Vectorlike Quarks at the LHC

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai, India

with T.Mandal, S.Mitra, R.Tibrewala [arXiv:1107.4306, PRD84 (2011) 055001] with T.Mandal, S.Mitra, G.Moreau [arXiv:1306.2656] HEP Seminar, La Sapienza, University of Rome, 01 July 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Talk Outline

- Vector-like fermions we study
 - $b'_{(-1/3)}, t'_{(2/3)}, \chi_{(5/3)}$ $(t' \equiv T)$
 - Warped-space (Randall-Sundrum) model
 - Model independent whenever possible
- LHC Double and Single Resonant channels
 - Identify promising channels
 - Find luminosity required for discovery

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Vectorlike ψ

• Vectorlike fermions:

- both χ and χ^c present in the theory
- can write vectorlike mass term $\mathcal{L} \supset M \ \chi \chi^c + h.c.$

Vectorlike fermions	Chiral (4-gen) fermions
M ok with Gauge Symmetry	<i>M</i> only after EWSB i.e. $\langle H \rangle$
can be arbitrarily heavy	Landau pole in Yukawa coupling
CC + NC tree-level decays	only CC tree-level decays
loops decoupling	some loops nondecoupling

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

EWSB induced mixing \implies Tree-level NC Couplings

Consider $t' \equiv T$ and b'

- $T_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- In Yukawa coupling $\langle \Sigma \rangle = v \implies t \leftrightarrow T$, $b \leftrightarrow b'$ mixing

•
$$\mathcal{L}_{\text{mass}} \supset \begin{pmatrix} t_L & t'_L \end{pmatrix} \begin{pmatrix} m_t & 0 \\ \tilde{m} & M_T \end{pmatrix} \begin{pmatrix} t_R \\ t'_R \end{pmatrix} + \begin{pmatrix} b_L & b'_L \end{pmatrix} \begin{pmatrix} m_b & 0 \\ \tilde{m}_b & M_{b'} \end{pmatrix} \begin{pmatrix} b_R \\ b'_R \end{pmatrix} + h.c.$$

• leads to NC couplings t'tZ, t'th and b'bZ, b'bh also

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

EWSB induced mixing \implies Tree-level NC Couplings

Consider $t' \equiv T$ and b'

- $T_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- In Yukawa coupling $\langle \Sigma \rangle = v \implies t \leftrightarrow {\mathcal T}, \ b \leftrightarrow b' \ {\sf mixing}$

•
$$\mathcal{L}_{\text{mass}} \supset \begin{pmatrix} t_L & t'_L \end{pmatrix} \begin{pmatrix} m_t & 0 \\ \tilde{m} & M_T \end{pmatrix} \begin{pmatrix} t_R \\ t'_R \end{pmatrix} + \begin{pmatrix} b_L & b'_L \end{pmatrix} \begin{pmatrix} m_b & 0 \\ \tilde{m_b} & M_{b'} \end{pmatrix} \begin{pmatrix} b_R \\ b'_R \end{pmatrix} + h.c.$$

- leads to NC couplings t'tZ, t'th and b'bZ, b'bh also
- VL Tree-level Decays

•
$$b' \rightarrow tW$$
, $b' \rightarrow bZ$, $b' \rightarrow bh$
• $T \rightarrow bW$, $T \rightarrow tZ$, $T \rightarrow th$
• $\chi \rightarrow tW$

Warped Model

SM in background 5D warped AdS space

[Randall, Sundrum '99]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$ds^2=e^{-2k|y|}(\eta_{\mu
u}dx^\mu dx^
u)+dy^2$$

 Z_2 orbifold fixed points:

- Planck (UV) Brane
- TeV (IR) Brane

R : radius of Ex. Dim.

k : AdS curvature scale ($k \lesssim M_{pl}$)

Hierarchy prob soln:

- IR localized Higgs : $M_{EW} \sim ke^{-k\pi R}$: Choose $k\pi R \sim 34$
 - Gauge-theory dual is a composite Higgs model

Explaining SM mass hierarchy

Bulk Fermions explain SM mass hierarchy

[Gherghetta, Pomarol 00][Grossman, Neubert '00]

ヘロト ヘヨト ヘヨト ヘヨト

æ

$$\mathcal{L}_{Yuk}^{(5)} \supset \sqrt{|g|} \left\{ \frac{c_L k \bar{\psi}_L \psi_L + c_R k \bar{\psi}_R \psi_R + \left(\lambda_5 \bar{\psi}_R \psi_L H + h.c.\right) \right\}$$

$$\Psi_L(x,y) = \frac{e^{(2-c)ky}}{\sqrt{2\pi R}N_0} \Psi_L^{(0)}(x) + \dots$$

FCNC largely under control, but still strong constraints

AdS/CFT Correspondence

AdS/CFT Correspondence

[Maldacena, 1997]

- A classical supergravity theory in $AdS_5 \times S_5$ at weak coupling is **dual** to a 4D large-N CFT at strong coupling
- The CFT is at the boundary of AdS [Witten 1998; Gubser, Klebanov, Polyakov 1998]

$$Z_{CFT}[\phi_0] = e^{-\Gamma_{AdS}[\phi_0]}$$

$\mathcal{L} \supset \int d^4 x \mathcal{O}_{CFT}(x) \phi_0(x)$	$\Gamma_{AdS}[\phi]$ supergravity eff. action
Eg: $\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{\delta^2 Z_{CFT}[\phi_0]}{\delta \phi_0(x_1) \delta \phi_0(x_2)}$	$\phi(y,x)$ is a solution of the EOM ($\delta\Gamma=0$)
with Z_{CFT} given by the RHS	for given bndry value $\phi_0(x) = \phi(y = y_0, x)$

・ロト・日本・日本・日本・日本

4D Duals of Warped Models

[Arkani-Hamed, Porrati, Randall, 2000; Rattazzi, Zaffaroni, 2001]

- Dual of Randall-Sundrum model RS1 (SM on IR Brane)
 - Planck (UV) brane \implies UV Cutoff; Dynamical gravity in 4D CFT
 - TeV (IR) brane \implies IR Cutoff; Conformal inv broken \lesssim TeV
 - All SM fields are composites of the CFT
- Dual of Warped Models with Bulk SM
 - UV localized fields are elementary
 - IR localized fields (Higgs) are composite
 - 4D dual is Composite Higgs model [Georgi, Kaplan 1984]
 - Shares many features with Walking Extended Technicolor
 - Partial Compositeness
 - AdS dual is weakly coupled and hence calculable!
 - KK states are dual to composite resonances

Kaluza-Klein (KK) tower

Kaluza-Klein (KK) decomposition

- 5D (compact) field \leftrightarrow Infinite tower of 4D fields
- Look for this tower
 - at the LHC
 - in FCNCs

Look for heavy Kaluza-Klein (KK) states : KK $h_{\mu\nu}^{(1)}$, $g_{\mu}^{(1)}$, $W_{\mu}^{(1)}$, $Z_{\mu}^{(1)}$, $b_{\alpha}^{(1)}$, ... LEP precision electroweak constraints $\Rightarrow W_{\mu}^{(1)}$, $Z_{\mu}^{(1)} \gtrsim 2 \text{ TeV}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Precision ElectroWeak Constraints

 $\mathcal{N}_{W,Z,\gamma}$

Precision Electroweak Constraints (S, T, Zbb)

- Bulk gauge symm $SU(2)_L imes U(1)$ (SM ψ , H on TeV Brane)
 - T parameter $\sim (\frac{v}{M_{KK}})^2 (k\pi R)$
 - S parameter also $(k\pi R)$ enhanced

[Csaki, Erlich, Terning 02]

• AdS bulk gauge symm $SU(2)_R \Leftrightarrow$ CFT Custodial Symm

[Agashe, Delgado, May, Sundrum 03]

- T parameter Protected
- S parameter $\frac{1}{k\pi R}$ for light bulk fermions
- Problem: *Zbb* shifted
- 3rd gen quarks (2,2)

[Agashe, Contino, DaRold, Pomarol 06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Zbb coupling Protected
- Precision EW constraints \Rightarrow $M_{KK} \gtrsim 2-3$ TeV

[Carena, Ponton, Santiago, Wagner 06,07] [Bouchart, Moreau-08] [Djouadi, Moreau, Richard 06]

Warped Bulk Gauge Group

[Agashe, Delgado, May, Sundrum '03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- Gauge Symmetry breaking:
 - By Boundary Condition (BC): A(x, y) : (-,+) BC: $A|_{(y=0)} = 0$; $\partial_y A|_{(y=\pi R)} = 0$
 - $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$
 - By VEV of IR localized Higgs

Higgs $\Sigma = (2,2)_0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

◆□▶ ◆冊▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Warped Fermions

- SM fermions : (+, +) BC \rightarrow zero-mode
- "Exotic" fermions : (-, +) BC \rightarrow No zero-mode
 - 1st KK vectorlike fermion

Fermion rep : $Zb\bar{b}$ not protected (DT model)

[Agashe, Delgado, May, Sundrum '03]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- Complete $SU(2)_R$ multiplet
 - $Q_L \equiv (\mathbf{2}, \mathbf{1})_{1/6} = (t_L, b_L)$ $\psi_{t_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (t_R, b')$ $\psi_{b_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (T, b_R)$
 - "Project-out" b', T zero-modes by (-,+) B.C.
 - New ψ_{VL} : b', T
- $b \leftrightarrow b'$ mixing
 - Zbb coupling shifted
 - So LEP constraint quite severe

Fermion rep : $Zb\bar{b}$ protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Fermion rep : $Zb\overline{b}$ protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$
 [Agashe, Contino, DaRold, Pomarol '06]

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Two t_R possibilities:

- Singlet t_R (ST Model) : $(1,1)_{2/3} = t_R$ New ψ_{VL} : χ , T
- Triplet t_R (TT Model) :

$$(1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{t_R}' \oplus \psi_{t_R}'' = \begin{pmatrix} \frac{t_R}{\sqrt{2}} & \chi' \\ b' & -\frac{t_R}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t''}{\sqrt{2}} & \chi'' \\ b'' & -\frac{t''}{\sqrt{2}} \end{pmatrix}$$

New $\psi_{VL} : \chi, T, \chi', b', \chi'', t'', b''$

・ロト・西ト・山田・山田・山口・

,,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Yukawa Couplings

Yukawa Couplings

- No $Zb\bar{b}$ protection $\mathcal{L}_{Yuk} \supset \lambda_t \ \bar{Q}_L \Sigma \psi_{t_R} + \lambda_b \ \bar{Q}_L \Sigma \psi_{b_R} + h.c.$
- With Zbb protection

• ST Model
$$\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma] t_R + h.c.$$

• TT Model $\mathcal{L}_{Yuk} \supset \lambda_t \mathrm{Tr} \Big[\bar{Q}_L \Sigma \psi'_{t_R} \Big] + \lambda'_t \mathrm{Tr} \Big[\bar{Q}_L \Sigma \psi''_{t_R} \Big] + h.c.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Yukawa Couplings

Yukawa Couplings

- No $Zb\bar{b}$ protection $\mathcal{L}_{Yuk} \supset \lambda_t \ \bar{Q}_L \Sigma \psi_{t_R} + \lambda_b \ \bar{Q}_L \Sigma \psi_{b_R} + h.c.$
- With Zbb protection

• ST Model
$$\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma] t_R + h.c.$$

• TT Model $\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr} \left[\bar{Q}_L \Sigma \psi'_{t_R} \right] + \lambda'_t \operatorname{Tr} \left[\bar{Q}_L \Sigma \psi''_{t_R} \right] + h.c.$

EWSB $\langle \Sigma \rangle = v$

- Induces $\psi \leftrightarrow \psi'$ mixing
 - LHC Single production can probe this mixing

Warped model b' parameters

Warped model χ parameters

୍ର୍ବ୍

Warped model t' parameters

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

b' Phenomenology at the LHC

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306] [SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656]

Warped model b' : Γ and BR

900

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

b' Single & Double Resonant channels

- ... followed by $b_2 \rightarrow bZ$
 - Both b₂ on-shell : **Double Resonant (DR)** channel
 - Only one b₂ on-shell : Single Resonant (SR) channel

• $|M(bZ) - M_{b_2}| \ge \alpha_{cut} M_{b_2}; \quad \alpha_{cut} = 0.05$

b' Double Resonant

Pair Production : $pp \rightarrow b' \bar{b'} \rightarrow b Z \bar{b} Z \rightarrow b j j \bar{b} \ell \ell$

Cuts:

 $\begin{array}{l} \mbox{Rapidity: } -2.5 < y_{b,j,Z} < 2.5, \\ \mbox{Transverse momentum: } p_{T\,b,j,Z} > 25 \mbox{ GeV}, \\ \mbox{Invariant mass cuts:} \\ \mbox{M}_Z - 10 \mbox{ GeV} < M_{jj} < M_Z + 10 \mbox{ GeV}, \\ \mbox{0.95} M_{b2} < M_{(bZ)} < 1.05 \mbox{M}_{b_2} \ . \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

b' Single Resonant - I

Single Resonant : $bg \rightarrow b'bZ \rightarrow bZbZ \rightarrow bbJJ\ell\ell$ Model Independent LHC-14 reach

Brown dots : DT Model Green dots : TT Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

b' Single Production - II

Single Production : $bg \rightarrow b'Z \rightarrow bZZ \rightarrow bjj\ell\ell$

Cuts:

 $\begin{array}{l} \mbox{Rapidity:} -2.5 < y_{b,j,Z} < 2.5, \\ \mbox{Transverse momentum:} \ \mbox{$p_{T,b,j,Z}$} > 0.1 M_{b_2} \ , \\ \mbox{Invariant mass cuts:} \\ \mbox{M_Z} - 10 \ \mbox{GeV} < M_{jj} < M_Z + 10 \ \mbox{GeV}, \\ \mbox{$0.95M_{b_2}$} < M_{(bZ)} \ \mbox{QR} \ (bjj) < 1.05 M_{b_2} \ . \end{array}$

(日) (四) (日) (日) (日)

χ Phenomenology at the LHC

[SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656]

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Warped model Γ_{χ}

ST Model

TT Model

・ロト・西ト・山田・山田・山口・

χ Double and Single Resonant channels

$\it pp ightarrow \chi tW ightarrow tW tW ightarrow tW t\ell u$

X	M_{χ}	σ_{tot}	σ_{SR}	cuts	S	BG	L
	(GeV)	(<i>fb</i>)	(fb)		(<i>fb</i>)	(<i>fb</i>)	(fb^{-1})
X_1	500	2406	261.5	Basic	977.5	3.257	-
				Disc.	146.1	0.115	0.826
X_2	750	235.5	29.31	Basic	99.99	3.257	-
				Disc.	42.74	0.115	2.824
X_3	1000	39.19	5.198	Basic	17.92	3.257	-
				Disc.	11.36	0.115	10.63
X_4	1250	8.576	1.231	Basic	4.305	3.257	-
				Disc.	3.226	0.115	37.42
X_5	1500	2.188	0.364	Basic	1.235	3.257	-
				Disc.	1.010	0.115	119.5
X ₆	1750	0.613	0.121	Basic	0.393	3.257	-
				Disc.	0.339	0.115	355.8

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

χ Single Resonant Channel

Blue Dots - ST Model Green Dots - TT Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

t' Phenomenology at the LHC

[SG, Tanumoy Mandal, Subhadip Mitra, Gregory Moreau : arXiv:1306.2656]

See also: [Harigaya et al., '12] [Giridhar, Mukhopadhyaya, 2012] [Azatov et al., '12] [Berger, Hubisz, Perelstein, '12] [Cacciapaglia et al., '10, '12]

Warped model t' BR

900

æ.

t' Double and Single Resonant channels

 $pp \rightarrow t_2 th \rightarrow thth \rightarrow tbbtbb \rightarrow 6 \ b \ 4 \ j$ (4 b-tags)

T	M_{t_2}	σ_{tot}	σ_{SR}	cuts	S	BG	L
	(GeV)	(<i>fb</i>)	(fb)		(<i>fb</i>)	(fb)	(fb^{-1})
T_1	500	1207	223.0	Basic	237.4	102.7	-
				Disc.	52.38	0.389	6.379
T ₂	750	115.2	18.30	Basic	22.67	102.7	-
				Disc.	13.25	0.389	25.22
T ₃	1000	18.38	2.715	Basic	3.088	102.7	-
				Disc.	2.421	0.389	138.0
T ₄	1250	3.821	0.590	Basic	0.477	102.7	-
				Disc.	0.415	0.389	1889.2

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

t' Single Resonant channel

Blue Dots - ST Model Green Dots - TT Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

- Vector-like quarks
 - have NC (and CC) tree-level decays
 - could be much lighter than $V_{\mu}^{\textit{KK}}$ in warped models
- Identified promising DR and SR channels
 - SR can probe EW couplings
- 14 TeV LHC with pprox 300 fb^{-1} reach about 1.5 2 TeV in DR
- New ATLAS & CMS results
 - limits around $M_\psi\gtrsim 750~{
 m GeV}$

BACKUP SLIDES

BACKUP SLIDES

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

b' Pair Production Details

pp
ightarrow b' ar b'
ightarrow bZ ar b Z
ightarrow bZ
ightarrow bZ

	Signal σ_s (in fb)		E				
M_{b_2}	bZbZ		bZbZ		(bjjbZ) _{tot}		L
(GeV)	у, рт	All	у, рт	All	у, рт	All	(fb^{-1})
	cuts	cuts	cuts	cuts	cuts	cuts	
250	25253	25082	21.804	0.3797	16938	29.52	0.021
500	171.34	148.69	21.804	0.047	16938	3.74	3.514
750	14.508	12.221	21.804	0.0097	16938	0.997	42.752
1000	2.314	1.9214	21.804	0.0027	16938	0.259	271.92
1250	0.484	0.399	21.804	0.0011	16938	0.048	1310

	QCD background (in fb)						
M _{b2}	bjjbZ		bbj	ibZ	bbbbZ		
$(Ge\overline{V})$	y, p _T All		у, р _Т	All	у, <i>р</i> _Т	All	
	cuts	cuts	cuts	cuts	cuts	cuts	
250	16790	27.304	255.41	2.7	81.01	1.92	
500	16790	3.513	255.41	0.256	81.01	0.194	
750	16790	0.958	255.41	0.031	81.01	0.057	
1000	16790	0.2514	255.41	0.0052	81.01	0.008	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

b' Signature (Model Independent)

Benchmark Points (Model I):

M_{b_2} (GeV)	250	500	750	1000	1250	1500
κ ^L _{b2bZ}	0.185	0.121	0.084	0.064	0.051	0.043
κ _{b2} tW	0.322	0.161	0.107	0.080	0.064	0.054
κ _{hbLb2R}	0.714	0.937	0.972	0.985	0.990	0.993
M_{b_2} (GeV)	1750	2000	2250	2500	2750	3000
κ ^L _{b2bZ}	0.037	0.032	0.029	0.026	0.024	0.022
κ _{b2} tW	0.046	0.040	0.036	0.032	0.029	0.027
Khbj b2R	0.995	0.996	0.997	0.998	0.998	0.998

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

b' Single Resonant II Details

$pp ightarrow b'Z ightarrow bZZ ightarrow bjj \ell^+ \ell^-$

	signal σ_s (in fb)		l				
M _b	bjj	Z	(bjjZ) _{EW}		(bjjZ) _{QCD}		$\mathcal{L}_{\text{SemiLep}}$
(GeV)	Primary	all	Primary	all	Primary	all	(fb^{-1})
	cuts	cuts	cuts	cuts	cuts	cuts	
250	1017.66	995.86	77.03	10.33	7853.02	867.82	0.66
500	16.84	15.50	8.81	0.68	419.75	14.11	45.94
750	1.26	1.14	1.85	0.10	56.26	0.86	551.26
1000	0.14	0.12	0.47	0.01	12.38	0.05	3399.67

M _b	QCD background (in fb)						
(GeV)	bjjZ	bjbZ	bbbZ				
250	546.36	634.32	17.19				
500	10.14	7.76	0.35				
750	0.52	0.66	0.03				
1000	0.02	0.06	0.002				