Heavy Electroweak Resonances at the LHC (arXiv:0709.0007 & 0810.1497 [hep-ph])

Shrihari Gopalakrishna

Brookhaven National Lab

with

Agashe, Davoudiasl, Han, Huang, Perez, Si, Soni

... Fermilab Aug. 2008

.

- SM Hierarchy Problem: $M_{Pl} \leftrightarrow M_{EW}$
- New dynamics?
 - Extra dimensions (Warped, Flat)
 - Supersymmetry
 - Strong dynamics
 - Little Higgs
- AdS/CFT correspondence

★ ∃ → ★ ∃

- Focus on heavy EW spin-1 resonances
- Warped (RS) model
 - $SU(3)_{QCD} \times SU(2)_L \times SU(2)_R \times U(1)_X$ bulk gauge group
 - Heavy EW gauge bosons : 3 neutral (Z') & 2 charged (W'^{\pm})
 - Precision electroweak observables require $M_{Z'}$, $M_{W^{\pm}}\gtrsim 2$ TeV

• Makes discovery challenging at the LHC

• What are general issues at the LHC?

- Focus on heavy EW spin-1 resonances
- Warped (RS) model
 - $SU(3)_{QCD} \times SU(2)_L \times SU(2)_R \times U(1)_X$ bulk gauge group
 - Heavy EW gauge bosons : 3 neutral (Z') & 2 charged (W'^{\pm})
 - Precision electroweak observables require $M_{Z'}$, $M_{W^{\pm}}\gtrsim 2$ TeV

• Makes discovery challenging at the LHC

• What are general issues at the LHC?

Not discussed here:

- KK Gluon (SU(3)_{QCD}) at LHC
- KK Graviton at LHC

[Agashe et al, 06] [Lillie et al, 07]

伺い イヨト イヨト

[Agashe et al, 07] [Fitzpatrick et al, 07]

5D Warped Space $ds^2 = e^{-2k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}) + dy^2$ Z_2 Orbifold -

- Planck (UV) Brane
- TeV (IR) Brane
- R : radius of Ex. Dim.
- k : curvature
- Hierarchy prob soln:
 - TeV Brane Higgs : $M_{EW} \sim k e^{-k\pi R}$: Choose $k\pi R \sim 34$

Bulk fields $\rightarrow AdS/CFT$

• Bulk Fermions explain flavor (FCNC's safe)

[Randall, Sundrum, 99]

Precision Electroweak Constraints (S, T, $Zb\bar{b}$)

- Bulk gauge symm $SU(2)_L imes U(1)$ (SM ψ , H on TeV Brane)
 - T parameter log $\frac{M_{Pl}}{M_{EW}}$ enhanced [Csaki, Erlich, Terning 02]
 - S parameter log enhanced

• Bulk gauge symm - $SU(2)_R \Leftrightarrow$ Custodial Symm (AdS/CFT)

[Agashe, Delgado, May, Sundrum - 03]

- T parameter Protected
- S parameter log enhanced (with additional $\frac{1}{k\pi R}$ for bulk fermions)
- Zbb shifted
- 3rd gen quarks (2,2)

[Agashe, Contino, DaRold, Pomarol - 06]

- Zbb coupling Protected
- Precision EW constraints $\Rightarrow M_{Z'} \gtrsim 2 3 \text{ TeV}$

[Carena, Ponton, Santiago, Wagner - 06,07]

イロト イポト イヨト イヨト 二日

Bulk Gauge group : $SU(2)_L \times SU(2)_R \times U(1)_X$

- Three neutral gauge bosons: (W_L^3, W_R^3, X)
- Two charged gauge bosons: (W_L^{\pm}, W_R^{\pm})

伺 ト イヨト イヨト

Bulk Gauge group : $SU(2)_L \times SU(2)_R \times U(1)_X$

- Three neutral gauge bosons: (W_L^3, W_R^3, X)
- Two charged gauge bosons: (W_L^{\pm}, W_R^{\pm})

•
$$SU(2)_R \times U(1)_X \to U(1)_Y$$
: $(W_L^3, W_R^3, X) \to (W_L^3, B, Z_X)$
• $Z_X \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_R W_R^3 - g_X X) \to (-, +)$; $W_R^{\pm} \to (-, +)$
• $B \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_X W_R^3 + g_R X) \to (+, +)$; $W_L^{\pm} \to (+, +)$

Symm breaking by BC: $Z_X(-,+)$ means $Z_X|_{y=0} = 0$; $\partial_y Z_X|_{y=\pi R} = 0$

.

Bulk Gauge group : $SU(2)_L \times SU(2)_R \times U(1)_X$

- Three neutral gauge bosons: (W_L^3, W_R^3, X)
- Two charged gauge bosons: (W_L^{\pm}, W_R^{\pm})

•
$$SU(2)_R \times U(1)_X \to U(1)_Y : (W_L^3, W_R^3, X) \to (W_L^3, B, Z_X)$$

• $Z_X \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_R W_R^3 - g_X X) \to (-, +) ; W_R^{\pm} \to (-, +)$
• $B \equiv \frac{1}{\sqrt{g_x^2 + g_R^2}} (g_X W_R^3 + g_R X) \to (+, +) ; W_L^{\pm} \to (+, +)$

Symm breaking by BC: $Z_X(-,+)$ means $Z_X|_{y=0} = 0$; $\partial_y Z_X|_{y=\pi R} = 0$

- $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$: $(W_L^3, B, Z_X) \rightarrow (A, Z, Z_X)$
 - By TeV brane Higgs

伺 ト イ ヨ ト イ ヨ ト

Kaluza-Klein (KK) expansion: $A(x, y) = \sum_{0}^{\infty} f_n(y) A^{(n)}(x)$ $A^{(n)} \rightarrow KK$ tower with mass m_n . Equivalent 4D theory Gauge Boson

• "Zero" modes:
$$A^{(0)}, Z^{(0)}$$
; $W_L^{(0)}$
• First KK modes: $A^{(1)}, Z^{(1)}, Z_X^{(1)} \to Z'$; $W_L^{(1)}, W_R^{(1)}$
EWSB mixes : $Z^{(0)} \leftrightarrow Z^{(1)}$; $Z^{(0)} \leftrightarrow Z_X^{(1)}$; $Z^{(1)} \leftrightarrow Z_X^{(1)}$
 $W_L^{(0)} \leftrightarrow W_L^{(1)}$; $W_L^{(0)} \leftrightarrow W_R^{(1)}$; $W_L^{(1)} \leftrightarrow W_R^{(1)}$

Mass eigenstates :

- "Zero" modes: A, Z ; W^{\pm}
- First KK modes: $A_1, \tilde{Z}_1, \tilde{Z}_{X_1} \to Z'$; $\tilde{W}_{L_1}, \tilde{W}_{R_1} \to {W'}^{\pm}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Representations (Custodial protection for $Zb\bar{b}$)

[Agashe, Contino, DaRold, Pomarol - 06]

Fermions

•
$$Q_L = (2,2) = \begin{pmatrix} t_L & \zeta_L \\ b_L & T_L \end{pmatrix}$$

• t_R : (1,1) OR (1,3)
• b_R : (1,1) OR (1,3)

Higgs

For these Reps

• Zbb coupling - Protected

[Agashe, Contino, DaRold, Pomarol - 06]

• Precision EW constraints $\Rightarrow M_{Z'} \gtrsim 2-3$ TeV

[Carena, Ponton, Santiago, Wagner - 06,07]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Wave functions

Bulk field EOM gives profiles in extra-dimension Fermion bulk mass (*c* parameter) controls localization

Compute overlap integral of $f(y) \cdot g(y)$ to get 4D couplings

$$\mathcal{I}^{+,-} = \int [dy] g_{\psi}^2 f^{(++),(-+)}$$

•
$$A \rightarrow (+,+); Z \rightarrow (+,+); Z_X \rightarrow (-,+)$$

Z' ANALYSIS

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Define: $\xi \equiv \sqrt{k\pi R} \approx 5$

- Z' overlap with Higgs $\rightarrow \xi$
- Z' overlap with fermions:

	Q_L^3	t _R	other fermions
\mathcal{I}^+	1	ξ	$-\frac{1}{\xi}$
\mathcal{I}^-	1	ξ	0

Compared to SM

- Z' couplings to h enhanced (also V_L Equivalence Theorem!)
- Z' couplings to t_R enhanced
- Z' couplings to χ suppressed

$$\begin{split} \bar{\psi}_{L,R}\gamma^{\mu} \Big[eQ\mathcal{I}A_{1\,\mu} + g_Z \left(T_L^3 - s_W^2 T_Q\right) \mathcal{I}Z_{1\,\mu} + \\ g_{Z'} \left(T_R^3 - s'^2 T_Y\right) \mathcal{I}Z_{X1\,\mu} \Big] \psi_{L,R} \end{split}$$

EWSB induced $Z'W^+W^-$ coupling

 $Z^{(1)}V^{(0)}V^{(0)}$ is zero by orthogonality but induced after EWSB

Using Goldstone equivalence:

In Unitary Gauge:

Even though $\xi \cdot \left(\frac{v}{M_{KK}}\right)^2$ suppressed can be overcome by $\left(\frac{M_{KK}}{m_Z}\right)^2$ (from long. pol. vectors), we have $\xi \to 0$ and $\xi \to 0$ [Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni - arXiv:0709.0007 [hep-ph]]

$$\begin{split} \Gamma(A_1 \to W_L W_L) &= \frac{e^2 \kappa^2}{192 \pi} \frac{M_{Z'}^5}{m_W^4} ; \quad \kappa \propto \sqrt{k \pi r_c} \left(\frac{m_W}{M_{W_1}^\pm} \right)^2 , \\ \Gamma(\tilde{Z}_1, \tilde{Z}_{X1} \to W_L W_L) &= \frac{g_L^2 c_W^2 \kappa^2}{192 \pi} \frac{M_{Z'}^5}{m_W^4} ; \quad \kappa \propto \sqrt{k \pi r_c} \left(\frac{m_Z}{(M_{Z_1}, M_{Z_{X1}})} \right)^2 , \\ \Gamma(\tilde{Z}_1, \tilde{Z}_{X1} \to Z_L h) &= \frac{g_Z^2 \kappa^2}{192 \pi} M_{Z'} ; \quad \kappa \propto \sqrt{k \pi r_c} , \\ \Gamma(Z' \to f \bar{f}) &= \frac{(e^2, g_Z^2)}{12 \pi} \left(\kappa_V^2 + \kappa_A^2 \right) M_{Z'} . \end{split}$$

æ

$M_{Z'} = 2 \text{TeV}$	A_1	Z_1	Z_{X1}
Γ (GeV)	103.3	114.6	135.6

▲ロト ▲間 ト ▲ 画 ト

æ

-≣->

Z' Branching Ratios

A₁ Branching Fractions

Z' Branching Ratios (Contd.)

Z' production at the LHC

Total Z' Cross Section at LHC

æ

LHC Channels

•
$$pp \rightarrow Z' \rightarrow W^+W^-$$

- Fully leptonic : $W \to \ell \nu$; $W \to \ell \nu$
- Semi leptonic : $W \rightarrow \ell \nu$; $W \rightarrow (jj)$

•
$$pp \rightarrow Z' \rightarrow Z h$$

- $m_h = 120 \text{GeV} : Z \to \ell^+ \ell^-$; $h \to b \, \overline{b}$
- $m_h = 150 {
 m GeV}: Z
 ightarrow (jj)$; $h
 ightarrow W^+ W^-
 ightarrow (jj) \ell
 u$

•
$$pp \rightarrow Z' \rightarrow \ell^+ \ell^-$$

• Clean but needs high luminosity

•
$$pp \rightarrow Z' \rightarrow t \,\overline{t} \,, \, b \,\overline{b}$$

[Djouadi, Moreau, Singh - 07]

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

KK gluon "pollution"

$$pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \nu \ \ell \nu$$

2 ν 's \Rightarrow cannot reconstruct event

$$M_{eff} \equiv p_{\mathcal{T}_{\ell_1}} + p_{\mathcal{T}_{\ell_2}} + \not p_{\mathcal{T}} \qquad M_{\mathcal{T}_{WW}} \equiv 2\sqrt{p_{\mathcal{T}_{\ell_\ell}}^2 + M_{\ell\ell}^2}$$

 \mathcal{L} needed: 100 fb⁻¹ (2 TeV) ; 1000 fb⁻¹ (3 TeV)

< ロ > < 同 > < 三 > < 三 >

 $pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \nu j j$

j j Collimation implies forming m_W nontrivial : use jet-mass In our study: Jet-mass after Parton shower in Pythia

[Thanks to Frank Paige for discussions]

To account for (HCal) expt. uncert. Smearing by $\delta E = 80\%/\sqrt{E}$; $\delta \eta, \delta \phi = 0.05$

Tracker + ECal (2 cores?) have better resolutions [F. Paige; M. Strassler] \mathcal{L} needed: 100 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)

$pp ightarrow Z' ightarrow Z \ h ightarrow \ell^+ \ell^- \ b \ ar b \ (m_h = 120 \ { m GeV})$

How well can we tag high p_T b's ?

For $\epsilon_b = 0.4$, expect $R_j \approx 20 - 50$; $R_c = 5$ Two b's close : $\Delta R_{bb} \sim 0.16$ \mathcal{L} needed: 200 fb⁻¹ (2 TeV) ; 1000 fb⁻¹ (3 TeV)

▲ 同 ▶ ▲ 三 ▶ ▲

$pp \rightarrow Z' \rightarrow Z h : Z \rightarrow jj; h \rightarrow W^+W^- \rightarrow jj \ell \nu$ $(m_h = 150 \text{ GeV})$

$$M_{\mathcal{T}_{Zh}}\equiv\sqrt{p_{\mathcal{T}_Z}^2+m_Z^2}+\sqrt{p_{\mathcal{T}_h}^2+m_h^2}$$

< ロ > < 同 > < 三 > < 三 >

$M_{Z'} = 2 \text{ TeV}$ $m_h = 150 \text{ GeV}$	Basic	p_T, η	$\cos \theta$	M _T	Mjet	# Evts	S/B	S/\sqrt{B}
$Z' \to hZ \to \ell \not \in_T (jj) (jj)$	2.4	1.6	0.88	0.7	0.54	54	2.5	11.5
SM Wjj	3×10^4	35.5	12.7	0.62	0.19	19		
SM W Z j	184	0.45	0.15	0.02	0.02	2		
SM W W j	712	0.54	0.2	0.02	0.01	1		
$M_{Z'} = 3 \text{ TeV} m_h = 150 \text{ GeV}$								
$Z' \to hZ \to \ell \not \in_T (jj) (jj)$	0.26	0.2	0.14	0.06	-	18	1.2	4.7
SM Wjj	3×10^4		4.1	0.05	-	15		

events above is for

2 TeV : 100
$$fb^{-1}$$

● 3 TeV : 300 fb⁻¹

$M_{Z'} = 2 \text{ TeV}$	Basic	ΡΤℓ	$M_{\ell\ell}$	# Evts	S/B	S/\sqrt{B}
Signal	0.1	0.09	0.06	60	0.3	4.2
SM ℓℓ	3×10^4	5.4	0.2	200		
SM WW	295	0.03	0.002	2		

events above is for

● 2 TeV : 1000 fb⁻¹

Experimentally clean, but needs a LOT of luminosity

ヘロト ヘロト ヘビト ヘビト

3

W'^{\pm} ANALYSIS (ongoing)

æ

'▲ 문 ▶ | ▲ 문 ▶

Shrihari Gopalakrishna Heavy Electroweak Resonances at the LHC

æ

$W^{\prime\pm} \to t b \to \ell \nu b b$

Signal c.s. $\sim 1 fb$ Bkgnd is single top + QCD W b b AND ... $t\bar{t}$: hadronically decaying top can fake a b

< ロ > < 同 > < 三 > < 三 >

Jet-mass cut: cone size 1.0 and $0 < j_M < 75 \Rightarrow 0.4\%$ of *top* fakes *b* \mathcal{L} needed: 100 fb⁻¹ (2 TeV)

• • = • • = •

$W'^{\pm} \rightarrow Z W$ and W h

$$W'^{\pm} \rightarrow Z W$$
:

- Fully leptonic $\rightarrow \mathcal{L}$: 100 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)
- Semi leptonic $\rightarrow \mathcal{L}$: 300 fb⁻¹ (2 TeV) (SM W/Z + 1j large)

• • = • • = •

${W'}^{\pm} ightarrow Z W$ and W h

$$W'^{\pm} \rightarrow Z W$$
:

- Fully leptonic $ightarrow \mathcal{L}$: 100 fb^{-1} (2 TeV) ; 1000 fb^{-1} (3 TeV)
- Semi leptonic $\rightarrow \mathcal{L}$: 300 fb^{-1} (2 TeV) (SM W/Z + 1j large)

 $W'^{\pm} \rightarrow W h$:

- $m_h \approx 120$: $h \rightarrow b b$
 - What is b-tagging eff?
- $m_h \approx 150$: $h \rightarrow W W$
 - Use W jet-mass to reject light jet

 \mathcal{L} needed: 100 fb⁻¹(2TeV); 300 fb⁻¹ (3TeV)

Conclusions

• LHC :
$$pp \rightarrow Z' \rightarrow W^+W^-$$
, Z h, $\ell^+\ell^-$, $(t \bar{t}, b \bar{b})$
 $pp \rightarrow W'^{\pm} \rightarrow t b, Z W, Z h, \ell \nu$ (ongoing work)
 $t\bar{t}$ bkgnd sneaks in

• Probing electroweak KK sector challenging, but possible

- Warped model with $SU(2)_L \times SU(2)_R \times U(1)_X$ $Z': A_1, Z_1, Z_{X1} \quad W'^{\pm}: W_L, W_R$
- Thanks to:
 - Colleagues at BNL : Bill Kilgore, Frank Paige
 - CalcHEP (help from Alaxender Belyaev)
 - Pythia (help from Steve Mrenna, Peter Skands)
 - MadGraph (help from Rikkert Frederix)
 - Bridge (help from Matt Reece)

< 同 > < 三 > < 三 >

BACKUP SLIDES

・ロト ・四ト ・ヨト ・ヨト

æ

Z' Overlap Integrals

Define:
$$\xi \equiv \sqrt{k\pi R} = 5.83$$

Z' overlap with Higgs $\rightarrow \xi$ Z' overlap with fermions:

	Q_L^3	t _R	other fermions
\mathcal{I}^+	$-\frac{1.13}{\xi} + 0.2\xi \approx 1$	$-\frac{1.13}{\xi} + 0.7\xi \approx 3.9$	$-rac{1.13}{\xi} pprox -0.2$
\mathcal{I}^-	$0.2\xi pprox 1.2$	$0.7\xi pprox 4.1$	0

Compared to SM

- Z' couplings to h enhanced (also V_L Equivalence Theorem!)
- Z' couplings to t_R enhanced
- Z' couplings to χ suppressed

$$\bar{\psi}_{L,R}\gamma^{\mu} \Big[eQ\mathcal{I}A_{1\,\mu} + g_Z \left(T_L^3 - s_W^2 T_Q \right) \mathcal{I}Z_{1\,\mu} + g_{Z'} \left(T_R^3 - s'^2 T_Y \right) \mathcal{I}Z_{X1\,\mu} \Big] \psi_{L,R}$$

	A1			\tilde{Z}_1	\tilde{Z}_{X1}		
	Γ(GeV)	BR	Γ(GeV)	BR	Γ(GeV)	BR	
tt	55.8	0.54	18.3	0.16	55.6	0.41	
bb	0.9	$8.7 imes10^{-3}$	0.12	10 ⁻³	28.5	0.21	
ūu	0.28	$2.7 imes 10^{-3}$	0.2	$1.7 imes10^{-3}$	0.05	$4 imes 10^{-4}$	
đd	0.07	$6.7 imes 10^{-4}$	0.25	$2.2 imes 10^{-3}$	0.07	$5.2 imes 10^{-4}$	
$\ell^+\ell^-$	0.21	$2 imes 10^{-3}$	0.06	$5 imes 10^{-4}$	0.02	$1.2 imes 10^{-4}$	
$W_L^+ W_L^-$	45.5	0.44	0.88	$7.7 imes 10^{-3}$	50.2	0.37	
Z _L h	-	-	94	0.82	2.7	0.02	
Total	103.3		114.6		135.6		

æ

 $pp \rightarrow Z' \rightarrow W^+ W^- \rightarrow \ell \nu \ \ell \nu$

Cross-section (in fb) after cuts:

2 TeV	Basic cuts	$ \eta_\ell < 2$	$M_{eff} > 1 \; { m TeV}$	M_T >1.75 TeV	# Evts	S/B	S/\sqrt{B}
Signal	0.48	0.44	0.31	0.26	26	0.9	4.9
WW	82	52	0.4	0.26	26		
au au	7.7	5.6	0.045	0.026	2.6		
3 TeV	Basic cuts	$ \eta_\ell < 2$	$1.5 < M_{eff} < 2.75$	$2.5 < M_T < 5$	# Evts	S/B	S/\sqrt{B}
3 TeV Signal	Basic cuts 0.05	$ \eta_\ell < 2$ 0.05	$1.5 < M_{eff} < 2.75$ 0.03	$2.5 < M_T < 5$ 0.025	# Evts 25	S/B	S/\sqrt{B}
3 TeV Signal WW	Basic cuts 0.05 82	$ \eta_\ell < 2$ 0.05 52	1.5 < M _{eff} < 2.75	$2.5 < M_T < 5$ 0.025 0.04	# Evts 25 40	S/B 0.6	S/√B 3.8
3 TeV Signal WW ττ	Basic cuts 0.05 82 7.7	$ \eta_{\ell} < 2$ 0.05 52 5.6	1.5 < M _{eff} < 2.75	$\begin{array}{c} 2.5 < M_T < 5 \\ \hline 0.025 \\ \hline 0.04 \\ \hline 0.003 \end{array}$	# Evts 25 40 3	S/B 0.6	S/√B 3.8

events above is for

- 2 TeV : 100 fb⁻¹
- 3 TeV : 1000 fb⁻¹

ヘロト ヘロト ヘビト ヘビト

3

$$pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \nu jj$$

$$M_{eff} \equiv p_{T_{jj}} + p_{T_\ell} + p_T \qquad M_{T_{WW}} \equiv 2\sqrt{p_{T_{jj}}^2 + m_W^2}$$

æ

 $pp \rightarrow Z' \rightarrow W^+W^- \rightarrow \ell \nu j j$

Cross-section (in fb) after cuts:

$M_{Z'} = 2 \text{ TeV}$	р _Т	$\eta_{\ell,j}$	M _{eff}	M _{Tww}	M _{jet}	# Evts	S/B	S/\sqrt{B}
Signal	4.5	2.40	2.37	1.6	1.25	125	0.39	6.9
W+1j	$1.5 imes10^5$	$3.1 imes 10^4$	223.6	10.5	3.15	315		
WW	$1.2 imes 10^3$	226	2.9	0.13	0.1	10		
$M_{Z'} = 3 \text{ TeV}$								
Signal	0.37	0.24	0.24	0.12	-	120	0.17	4.6
W+1j	$1.5 imes10^5$	$3.1 imes 10^4$	88.5	0.68	-	680		
WW	$1.2 imes10^3$	226	1.3	0.01	-	10		

events above is for

- 2 TeV : 100 fb⁻¹
- 3 TeV : 1000 fb⁻¹

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

$pp \rightarrow Z' \rightarrow Z \ h \rightarrow \ell^+ \ell^- \ b \ ar b \ (m_h = 120 \ { m GeV})$

Cross-section (in fb) after cuts:

$M_{Z'}=2$ TeV	Basic	p_T, η	$\cos \theta_{Zh}$	Minv	b-tag	# Evts	S/B	S/\sqrt{E}
$Z' \to hZ \to b\bar{b}\ell\ell$	0.81	0.73	0.43	0.34	0.14	27	1.1	5.3
SM Z + b	157	1.6	0.9	0.04	0.016	3		
$SM Z + b\overline{b}$	13.5	0.15	0.05	0.01	0.004	0.8		
SM $Z + q_I$	2720	48	22.4	1.5	0.08	15		
SM Z + g	505.4	11.2	5.8	0.5	0.025	5		
SM Z + c	184	1.9	1.1	0.05	0.01	2		
$M_{Z'} = 3 \text{ TeV}$								
$Z' \to hZ \to b\bar{b}\ell\ell$	0.81	0.12	0.05	0.04	0.016	16	2	5.7
SM Z + b	157	0.002	0.001	$3 imes 10^{-4}$	$1.2 imes10^{-4}$	0.12		
$SM Z + b\overline{b}$	13.5	0.018	0.014	0.002	0.001	1		
SM $Z + q_I$	2720	1.1	0.7	0.1	0.005	5		
SM Z + g	505.4	0.3	0.2	0.03	0.0015	1.5		
SM Z + c	183.5	0.03	0.02	0.002	$4 imes 10^{-4}$	0.4		

events above is for

- 2 TeV : 200 fb⁻¹
- 3 TeV : 1000 fb^{-1}

何 ト イヨ ト イヨ ト

$M_{Z'} = 2 \text{ TeV}$	Basic	$p_T > 800$	$1900 < M_{tt} < 2100$
Signal	17	7.2	5.6
SM tt	$1.9 imes 10^5$	31.1	19.1
$M_{Z'} = 3 \text{ TeV}$	Basic	$p_T > 1250$	$2850 < M_{tt} < 310$
Signal	1.7	0.56	0.45
SM tt	$1.9 imes 10^5$	4.1	1.1

Shrihari Gopalakrishna Heavy Electroweak Resonances at the LHC

・ロト ・回ト ・ヨト ・ヨト