agashe, Contino, Pomarol, 2004] [Agashe, Contino, da Rold, Pomarol, 2006] [Contino, Nomura, Pomarol 2003] [Agashe, Delgado, May, Sundrum 2003] [Contino, TASI Lectures 2009]

- Start with $\mathcal{G} = SO(5) \otimes U(1)_X$ global symmetry (10 + 1 gens)
- $\langle \Sigma \rangle \neq 0$ such that \mathcal{G} broken to $\mathcal{H} = SO(4) \otimes U(1)_X$ (6+1 gens)
- So 4 (massless) Goldstone Bosons (GB): π^a (a = 1, ..., 4) in \mathcal{G}/\mathcal{H}

• $\pi^{a} = \{\phi^{1,2,3}, H\}$ Note: physical Higgs also a GB!

• Gauging $SU(2)_L \otimes U(1)_Y$ subgroup & writing Yukawa terms

• Explicitly breaks $SO(5) \otimes U(1)_X$ \implies Higgs gets a mass (at one loop) : pseudo-GB (PGB)

VLF Basics SM-like VLF 2HDM Singlet Model Little Higgs Composite Higgs Warped Model LHC Limits 000 000 000 000 000 000 000 0000 0000 0000 0000 0000 00000000 The Minimal Composite Higgs Model (MCHM) Fermion rep : Zbb not protected (DT model)

For custodial symmetry, at least have

- Complete $SU(2)_R$ multiplet
 - $Q_L \equiv (\mathbf{2}, \mathbf{1})_{1/6} = (t_L, b_L)$ $\psi_{t_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (t_R, b')$ $\psi_{b_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (T, b_R)$
 - "Project-out" b', T zero-modes by (-, +) B.C.
 - New ψ_{VL} : b', T

• $b \leftrightarrow b'$ mixing

- *Zbb* coupling shifted
 - So LEP constraint quite severe

Embedding in SO(5) (showing $SO(4) \sim SU(2)_L \otimes SU(2)_R$):

• $4 \text{ of } SO(5) = (2,1) \oplus (1,2)$ (MCHM4)

[Agashe, Delgado, May, Sundrum '03]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VLF Basics SM-like VLF 2HDM Singlet Model Little Higgs 000 Composite Higgs Warped Model LHC Limits 000 The Minimal Composite Higgs Model (MCHM) Fermion rep : Zbb protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

The Minimal Composite Higgs Model (MCHM) Fermion rep : $Zb\bar{b}$ protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

2HDM

[Agashe, Contino, DaRold, Pomarol '06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

...

Warped Model

LHC Limits

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Little Higgs

Composite Higgs

000

Two *t_R* possibilities:

SM-like VLF

VLF Basics

- Singlet t_R (ST Model) : $(1,1)_{2/3} = t_R$ New ψ_{VL} : χ , T
- 2 Triplet t_R (TT Model) :

$$(1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{t_R}' \oplus \psi_{t_R}'' = \begin{pmatrix} \frac{t_R}{\sqrt{2}} & \chi' \\ b' & -\frac{t_R}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t''}{\sqrt{2}} & \chi'' \\ b'' & -\frac{t''}{\sqrt{2}} \end{pmatrix}$$

New $\psi_{VL} : \chi, T, \chi', b', \chi'', t'', b''$

Embedding in SO(5) (showing $SO(4) \sim SU(2)_L \otimes SU(2)_R$):

- $5 \text{ of } SO(5) = (2,2) \oplus (1,1)$ (MCHM5)
- <u>10</u> of $SO(5) = (2,2) \oplus (1,3) \oplus (3,1)$ (MCHM10)

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model ●0000	LHC Limits
t' in Warped	Model						

Warped model t' parameters

[SG, T. Mandal, S. Mitra, G. Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model ○●○○○	LHC Limits		
t' in Warped Model									
Warped model t' BR									

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model 00●00	LHC Limits
t' in Warped N	Model						

t' Double and Single Resonant channels

 $pp \rightarrow t_2 th \rightarrow thth \rightarrow tbbtbb \rightarrow 6 \ b \ 4 \ j$ (4 b-tags)

T	M _{t2}	σ_{tot}	σ_{SR}	cuts	S	BG	L
	(GeV)	(<i>fb</i>)	(fb)		(<i>fb</i>)	(fb)	(fb^{-1})
T_1	500	1207	223.0	Basic	237.4	102.7	-
				Disc.	52.38	0.389	6.379
T ₂	750	115.2	18.30	Basic	22.67	102.7	-
				Disc.	13.25	0.389	25.22
T ₃	1000	18.38	2.715	Basic	3.088	102.7	-
				Disc.	2.421	0.389	138.0
T ₄	1250	3.821	0.590	Basic	0.477	102.7	-
				Disc.	0.415	0.389	1889.2

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model 000●0	LHC Limits
t' in Warped	Model						

t' Single Resonant channel

Blue Dots - ST Model Green Dots - TT Model

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model ○○○○●	LHC Limits
VLF decays							
Decay	Modes	of t'	$h' \sim$				

EWSB induced mixing \implies Tree-level NC Couplings

- as usual will have $t'_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- also, from Yukawa coupling $\langle \Sigma
 angle = v \implies t \leftrightarrow t'$, $b \leftrightarrow b'$ mixing

$$\mathcal{L} \supset \left(\begin{array}{ccc} b & b' \end{array}\right) \gamma^{\mu} \left(\begin{array}{ccc} g_Z & 0 \\ 0 & g'_Z \end{array}\right) \left(\begin{array}{ccc} b \\ b' \end{array}\right)_{L,R} Z_{\mu} + \left(\begin{array}{ccc} b_L & b'_L \end{array}\right) \left(\begin{array}{ccc} m_b & 0 \\ m_b & M_{b'} \end{array}\right) \left(\begin{array}{ccc} b_R \\ b'_R \end{array}\right) + h.c.$$

Diagonalize to go to mass basis

- v
 ightarrow v(1+h/v) leads to b'bh coupling
- $g_Z \neq g'_Z$ leads to b'bZ coupling
- Similarly t'tZ, t'th couplings also, in addition to t'bW

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs	Warped Model ○○○○●	LHC Limits
VLF decays							
Decay	Modes	of t'	$h' \gamma$				

EWSB induced mixing \implies Tree-level NC Couplings

- as usual will have $t'_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- also, from Yukawa coupling $\langle \Sigma
 angle = v \implies t \leftrightarrow t'$, $b \leftrightarrow b'$ mixing

$$\mathcal{L} \supset \left(\begin{array}{ccc} b & b' \end{array}\right) \gamma^{\mu} \left(\begin{array}{ccc} g_Z & 0 \\ 0 & g'_Z \end{array}\right) \left(\begin{array}{ccc} b \\ b' \end{array}\right)_{L,R} Z_{\mu} + \left(\begin{array}{ccc} b_L & b'_L \end{array}\right) \left(\begin{array}{ccc} m_b & 0 \\ \vec{m_b} & M_{b'} \end{array}\right) \left(\begin{array}{ccc} b_R \\ b'_R \end{array}\right) + h.c.$$

Diagonalize to go to mass basis

- v
 ightarrow v(1+h/v) leads to b'bh coupling
- $g_Z \neq g'_Z$ leads to b'bZ coupling
- Similarly t'tZ, t'th couplings also, in addition to t'bW

A D N A 目 N A E N A E N A B N A C N

VL Tree-level Decays

•
$$b' \rightarrow tW$$
, $b' \rightarrow bZ$, $b' \rightarrow bh$
• $t' \rightarrow bW$, $t' \rightarrow tZ$, $t' \rightarrow th$, $[t' \rightarrow \chi W]$
• $\chi \rightarrow tW$

Previous limits at 8 TeV from ATLAS

(日) (四) (三) (三)

Limits for B and T VLQ's

Single Production T,Y \rightarrow Wb

ATLAS-CONF-2016-072 * Single production is sensitive to high mass, if coupling is sufficiently large

 ${\ensuremath{\ast}}$ Coupling QWb

Aguilar-Saavedra et al., 1306.0572

- $_{\circ}\,$ similarly for b-B mixing
- or, more generally, phenomenological Lagrangian, in effective model with coupling $c_{L/R}^{Wb} = \sqrt{2} \sin \theta_{L/R}$ $\sigma(Q\bar{b}) \sim (c_{L}^{2} + c_{R}^{2})$

O. Matsedonskyi et al., 1409.0100

・ロト ・個ト ・ヨト ・ヨト

Georges Azuelos

ICHEP 2016

B2G-16-005

Julie Hogan

크

Limits on T singlet/doublet cross

Julie Hogan

VLF Basics 000	SM-like VLF 000	2HDM o	Singlet Model	Little Higgs 000	Composite Higgs 000	Warped Model 00000	LHC Limits	
Present LHC VLF Limits								
Conclu	isions							

- Many BSM extensions include vector-like fermions
- Indirect probes
 - hgg , $\mathit{h\gamma\gamma}$ couplings may show deviations in the future
 - if no deviation, constraint on parameter space
- Direct LHC signatures
 - LHC probing interesting region discovery of VLF soon?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simple Models	2HDM 00	Warped Models	Warped LHC Signals

BACKUP SLIDES

BACKUP SLIDES

Simple Models	2HDM	Warped Models	Warped LHC Signals

Mixing with SM fields?

$$\mathcal{L}_{\mathrm{Yuk}} \supset -\lambda'_{\xi} \bar{Q} \cdot H^* \xi - \lambda'_{\Upsilon} \bar{Q} H \Upsilon - \lambda'_{U} \bar{\mathcal{X}} \cdot H^* U - \lambda'_{D} \bar{\mathcal{X}} H D + h.c.$$

similarly for the VL-leptons

• EWSB
$$\langle H \rangle = v/\sqrt{2}$$
 will mix SM \leftrightarrow VL fermions

- Here, take λ' small
 - such that flavor constraints are satisfied
 - Zbb coupling is not shifted too much
 - but big enough to have prompt decays
 - no significant effect in Higgs observables

For sizable mixing case, see: [Dawson, Furlan '12] [Aguilar-Saveedra '13] [Fajfer et al. '13] [Dermisek, Raval '13]

Simple Models	2HDM oo	Warped Models	Warped LHC Signals

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへで

Simple Models	2HDM oo	Warped Models	Warped LHC Signals
$2ar{2}+1ar{1}$: MVLE			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Simple Models	2HDM 00	Warped Models	Warped LHC Signals

 $\lambda_D=$ 1, $M_D=M_Q$, $Y_Q=(1/6,-1/6)$ (solid, dashed)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Simple Models	2HDM 00	Warped Models	Warped LHC Signals

[ATLAS arXiv:1307.1427] [CMS-PAS-HIG-13-005, 2013]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Coupling	ATLAS	CMS
κ _g	1.04 ± 0.14	0.83 ± 0.11
κ_{γ}	1.2 ± 0.15	0.97 ± 0.18

$$\chi^2 = \sum_{i=1}^4 \left(\kappa_i^{\rm Exp} - \kappa_i^{\rm Th}\right)^2 / \left(\sigma_i^{\rm Exp}\right)^2$$

Simple Models	2HDM	Warped Models	Warped LHC Signals
000			
χ^2 fit to LHC Higgs Data			
	NGN 2 (• .	

 $Y_Q=1/6,\;Y_L=-1/2,\lambda_q=1,\lambda_\ell=1$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ 二 圖 - のへぐ

Simple Models 00●	2HDM 00	Warped Models	Warped LHC Signals
χ^2 fit to LHC Higgs Data			
$2\bar{2} + 1\bar{1} + 1\bar{1}$: '	VSM χ^2 fit		

 $Y_Q = 1/6, \, Y_L = -1/2, \, M_q = 1000 \ \text{GeV}, \, M_\ell = 500 \ \text{GeV}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

8 TeV

14 TeV

 $m_{\phi} = 200 \text{ GeV} (\text{red}), 500 \text{ GeV} (\text{blue}), 800 \text{ GeV} (\text{green}), 1000 \text{ GeV} (\text{yellow})$

| ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ★ □ ● ● ○ ○ ○ ○

Simple Models	2HDM ⊙●	Warped Models	Warped LHC Signals
Model-independent analysis			
14 TeV LHC σ	* BR		

for $M_{\phi} = 500 \text{ GeV}$ (Thick black line: 8 TeV exclusion)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Simple Models	2HDM oo	Warped Models	Warped LHC Signals
Warped Model			

Hierarchy prob soln:

• IR localized Higgs : $M_{EW} \sim ke^{-k\pi R}$: Choose $k\pi R \sim 34$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Gauge-theory dual is a composite Higgs model

Simple Models	2HDM 00	Warped Models	Warped LHC Signals

Explaining SM mass hierarchy

Bulk Fermions explain SM mass hierarchy

[Gherghetta, Pomarol 00][Grossman, Neubert '00]

$$\mathcal{L}_{Yuk}^{(5)} \supset \sqrt{|g|} \left\{ \frac{c_L k \bar{\psi}_L \psi_L + c_R k \bar{\psi}_R \psi_R + \left(\lambda_5 \bar{\psi}_R \psi_L H + h.c.\right) \right\}$$

$$\Psi_L(x,y) = \frac{e^{(2-c)ky}}{\sqrt{2\pi R}N_0} \Psi_L^{(0)}(x) + \dots$$

FCNC largely under control, but still strong constraints

AdS/CFT Correspondence

AdS/CFT Correspondence

[Maldacena, 1997]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- A classical supergravity theory in $AdS_5 \times S_5$ at weak coupling is dual to a 4D large-N CFT at strong coupling
- The CFT is at the boundary of AdS

[Witten 1998; Gubser, Klebanov, Polyakov 1998]

$$Z_{CFT}[\phi_0] = e^{-\Gamma_{AdS}[\phi_0]}$$

$\mathcal{L} \supset \int d^4 x \mathcal{O}_{CFT}(x) \phi_0(x)$	$\Gamma_{AdS}[\phi]$ supergravity eff. action
Eg: $\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{\delta^2 Z_{CFT}[\phi_0]}{\delta \phi_0(x_1) \delta(x_2)}$	$\phi(y, x)$ is a solution of the EOM ($\delta \Gamma = 0$)
with Z_{CFT} given by the RHS	for given bidry value $\phi_0(x) = \phi(y = y_0, x)$

Simple Models	2HDM oo	Warped Models	Warped LHC Signals

4D Duals of Warped Models

[Arkani-Hamed, Porrati, Randall, 2000; Rattazzi, Zaffaroni, 2001]

- Dual of Randall-Sundrum model RS1 (SM on IR Brane)
 - Planck brane \implies UV Cutoff; Dynamical gravity in the 4D CFT
 - $\bullet~{\rm TeV}~({\rm IR})$ brane $\implies~{\rm IR}$ Cutoff; Conformal invariance broken below a TeV
 - All SM fields are composites of the CFT
- Dual of Warped Models with **Bulk SM**
 - UV localized fields are elementary
 - IR localized fields (Higgs) are composite
 - 4D dual is Composite Higgs model [Georgi, Kaplan 1984]
 - Shares many features with Walking Extended Technicolor
 - Partial Compositeness
 - AdS dual is weakly coupled and hence calculable!
 - KK states are dual to composite resonances

Warped Bulk Gauge Group

[Agashe, Delgado, May, Sundrum '03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- Gauge Symmetry breaking:
 - By Boundary Condition (BC): $A_{-+}(x, y)$ BC: $A|_{y=0} = 0$; $\partial_y A|_{y=\pi R} = 0$
 - $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$
 - By VEV of IR localized Higgs

• $SU(2)_I \times U(1)_Y \rightarrow U(1)_{FM}$

Higgs $\Sigma = (2, 2)_0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
Warped Ferm	ions		

- SM fermions : (+, +) BC \rightarrow zero-mode
- "Exotic" fermions : (-,+) BC \rightarrow No zero-mode
 - 1st KK vectorlike fermion

(日) (四) (日) (日) (日)

Fermion rep : $Zb\overline{b}$ not protected (DT model)

[Agashe, Delgado, May, Sundrum '03]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Complete $SU(2)_R$ multiplet
 - $Q_L \equiv (\mathbf{2}, \mathbf{1})_{1/6} = (t_L, b_L)$ $\psi_{t_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (t_R, b')$ $\psi_{b_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (T, b_R)$
 - "Project-out" b', T zero-modes by (-, +) B.C.
 - New ψ_{VL} : b', T
- $b \leftrightarrow b'$ mixing
 - Zbb coupling shifted
 - So LEP constraint quite severe

Fermion rep : $Zb\bar{b}$ protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Fermion rep : *Zbb* protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$
 [Agashe, Contino, DaRold, Pomarol '06]

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Two t_R possibilities:

- Singlet t_R (ST Model) : $(1,1)_{2/3} = t_R$ New ψ_{VL} : χ , T
- Triplet t_R (TT Model) :

$$(1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{t_R}' \oplus \psi_{t_R}'' = \begin{pmatrix} \frac{t_R}{\sqrt{2}} & \chi' \\ b' & -\frac{t_R}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t''}{\sqrt{2}} & \chi'' \\ b'' & -\frac{t''}{\sqrt{2}} \end{pmatrix}$$

New $\psi_{VL} : \chi, T, \chi', b', \chi'', t'', b''$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

..

Simple Models	2HDM oo	Warped Models	Warped LHC Signals

Yukawa Couplings

Yukawa Couplings

- No $Zb\overline{b}$ protection $\mathcal{L}_{Yuk} \supset \lambda_t \ \bar{Q}_L \Sigma \psi_{t_R} + \lambda_b \ \bar{Q}_L \Sigma \psi_{b_R} + h.c.$
- With $Zb\bar{b}$ protection

• ST Model
$$\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma] t_R + h.c.$$

• TT Model $\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma \psi'_{t_R}] + \lambda'_t \operatorname{Tr}[\bar{Q}_L \Sigma \psi''_{t_R}] + h.c.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simple Models	2HDM	Warped Models	Warped LHC Signals

Warped model b' parameters

Simple Models	2HDM	Warped Models	Warped LHC Signals

Warped model χ parameters

୍ର୍

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
Warped mod	el Γ_{v}		

ST Model

TT Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

DIRECT PRODUCTION OF $t^\prime,\ b^\prime,\ \chi_{5/3}$ VECTORLIKE FERMIONS AT THE LHC

Model independent analysis.

Benchmark points from Warped extra dimensions

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306, PRD84 (2011) 055001] [SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

> See Also: [SG, Moreau, Singh, '10] [Dennis et al, '07] [Carena et al, '07] [Contino, Servant, '08] [Atre et al, '08, '09, '11] [Han et al. '10] [Aguilar-Saavedra, '09] [Mrazek, Wulzer, '09] [SG, Moreau, Singh, '10][Bini et al. '12][Buchkremer et al. '13]

> > ・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Simple Models	2HDM	Warped Models	Warped LHC Signals
			00000000000
t' LHC Signals			

t' Phenomenology at the LHC

[SG, T. Mandal, S. Mitra, G. Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

See also: [Harigaya et al., '12] [Giridhar, Mukhopadhyaya, 2012] [Azatov et al., '12] [Berger, Hubisz, Perelstein, '12] [Cacciapaglia et al., '10, '12] [Aguilar-Saavedra et al. '05]

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
b' LHC Signals			

b' Phenomenology at the LHC

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306, PRD84 (2011) 055001] [SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

See Also: [Contino, Servant '08][Mrazek, Wulzer '10]

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
b' LHC Signals			

b' Single & Double Resonant channels

... followed by $b_2 \rightarrow bZ$

- Both b₂ on-shell : **Double Resonant (DR)** channel
- Only one b₂ on-shell : Single Resonant (SR) channel

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $|M(bZ) - M_{b_2}| \ge \alpha_{cut}M_{b_2}; \quad \alpha_{cut} = 0.05$

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
b' LHC Signals			
b' Double B	Resonant		

Pair Production : $pp \rightarrow b'\bar{b}' \rightarrow bZ\bar{b}Z \rightarrow bjj\bar{b}\ell\ell$

Cuts:

 $\begin{array}{l} {\it Rapidity:} \ -2.5 < y_{b,j,Z} < 2.5, \\ {\it Transverse momentum:} \ p_{T\,b,j,Z} > 25 \ {\rm GeV}, \\ {\it Invariant mass cuts:} \\ {\it M_Z-10 \ {\rm GeV}} < M_{jj} < M_Z + 10 \ {\rm GeV}, \\ {\it 0.95M_{b_2}} < M_{(bZ)} < 1.05M_{b_2} \ . \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Simple Models	2HDM oo	Warped Models	Warped LHC Signals ○○○○●○○○○○○○
b' LHC Signals			
b' Single Re	sonant - I		

Single Resonant : $bg \rightarrow b'bZ \rightarrow bZbZ \rightarrow bbJJ\ell\ell$ Model Independent LHC-14 reach

Brown dots : DT Model Green dots : TT Model

Simple Models	2HDM oo	Warped Models	Warped LHC Signals
b' LHC Signals			

b' Single Production - II

Single Production : $bg \rightarrow b'Z \rightarrow bZZ \rightarrow bjj\ell\ell$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆

Ξ.

 $pp
ightarrow b' ar{b}'
ightarrow b Z ar{b} Z
ightarrow b j j ar{b} \ell \ell$

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
<i>b</i> ′ LHC Signals			

b' Signature (Model Independent)

Benchmark Points (Model I):

M_{b_2} (GeV)	250	500	750	1000	1250	1500
κ ^L _{b2bZ}	0.185	0.121	0.084	0.064	0.051	0.043
κ _{b2} tW	0.322	0.161	0.107	0.080	0.064	0.054
κ _{hbLb2R}	0.714	0.937	0.972	0.985	0.990	0.993
M_{b_2} (GeV)	1750	2000	2250	2500	2750	3000
κ ^L _{b2bZ}	0.037	0.032	0.029	0.026	0.024	0.022
κ _{b2} tW	0.046	0.040	0.036	0.032	0.029	0.027
Khbj b2R	0.995	0.996	0.997	0.998	0.998	0.998

Simple Models	2HDM 00	Warped Models	Warped LHC Signals
b' LHC Signals			

Warped model b' : Γ and BR

୍ରର୍ବ

Simple Models	2HDM 00	Warped Models	Warped LHC Signals ○○○○○○○●○○○
b' LHC Signals			

b' Single Resonant II Details

$pp ightarrow b'Z ightarrow bZZ ightarrow bjj \ell^+ \ell^-$

	signal σ_s	; (in fb)	in fb) background σ_b (in fb)				
M _b	bjj	Z	(bjjZ)	EW	(bjjZ)	QCD	$\mathcal{L}_{\text{SemiLep}}$
(GeV)	Primary	all	Primary	all	Primary	all	$(fb^{-1})^{-1}$
	cuts	cuts	cuts	cuts	cuts	cuts	
250	1017.66	995.86	77.03	10.33	7853.02	867.82	0.66
500	16.84	15.50	8.81	0.68	419.75	14.11	45.94
750	1.26	1.14	1.85	0.10	56.26	0.86	551.26
1000	0.14	0.12	0.47	0.01	12.38	0.05	3399.67

$M_{b'}$	QCD background (in fb)					QCD background (in fb)		
(GeV)	bjjZ bjbZ bbb							
250	546.36	634.32	17.19					
500	10.14	7.76	0.35					
750	0.52	0.66	0.03					
1000	0.02	0.06	0.002					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Simple Models	2HDM oo	Warped Models	Warped LHC Signals ○○○○○○○○●○○
χ LHC Signals			

χ Phenomenology at the LHC

[SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

[Contino, Servant '08][Mrazek, Wulzer '10][Cacciapaglia et al. '12]

▲□▶▲□▶★≣▶★≣▶ = ● のへで

Simple Models	2HDM oo	Warped Models	Warped LHC Signals
χ LHC Signals			

χ Double and Single Resonant channels

$\it pp ightarrow \chi tW ightarrow tW tW ightarrow tW t\ell u$

X	M_{χ}	σ_{tot}	σ_{SR}	cuts	S	BG	L
	(GeV)	(<i>fb</i>)	(<i>fb</i>)		(<i>fb</i>)	(fb)	(fb^{-1})
X_1	500	2406	261.5	Basic	977.5	3.257	-
				Disc.	146.1	0.115	0.826
X_2	750	235.5	29.31	Basic	99.99	3.257	-
				Disc.	42.74	0.115	2.824
X_3	1000	39.19	5.198	Basic	17.92	3.257	-
				Disc.	11.36	0.115	10.63
X_4	1250	8.576	1.231	Basic	4.305	3.257	-
				Disc.	3.226	0.115	37.42
X_5	1500	2.188	0.364	Basic	1.235	3.257	-
				Disc.	1.010	0.115	119.5
X ₆	1750	0.613	0.121	Basic	0.393	3.257	-
				Disc.	0.339	0.115	355.8

Simple Models	2HDM oo	Warped Models	Warped LHC Signals
χ LHC Signals			

χ Single Resonant Channel

Blue Dots - ST Model Green Dots - TT Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●