Introduction to MSSM

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai

SUSY & DM 2013 IISc, Bangalore October 2013

Introduction	Supersymmetry Basics		
	00000	00000000	000

Talk Outline

- Supersymmetry (SUSY) Basics
 - Superfield formalism
 - Constructing SUSY invariant theory
 - SUSY breaking
- Minimal Supersymmetric Standard Model (MSSM)
 - SUSY preserving Lagrangian and soft-breaking terms
 - R-parity
 - Superpartner Mixing
- Implications
 - Dark Matter
 - 125 GeV Higgs

	Supersymmetry Basics	MSSM	
	0000		
SUSY invariant Theory			
Supersymmetry (SUSY)			

Reviews: [Wess & Bagger]

Symmetry: Fermions \Leftrightarrow Bosons $Q |\Phi\rangle = |\Psi\rangle$; $Q |\Psi\rangle = |\Phi\rangle$ Q_{α} is a spinorial charge SUSY algebra:

$$\begin{cases} Q_{\alpha}, \bar{Q}_{\dot{\beta}} \\ Q_{\alpha}, Q_{\beta} \\ \end{cases} = \begin{cases} \sigma_{\alpha\dot{\beta}}^{\mu} P_{\mu} \\ \bar{Q}_{\dot{\alpha}}, Q_{\beta} \\ \end{cases} = \begin{cases} \bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}} \\ \bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}} \\ \end{cases} = 0 \\ \end{cases} = 0$$

	Supersymmetry Basics	Implications
	00000	
SUSY invariant Theory		
Superfield		

SUSY algebra realized through a Superfield $\Phi(x_{\mu}, \theta, \overline{\theta})$ θ are fermionic (Grassmann) coordinates that anticommute: θ_{α} , $\alpha = \{1, 2\}$ $\{\theta, \theta\} = \{\theta, \overline{\theta}\} = \{\overline{\theta}, \overline{\theta}\} = 0 \implies (\theta_1)^2 = (\theta_2)^2 = 0$ Define $\theta\theta \equiv \theta^{\alpha}\theta_{\alpha} : \overline{\theta}\overline{\theta} \equiv \overline{\theta}_{\dot{\alpha}}\overline{\theta}^{\dot{\alpha}} : \quad \theta^{\alpha} \equiv \epsilon^{\alpha\beta}\theta_{\beta} : \overline{\theta}_{\dot{\alpha}} \equiv \epsilon_{\dot{\alpha}\dot{\beta}}\theta^{\dot{\beta}} : \quad \epsilon^{12} = \epsilon_{21} = +1$ • Chiral Superfield • $\overline{D}\Phi_L = 0 ; \quad D\Phi_R = 0$ • $\Phi_L = \phi(y) + \sqrt{2}\theta\psi_L(y) + \theta\theta F(y)$ F : auxiliary field $\delta_{\xi} \varphi = i\sqrt{2}\overline{\xi}\overline{\sigma}^m \partial_m \psi$

• Vector Superfield
•
$$V = V^{\dagger}$$

• $V(x, \theta, \overline{\theta}) = -\theta \sigma_{\mu} \overline{\theta} A^{\mu}(x) + i \theta \theta \overline{\theta} \overline{\lambda}(x) - \overline{\theta} \overline{\theta} \theta \lambda(x) + \frac{1}{2} \theta \theta \overline{\theta} \overline{\theta} D(x)$
 D : auxiliary field

$$\begin{split} \delta_{\xi} A_{mn} &= i \left[\left(\xi \sigma^n \partial_m \bar{\lambda} + \bar{\xi} \bar{\sigma}^n \partial_m \lambda \right) - (n \leftrightarrow m) \right] \\ \delta_{\xi} \lambda &= i \xi D + \sigma^{mn} \xi A_{mn} \\ \delta_{\xi} D &= \bar{\xi} \bar{\sigma}^m \partial_m \lambda - \xi \sigma^m \partial_m \bar{\lambda} \end{split}$$

人口 医水黄 医水黄 医水黄素 化甘油

	Supersymmetry Basics	MSSM	
	00000		
SUSY invariant Theory			
Constructing a SUSY theory			

Under a SUSY transformation, F and D transform into total derivatives

 $\bullet\,$ So they can be used for constructing SUSY invariant ${\cal L}$

	Supersymmetry Basics	MSSM	
	00000		
SUSY invariant Theory			
Constructing	a SUSY theory		

Under a SUSY transformation, F and D transform into total derivatives

 $\bullet\,$ So they can be used for constructing SUSY invariant ${\cal L}$

A SUSY gauge invariant theory

$$\mathcal{L} = \left. \Phi_{i}^{\dagger} e^{2gV} \Phi_{i} \right|_{\theta \theta \bar{\theta} \bar{\theta}} + \left(\left. \mathcal{W}(\Phi_{i}) \right|_{\theta \theta} + h.c. \right) + \frac{1}{32g^{2}} \left. \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} \right|_{\theta \theta}$$

Superpotential $W(\Phi)$, a Holomorphic function

Gauge Kinetic Function $W_{lpha}=-rac{1}{4}ar{D}ar{D}e^{-V}D_{lpha}e^{V}$

	Supersymmetry Basics	MSSM	Implications
	00000		
SUSY invariant Theory			
Constructin	g a SUSY theory		

Under a SUSY transformation, F and D transform into total derivatives

 $\bullet\,$ So they can be used for constructing SUSY invariant ${\cal L}$

A SUSY gauge invariant theory

$$\mathcal{L} = \left. \Phi_{i}^{\dagger} e^{2gV} \Phi_{i} \right|_{\theta \theta \bar{\theta} \bar{\theta}} + \left(\left. \mathcal{W}(\Phi_{i}) \right|_{\theta \theta} + h.c. \right) + \frac{1}{32g^{2}} \left. \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} \right|_{\theta \theta}$$

Superpotential $W(\Phi)$, a Holomorphic function

Gauge Kinetic Function $W_{lpha}=-rac{1}{4}ar{D}ar{D}e^{-V}D_{lpha}e^{V}$

Eliminating the Auxiliary fields

$$\begin{split} \mathcal{L} = & \left| D_{\mu} \phi_{i} \right|^{2} - i \bar{\psi}_{i} \sigma_{\mu} D^{\mu} \psi_{i} - g \sqrt{2} \left(\phi_{i}^{*} T^{a} \psi_{i} \lambda^{a} + \lambda^{a^{\dagger}} \psi^{\dagger} T^{a} \phi_{i} \right) \\ & - \left(\frac{1}{2} \frac{\partial^{2} \mathcal{W}(\phi_{i})}{\partial \phi_{j} \partial \phi_{k}} \psi_{j} \psi_{k} + h.c. \right) - \left| \frac{\partial \mathcal{W}(\phi_{i})}{\partial \phi_{j}} \right|^{2} \\ & - \frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} - \frac{1}{2} \sum_{a} \left| g \phi_{i}^{*} T^{a}_{ij} \phi_{j} \right|^{2} - i \lambda^{a^{\dagger}} \bar{\sigma}_{\mu} D^{\mu} \lambda_{a} \end{split}$$

・ロト ・雪ト ・ヨト ・ヨト

э

	Supersymmetry Basics	MSSM	Implications
	00000		
SUSY invariant Theory			
Consequences			

Solution to gauge hierarchy problem

[Romesh Kaul's talk]

(Similarly W^{\pm}, Z divergences cancelled by $\tilde{\lambda}$)

	Supersymmetry Basics	MSSM	Implications
	00000		
SUSY invariant Theory			
Consequences			

Solution to gauge hierarchy problem

(Similarly W^{\pm}, Z divergences cancelled by $\tilde{\lambda}$)

э

- Lightest SUSY Particle (LSP) stable dark matter (if R_p conserved)
- Gauge Coupling Unification SUSY SO(10) GUT Includes $\nu_R \Rightarrow$ Neutrino mass via seesaw

	Supersymmetry Basics	Implications
	00000	
SUSY breaking		
SUSY breaking		

- Exact SUSY $\implies M_\psi = M_\phi$; $M_A = M_{\tilde{\lambda}}$
 - So experiment \implies SUSY must be broken
- SUSY broken if and only if $\langle 0|H|0\rangle > 0$

Б

- Spontaneous SUSY breaking
 - O'Raifeartaigh F-term breaking
 - Fayet-Iliopoulos D-term breaking
- $STr(M^2) = 0 \implies$ cannot break SUSY spontaneously using SM superfield
 - Hidden sector breaking *Mediation* Communicated to SM Spectrum depends on Mediation type + RGE

・ロト ・ 一下・ ・ ヨト ・ ヨト

э

- In effective low-energy theory
 - Explicit soft-breaking terms, i.e., with dimensionful parameters

Supersymmetry Basics	MSSM	

The Minimal Supersymmetric Standard Model (MSSM)

Reviews: [Martin] [Drees] [Drees,Godbole,Roy] [Baer,Tata]

Introduction	Supersymmetry Basics	MSSM	Implications
	00000	00000000	000
Ingredients			
MSSM fields			

To every SM particle, add a superpartner (with spin differing by 1/2)

	Matter fields (efficial Superfields)		
	(SU(3), SU(2)) _{U(1)}	Components	
Q	(3, 2) _{1/6}	$(\tilde{q}_L, q_L, F_Q); \tilde{q}_L = \begin{pmatrix} \tilde{u}_L \\ \tilde{d}_L \end{pmatrix}; q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$	
UC	$(\bar{3}, 1)_{-2/3}$	$(\tilde{u}_R^*, u_R^c, F_U)$	
D ^c	(3, 1) _{1/3}	$(\tilde{d}_R^*, d_R^c, F_D)$	
L	$(1,2)_{-1/2}$	$(\tilde{\ell}_L, \ell_L, F_L); \tilde{\ell}_L = \begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}; \ell_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	
EC	(1, 1)1	$(\tilde{e}_R^*, e_R^c, F_E)$	
(N ^c)	(1, 1)0	$(\tilde{\nu}_R^*, \nu_R^c, F_N)$	

Matter fields (Chiral Superfields)

Gauge fields (Vector Superfields)

Higgs fields (Chiral Superfields)

	Components		(SU(3), SU(2)) _{U(1)}	Components]
SU(3)	$(g_{\mu}, \tilde{g}, D_3)$	Hu	(1, 2)1/2	$(h_{u}, \tilde{h}_{u}, F_{H_{u}})$; $h_{u} = \begin{pmatrix} h_{u}^{+} \\ h_{u}^{0} \end{pmatrix}$; $\tilde{h}_{u} = \begin{pmatrix} \tilde{h}_{u}^{+} \\ \tilde{h}_{u}^{0} \end{pmatrix}$]
SU(2)	$(W_{\mu}, ilde{W}, D_2)$	Hd	(1, 2)-1/2	$(h_d, \tilde{h}_d, F_{H_d}); h_d = \begin{pmatrix} h_d^0 \\ h_d^- \end{pmatrix}; \tilde{h}_d = \begin{pmatrix} \tilde{h}_d^0 \\ h_d^- \end{pmatrix}$	-
U(1)	$(B_{\mu}, ilde{B}, D_1)$		-/-] 💘

	Supersymmetry Basics	MSSM ○●○○○○○○○	Implications 000
Ingredients			
MSSM Sup	perpotential		

Write most general $\mathcal W$ consistent with $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

- $\mathcal{W} = U^c y_u Q H_u D^c y_d Q H_d E^c y_e L H_d + \mu H_u H_d + (N^c y_n L H_u)$
- $W_{\Delta L} = LH_u + LE^cL + QD^cL$; $W_{\Delta B} = U^cD^cD^c$
 - $\mathcal{W}_{\Delta L} + \mathcal{W}_{\Delta B}$ induce proton decay : $\tau_p \sim 10^{-10} s$ for $\tilde{m} \sim 1$ TeV

	Supersymmetry Basics 00000	MSSM 00000000	Implications
Ingredients			
MSSM Sup	perpotential		

Write most general W consistent with $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

- $\mathcal{W} = U^c y_u Q H_u D^c y_d Q H_d E^c y_e L H_d + \mu H_u H_d + (N^c y_n L H_u)$
- $W_{\Delta L} = LH_u + LE^cL + QD^cL$; $W_{\Delta B} = U^cD^cD^c$
 - $\mathcal{W}_{\Delta L} + \mathcal{W}_{\Delta B}$ induce proton decay : $au_p \sim 10^{-10} s$ for $ilde{m} \sim 1$ TeV

人口 医水黄 医水黄 医水黄素 化甘油

So impose Matter Parity $R_M = (-1)^{3(B-L)}$ to forbid ΔL and ΔB terms

For components \implies R-parity $R_p = (-1)^{3(B-L)+2s}$

 $R_p(particle) = +1$, $R_p(sparticle) = -1$

Consequence : The Lightest SUSY Particle (LSP) is stable

- Cosmologically stable Dark Matter
- Missing Energy at Colliders

	Supersymmetry Basics	MSSM	Implications
Ingredients			
Soft SUSY	breaking		

Effective parametrization with explicit soft-SUSY-breaking terms

$$\begin{split} \mathcal{L}_{SUSY Br}^{\text{soft}} \supset -\tilde{Q}^{\dagger} \tilde{m}_{Q}^{2} \tilde{Q} - \tilde{u}_{R}^{\dagger} \tilde{m}_{u}^{2} \tilde{u}_{R} - \tilde{d}_{R}^{\dagger} \tilde{m}_{d}^{2} \tilde{d}_{R} - \tilde{L}^{\dagger} \tilde{m}_{L}^{2} \tilde{L} - \tilde{e}_{R}^{\dagger} \tilde{m}_{e}^{2} \tilde{e}_{R} - (\tilde{\nu}_{R}^{\dagger} \tilde{m}_{\nu}^{2} \tilde{\nu}_{R}) \\ &- \frac{1}{2} M_{1} \tilde{B} \tilde{B} - \frac{1}{2} M_{2} \tilde{W} \tilde{W} - \frac{1}{2} M_{3} \tilde{g} \tilde{g} + h.c. \\ &- \tilde{u}^{c} A_{u} \tilde{Q} H_{u} + \tilde{d}^{c} A_{d} \tilde{Q} H_{d} + \tilde{e}^{c} A_{e} \tilde{L} H_{d} - (\tilde{\nu}^{c} A_{\nu} \tilde{L} H_{u}) + h.c. \\ &- m_{H_{u}}^{2} H_{u}^{\dagger} H_{u} - m_{H_{d}}^{2} H_{d}^{\dagger} H_{d} - (B \mu H_{u} H_{d} + h.c.) \end{split}$$

	Supersymmetry Basics	MSSM 00●000000	Implications
Ingredients			
Soft SUSY b	preaking		

Effective parametrization with explicit soft-SUSY-breaking terms

$$\begin{split} \mathcal{L}_{SUSY \ Br}^{\text{soft}} &\supset -\tilde{Q}^{\dagger} \tilde{m}_{Q}^{2} \tilde{Q} - \tilde{u}_{R}^{\dagger} \tilde{m}_{u}^{2} \tilde{u}_{R} - \tilde{d}_{R}^{\dagger} \tilde{m}_{d}^{2} \tilde{d}_{R} - \tilde{L}^{\dagger} \tilde{m}_{L}^{2} \tilde{L} - \tilde{e}_{R}^{\dagger} \tilde{m}_{e}^{2} \tilde{e}_{R} - (\tilde{\nu}_{R}^{\dagger} \tilde{m}_{\nu}^{2} \tilde{\nu}_{R}) \\ &- \frac{1}{2} M_{1} \tilde{B} \tilde{B} - \frac{1}{2} M_{2} \tilde{W} \tilde{W} - \frac{1}{2} M_{3} \tilde{g} \tilde{g} + h.c. \\ &- \tilde{u^{c}} A_{u} \tilde{Q} H_{u} + \tilde{d^{c}} A_{d} \tilde{Q} H_{d} + \tilde{e^{c}} A_{e} \tilde{L} H_{d} - (\tilde{\nu^{c}} A_{\nu} \tilde{L} H_{u}) + h.c. \\ &- m_{H_{u}}^{2} H_{u}^{\dagger} H_{u} - m_{H_{d}}^{2} H_{d}^{\dagger} H_{d} - (B \mu H_{u} H_{d} + h.c.) \end{split}$$

(日)

UV SUSY breaking and mediation dynamics will set these parameters

- Eg: Gravity Mediation (MSUGRA, CMSSM)
 - Inputs $ilde{m}_0$, $M_{1/2}$, A_0 , tan eta, sign (μ) at GUT scale
 - TeV scale values determined by RGE

	Supersymmetry Basics	MSSM	
	00000	00000000	000
Ingredients			

Electroweak symmetry breaking (EWSB)

$$\langle H_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix}; \quad \langle H_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}; \quad v^2 = v_u^2 + v_d^2; \qquad \tan \beta \equiv \frac{v_u}{v_d};$$

Physical Higgses: h^0 , H^0 , A^0 , H^{\pm}

	Supersymmetry Basics	MSSM	Implications
		00000000	
Ingredients			

Electroweak symmetry breaking (EWSB)

$$\langle H_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix}; \quad \langle H_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}; \quad v^2 = v_u^2 + v_d^2; \qquad \tan\beta \equiv \frac{v_u}{v_d};$$

Physical Higgses: h^0 , H^0 , A^0 , H^{\pm} $\mathcal{V} = (|\mu|^2 + m_{H_u}^2)|h_u|^2 + (|\mu|^2 + m_{H_d}^2)|h_d|^2 - (b_\mu h_u h_d + h.c.) + \frac{1}{8}(g^2 + g'^2)(|h_u|^2 - |h_d|^2)^2$ Minimization and EWSB $\sin(2\beta) = \frac{2b_\mu}{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}$ and $m_Z^2 = \frac{|m_{H_d}^2 - m_{H_d}^2|}{\sqrt{1 - \sin^2(2\beta)}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2$

	Supersymmetry Basics	MSSM	Implications
		00000000	
Ingredients			

Electroweak symmetry breaking (EWSB)

$$\langle H_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix}; \quad \langle H_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}; \quad v^2 = v_u^2 + v_d^2; \qquad \tan\beta \equiv \frac{v_u}{v_d};$$

Physical Higgses: h^0 , H^0 , A^0 , H^{\pm} $\mathcal{V} = (|\mu|^2 + m_{H_u}^2)|h_u|^2 + (|\mu|^2 + m_{H_d}^2)|h_d|^2 - (b_\mu h_u h_d + h.c.) + \frac{1}{8}(g^2 + g'^2)(|h_u|^2 - |h_d|^2)^2$ Minimization and EWSB $\sin(2\beta) = \frac{2b_\mu}{m_{H_u}^2 + m_{H_d}^2 + 2|\mu|^2}$ and $m_Z^2 = \frac{|m_{H_d}^2 - m_{H_d}^2|}{\sqrt{1 - \sin^2(2\beta)}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2$ • So we need μ^2 (SUSY preserving param) $\sim m^2$ (SUSY br param)! Why?

This is called the μ-problem

	Supersymmetry Basics	MSSM	Implications
	00000	000000000	000
Consequences			
125 GeV Higgs			

At 1-loop

$$m_{h}^{2} \approx m_{Z}^{2} \cos^{2}(2\beta) + \frac{3g_{2}^{2}m_{t}^{4}}{8\pi^{2}m_{W}^{2}} \left[\ln\left(\frac{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}{m_{t}^{2}}\right) + \frac{X_{t}^{2}}{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}} \left(1 - \frac{X_{t}^{2}}{12m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}\right) \right]$$
where $X_{t} = A_{t} - \mu \cot \beta$

•
$$m_h = 125$$
 GeV needs sizable loop contribution

• Hard! Needs large
$$m_{\tilde{t}_1} m_{\tilde{t}_2}$$
 or large X_t^2
• But $\delta m_{H_u}^2 \approx \frac{3g_2^2 m_t^4}{8\pi^2 m_W^2} \left[\ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) + \frac{X_t^2}{2m_{\tilde{t}_1} m_{\tilde{t}_2}} \left(1 - \frac{X_t^2}{6m_{\tilde{t}_1} m_{\tilde{t}_2}}\right) \right]$
So fine-tuning necessary to keep m_Z^2 correct (*cf* previous EWSB relation)
"Little hierarchy problem"

	Supersymmetry Basics	MSSM	
		000000000	
Consequences			
Neutralino mi	xing		

Neutralino: Neutral EW gauginos $(\tilde{B}, \tilde{W}^3, \tilde{H}^0_u, \tilde{H}^0_d)$: Majorana states $\mathcal{L} \supset$

$$\begin{array}{cccc} -\frac{1}{2} \left(\begin{array}{ccc} \tilde{B} & \tilde{W}^3 & \tilde{H}^0_u & \tilde{H}^0_d \end{array} \right) \left(\begin{array}{cccc} M_1 & 0 & -c_\beta s_W m_Z & s_\beta s_W m_Z \\ 0 & M_2 & c_\beta c_W m_Z & -s_\beta c_W m_Z \\ -c_\beta s_W m_Z & c_\beta c_W m_Z & 0 & -\mu \\ s_\beta s_W m_Z & -s_\beta c_W m_Z & -\mu & 0 \end{array} \right) \left(\begin{array}{ccc} \tilde{B} \\ \tilde{W}^3 \\ \tilde{H}^0_u \\ \tilde{H}^0_d \end{array} \right)$$

Diagonalizing this $\left(\begin{array}{ccc} \tilde{B} \\ \tilde{W}^3 \\ \tilde{H}^0_u \\ \tilde{H}^0_d \end{array} \right) \rightarrow \left(\begin{array}{ccc} \tilde{\chi}^0_1 \\ \tilde{\chi}^0_2 \\ \tilde{\chi}^0_3 \\ \tilde{\chi}^0_4 \end{array} \right)$: the mass eigenstates

	Supersymmetry Basics	MSSM	Implications
		000000000	
Consequences			
<u></u>			

Chargino: Charged EW gauginos
$$(\tilde{W}^{\pm}, \tilde{H}^{\pm})$$
. $\tilde{w}^{\pm} = \tilde{w}_1 \pm i\tilde{w}_2$
Form Dirac states $\tilde{W}^+ = \begin{pmatrix} \tilde{W}_{\alpha}^+ \\ \tilde{W}^{-\dot{\alpha}} \end{pmatrix}$; $\tilde{H}^+ = \begin{pmatrix} \tilde{H}_{u\alpha}^+ \\ \tilde{H}_{d}^- \end{pmatrix}$
 $\mathcal{L} \supset - \begin{pmatrix} \overline{W}^+ & \overline{H}^+ \end{pmatrix} \begin{pmatrix} M_{\chi} P_L + M_{\chi}^{\dagger} P_R \end{pmatrix} \begin{pmatrix} \tilde{W}^+ \\ \tilde{H}^+ \end{pmatrix} + h.c.$
where $M_{\chi} = \begin{pmatrix} M_2 \\ \sqrt{2} \cos \beta m_W \end{pmatrix} \begin{pmatrix} \sqrt{2} \sin \beta m_W \\ \mu \end{pmatrix}$
Diagonalizing this $\begin{pmatrix} \tilde{W}^+ \\ \tilde{H}^+ \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{\chi}_1^+ \\ \tilde{\chi}_2^+ \end{pmatrix}$: the mass eigenstates

Introduction	Supersymmetry Basics 00000	MSSM ○○○○○○○●○	Implications 000
Consequences			
Scalar mixing			

Eg. stop sector
$$(\tilde{t}_L, \tilde{t}_R)$$

 $\mathcal{L} \supset - (\tilde{t}_L^* - \tilde{t}_R^*) \begin{pmatrix} \tilde{m}_{LL}^2 + m_t^2 + \Delta_L & (v_u A_t - \mu^* \cot \beta m_t)^* \\ (v_u A_t - \mu^* \cot \beta m_t) & \tilde{m}_{RR}^2 + m_t^2 + \Delta_R \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$
where $\Delta = (T_3 - Qs_W^2) \cos(2\beta) m_Z^2$

Diagonalizing this
$$\begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}
ightarrow \begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix}$$
 : the mass eigenstates

	Supersymmetry Basics	MSSM ○○○○○○○○	Implications
Consequences			
Flavor Issues			

Flavor Problem

- In general \tilde{m}_{ij} can have arbitrary flavor structure and phases (MSSM has 9 new phases + 1 CKM phase)
 - FCNC & EDM experiments severely constrain these
 - some deeper reason (in SUSY br mediation)?
 - Minimal Flavor Violation (MFV)
 - Only CKM phase

Implications
0000 000

With R_p conserved, a superpartner (odd) cannot decay to SM (even)

: Lightest Supersymmetric Particle (LSP) is stable

LSP is in thermal equilibrium in the early universe, and left over today as Dark Matter

- ${ ilde \chi}_1^0$ LSP with ~ 100 GeV mass is a good DM candidate
 - Weakly Interacting Massive Particle (WIMP)

Introduction	Supersymmetry Basics	MSSM	Implications
			000
Dark Matter			
Dark Matter	(DM)		

With R_p conserved, a superpartner (odd) cannot decay to SM (even)

: Lightest Supersymmetric Particle (LSP) is stable

LSP is in thermal equilibrium in the early universe, and left over today as Dark Matter

- ${ ilde \chi}^0_1$ LSP with \sim 100 GeV mass is a good DM candidate
 - Weakly Interacting Massive Particle (WIMP)

It's number density can be depleted by annihilating with another sparticle

Self-annihilation

Co-annihilation

Could be detected in ongoing experiments

- Direct detection (on earth) $\psi N \rightarrow \psi N$
- Indirect detection (cosmic rays) $\psi \psi \rightarrow \gamma \gamma, \ e^+e^-, \dots$

Aside: Almost pure ν_R , if LSP, could be non-thermal DM

	Supersymmetry Basics 00000	MSSM 00000000	Implications $\odot ullet \odot$
SUSY at LH	<u>_</u>		

- Cascade decays
- R_p conservation \implies Missing energy signals

[ATLAS Physics TDR]

(日)

- Can we determine the spin and couplings to show SUSY?
 - Angular distributions

	Supersymmetry Basics	MSSM	Implications
			000
Conclusions			

- Supersymmetry solves the Heirarchy Problem
- MSSM is an effective theory at the TeV scale
 - SUSY breaking in hidden sector
 - Communicated to SM via mediation mechanism (which determine the MSSM parameters)
 - Gravity mediation, Gauge mediation, Anomaly mediation

ヘロト ヘ週ト ヘヨト ヘヨト

э

• R_p conservation

Conclusions

- Dark Matter Candidate
- Missing Energy at Colliders
- 14 TeV LHC run crucial for SUSY

BACKUP SLIDES

BACKUP SLIDES

Standard Model (SM) problems

- Gauge hierarchy problem $(M_{EW} \ll M_{Pl})$ Electroweak scale : $M_{EW} = 10^3$ GeV Gravity scale : $M_{Pl} = 10^{19}$ GeV
 - Higgs sector unstable (quadratic divergence)
- Fermion mass hierarchy problem $(m_e \ll m_t)$
 - Flavor symmetry?
- What is the dark matter
- Inadequate source of CP violation for observed baryon asymmetry
- Cosmological constant problem

Gauge hierarchy problem in detail

$$\mathcal{L}_{SM} \supset -\frac{1}{2}m_h^2 h^2 + \left(-\frac{y_t}{\sqrt{2}}h\bar{t_R}t_L + h.c.\right) + \dots$$

Higgs mass is not protected by any symmetry!

 $h_{-\frac{t_L}{\sqrt{2}}} - \frac{t_L}{h} \frac{t_R}{2} = -\frac{3y_t^2}{8\pi^2} \Lambda^2 \qquad (\Lambda \text{ is momentum cut-off})$

Quadratic divergence! = 125 GeV the sturing the sturing $M_{pl}^{\text{ine-typing}} = 10^{19}$ GeV

Gauge hierarchy problem in detail

$$\mathcal{L}_{SM} \supset -rac{1}{2}m_h^2 h^2 + \left(-rac{y_t}{\sqrt{2}}har{t}_R t_L + h.c.
ight) + ...$$

Higgs mass is not protected by any symmetry!

Quadratic divergence! 125 GeV $(he^{-tWning})$ 10^{19} GeV

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

New physics (BSM) restores naturalness? Below what scale (Λ) should it appear?

> Fine-tuning measure: $f_T \equiv \frac{m_h^2}{\delta m_h^2}$ $f_T > 0.1 \implies \Lambda < 2\text{TeV}$ (for $m_h = 120 \text{ GeV}$) So expect new physics below 2 TeV scale

SM problems cured by Physics Beyond SM (BSM) ?

Some BSM proposals

- Supersymmetry
- Strong dynamics (Technicolor, Composite Higgs)
- Extra dimensions
 - Flat extra dims
 - Warped (AdS space) extra dim

5-D gravity theory in AdS $\underset{DUAL}{\longleftrightarrow}$ 4-D conformal field theory (CFT)

AdS/CFT correspondence [Maldacena 97]

Little Higgs

LHC Data (SUSY jets + MET)

イロト イヨト イヨト イヨ