Dark Matter in Particle Physics

Shrihari Gopalakrishna

High Energy Theory Group, Northwestern University

July, 2006

(日)

Outline

- Framework General Relativity and Particle Physics
- Observed Universe and Inference
- Dark Energy, Dark Matter (DM)
- DM Candidates
- DM Direct Detection
- DM at Colliders

The Framework

- Einstein's General Theory of Relativity (GR)
- In GR 4 dim space-time is dynamical
- Mass/Energy curves space-time: Curvature \propto Energy-density (ρ) Define $\Omega = \frac{\rho}{\rho_c}$ ρ_c is critical energy-density (a constant) All forms of matter/energy contributes to ρ - **Particle Physics**

→ Ξ →

The Standard Model of Particle Physics

Since $E = m c^2$, same unit for mass and energy: **eV** (set c = 1)

 $1 GeV = 10^9 eV$

The Standard Model of Particle Physics

Since $E = m c^2$, same unit for mass and energy: **eV** (set c = 1)

Building blocks:

	FERMION		tter constitu n = 1/2, 3/2				В	osons	force carri spin = 0, 1		
вp	tons spin =1/	2	Quark		1 =1/2	Unified Ele				(color) spi	
,	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric	Name	Mass GeV/c ²	Electric
et iso*	(0-0.13)×10 ⁻⁹	0	🕕 up	0.002	2/3	<i>n</i>	0	0	(g)	0.000	0 Cital ge
m	0.000511	-1	d down	0.005	-1/3	photon			gluon	v	
e 172*	(0.009-0.13)×10 ⁻⁹	0	😮 charm	1.3	2/3	W7	80.39	-1			
	0.106	-1	strange	0.1	-1/3	W ⁺	80.39	+1			
ino*	(0.04-0.14)×10 ⁻⁹	0	(t) top	173	2/3	W bosons Z ⁹					
	1.777	-1	bottom (b)	4.2	-1/3	Z boson	91.188	0			

1 GeV	=	10^{9}	еV
-------	---	----------	----

The strangers of the interactions (for		ies of the Inter-		to the specified dataset
	Gravitational Interaction	Heak Interaction	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass - Energy	Fiaror	Electric Charge	Color Charge
Padates experiencing:	A	Quarks, Laptons	Electrically Charged	Quarte, Chrone
Particles mediating:	Chevilian (ve) (an downed)	W* W- Z ⁴	у	Gluona
manual france	10-41	0.8		25
1 2.1YON	10-11	92-4	1	80

(E)

< A >

Composites:

F the

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. These are a few of the many types of haryons.						
ymbol	Name	Quark content	Electric charge	Mina GeV/c2	Spin	
р	proton	und	1	0.938	1/2	
5	antiprotion	6ae	-1	0.938	1/2	
n	neutron	udd	0	0.940	1/2	
٨	lambda	uds	0	1.116		
Ω	onera	353	-1	1.672	3/2	

the distance by or dense $\frac{1}{2}$ $\frac{1}{2}$

The Standard Model of Particle Physics

Since $E = m c^2$, same unit for mass and energy: **eV** (set c = 1)

Building blocks: Leptons spin =1/2

FERMIONS soin = 1/2 3/2 5

charge

-1 est (0.04-0.14)×10-9 0

Quarks

			В		rce carriers in = 0, 1, 2,					
spin x.	=1/2	Unified El	ctroweak	spin = 1	Stron	Strong (color) spin =1				
ля. а 62	Electric charge	Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge			
2	2/3	7	0	0	g	0	0			
	-1/3	photon			gluon	U	0			
	2/3	W7	80.39	-1						
	-1/3	W2	80.39	+1						
	2/3	Wbosons								
	-1/3	Z boson	91.188	0						

1 GeV	=	10^{9}	еV
-------	---	----------	----

		wheregit of the electromagnetic		
Property	Gravitational Interaction	Meak Interaction (Dect)	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass - Energy	Favor	Electric Charge	Color Charge
Robbes experiencing	AL	Quarks, Leptons	Electrically Charged	Queta Clains
Particles mediating:	Carvilan (vd.)andbaned)	W* W- Z ⁰	y	Gluona
manual france	10-11	0.8		25
2.0YO	10-11	12-4	1	60

< ロ > < 同 > < 三 > < 三 >

Composites:

12 lightest /0-0.131/10-9 14 middle 10.009-0.131×10-9 0

	Baryons qqq and Antibaryons qqq Baryons are femiceic hadrons. These are a few of the many types of baryons.						Mesu se are a fe		onic hade saty type			
Symbol	Name	Quark content	Electric charge	Mina GeV/c2	Spin	Symbol	Nane	Quirk	Electric charge	Mass GeV/c ³	Spin	
P	proton	und	1	0.938	1/2	×.	pice	ъđ	+1	0.140	0	
P	antiprotors	6ae	-1	0.938	1/2	K'	kaon	58	-1	0.494	0	
	neutron	udd	0	0.940	1/2	p.	nho	ъđ	+1	0.776	1	
Δ.	lambda	uds	0	1.116		B ²	B-szro	dő	0	5.279	0	r
Ω-	onega	555	-1	1.672	3/2	n.	cta-c	62	0	2.980	0	[particleadventure.org]
			-									[["""""""""""""""""""""""""""""""""""""

Big-Bang Neucleosynthesis (BBN)

explains element (D, He, Li, ...) abundances in the universe

General Relativity Particle Physics

The Observed Universe

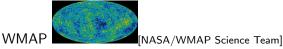
• The universe is expanding [Hubble]

General Relativity Particle Physics

The Observed Universe

• The universe is expanding [Hubble]

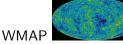
• Galaxy Rotation curve, Gravitational lensing


General Relativity Particle Physics

The Observed Universe

The universe is expanding [Hubble]

- Galaxy Rotation curve, Gravitational lensing
- Cosmic Microwave Background (CMB)



General Relativity Particle Physics

The Observed Universe

The universe is expanding [Hubble]

- Galaxy Rotation curve, Gravitational lensing
- Cosmic Microwave Background (CMB)

[NASA/WMAP Science Team]

E ▶ 4

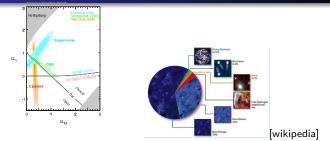
• Galaxy Clusters, Chandra, Ly $\alpha,$ 2dF, SDSS

General Relativity Particle Physics

The Observed Universe

The universe is expanding [Hubble]

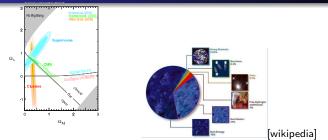
- Galaxy Rotation curve, Gravitational lensing
- Cosmic Microwave Background (CMB)


[NASA/WMAP Science Team]

- Galaxy Clusters, Chandra, Ly $\alpha,$ 2dF, SDSS
- Supernova Cosmology Project

General Relativity Particle Physics

Inference

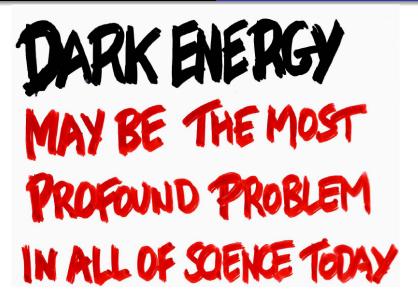


The universe

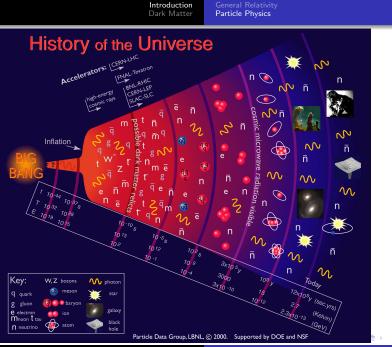
- Flat on large scales
- Expansion is Accelerating
- 95% is unknown dark matter + dark energy What is it??

General Relativity Particle Physics

Inference



The universe


- Flat on large scales
- Expansion is Accelerating
- 95% is unknown dark matter + dark energy What is it??

The DARK SIDE rules!!!

General Relativity Particle Physics

[Mike Turner, Neutrino 2006]

Shrihari Gopalakrishna

Dark Matter in Particle Physics

Candidates Direct detection At Colliders

Dark Matter candidates

Astrophysical objects - Disfavored

- MAssive Compact Halo Object (MACHO)
- Black holes

Candidates Direct detection At Colliders

Dark Matter candidates

Astrophysical objects - Disfavored

- MAssive Compact Halo Object (MACHO)
- Black holes

Particle Dark Matter

- Axions
- Neutrinos
- Weakly Interacting Massive Particle (WIMP)
- Super-WIMP,E-WIMP,WIMPzilla
- LSP, LKP, LTP

< A >

∃ ► < ∃ ►</p>

Candidates Direct detection At Colliders

Axions

- Strong interactions Quantum Chromo Dynamics (QCD) Charge-Parity (CP) symmetry conserved - Why???
- Possible explanation Axion [Peccei-Quinn]

$$\Omega_m = (rac{10^{-5} eV}{m_a})^{7/6}$$
 $m_a = 6 \, eV \, (rac{10^6 GeV}{f_a})$

Candidates Direct detection At Colliders

Axions

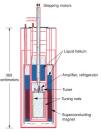
- Strong interactions Quantum Chromo Dynamics (QCD) Charge-Parity (CP) symmetry conserved - Why???
- Possible explanation Axion [Peccei-Quinn]

$$\Omega_m = (rac{10^{-5} eV}{m_a})^{7/6}$$
 $m_a = 6 \, eV \, (rac{10^6 GeV}{f_a})$

• CERN Axion Solar Telescope (CAST)

(日)

Candidates Direct detection At Colliders


Axions

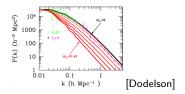
- Strong interactions Quantum Chromo Dynamics (QCD) Charge-Parity (CP) symmetry conserved - Why???
- Possible explanation Axion [Peccei-Quinn]

$$\Omega_m = (rac{10^{-5} eV}{m_a})^{7/6}$$
 $m_a = 6 \, eV \, (rac{10^6 GeV}{f_a})$

• CERN Axion Solar Telescope (CAST)

• Axion Dark Matter Expt. (ADMX)

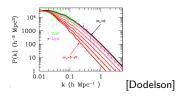
Candidates Direct detection At Colliders


Neutrinos

 Neutrinos interact weakly Billions (from Sun) passing through you w/o interacting

Candidates Direct detection At Colliders

Neutrinos


- Neutrinos interact weakly Billions (from Sun) passing through you w/o interacting
- Hot dark matter freestreaming destroys structure Cannot be all of dark-matter $\Omega = 0.02 \frac{m_{\nu}}{1 eV}$

Candidates Direct detection At Colliders

Neutrinos

- Neutrinos interact weakly Billions (from Sun) passing through you w/o interacting
- Hot dark matter freestreaming destroys structure Cannot be all of dark-matter $\Omega = 0.02 \frac{m_{\nu}}{1 eV}$

 Right-handed Neutrino (Sterile Neutrino) can be DM Warm Dark Matter Solves many puzzles : LSND, Small scale structure, etc. Introduction Dark Matter At Colliders

Weakly Interacting Massive Particle (WIMP)

WIMP Cold dark matter - New particle

- $M \sim 100 \, {
 m GeV}$
- Weak-interaction like coupling

Weakly Interacting Massive Particle (WIMP)

WIMP Cold dark matter - New particle

- $M \sim 100 \, {
 m GeV}$
- Weak-interaction like coupling

Most studied extension of the SM - Supersymmetry

- Extension of space-time symmetry to Superspace Boson ⇐⇒ Fermion symmetry. Every known particle has a Superpartner
- Lightest Supersymmetric Particle (LSP) can be stable LSP can be WIMP dark-matter. Eg. Neutralino

Other candidates

- SuperWIMP Gravitino (partner of graviton)
- E-WIMP Right-handed sneutrino (partner of neutrino)
- WIMPzilla Extremely massive particle
- LKP Lightest Kaluza-Klein Particle Extra space dimensions
- LTP Lightest T-odd Particle Little-higgs theory with Z_2

Other candidates

- SuperWIMP Gravitino (partner of graviton)
- E-WIMP Right-handed sneutrino (partner of neutrino)
- WIMPzilla Extremely massive particle
- LKP Lightest Kaluza-Klein Particle Extra space dimensions
- LTP Lightest T-odd Particle Little-higgs theory with Z_2
- Your candidate here

Candidates Direct detection At Colliders

DM direct detection

• Cryogenic Dark Matter Search (CDMS), Soudan Mine, USA

< □ > < 同 >

3 🕨 🖌 3

Candidates Direct detection At Colliders

DM direct detection

• Cryogenic Dark Matter Search (CDMS), Soudan Mine, USA

• DAMA, Gran Sasso, Italy. Detection claimed!!

Nal scintillators

Candidates Direct detection At Colliders

DM at Colliders I

• Fermilab: Tevatron, CDF, D0

э

Candidates Direct detection At Colliders

DM at Colliders I

• Fermilab: Tevatron, CDF, D0

• CERN: Large Hadron Collider (LHC), ATLAS, CMS

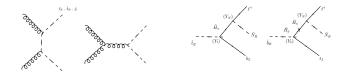
Candidates Direct detection At Colliders

DM at Colliders I

• Fermilab: Tevatron, CDF, D0

• CERN: Large Hadron Collider (LHC), ATLAS, CMS

• The Future: Linear Collider:


Shrihari Gopalakrishna

Dark Matter in Particle Physics

Candidates Direct detection At Colliders

DM at Colliders II

• Example: Supersymmetry

• LSP leads to "missing momentum"

Final Thoughts

- What is Dark Energy and Dark Matter???
- $\bullet\,$ Many Candidates, Mass range $10^{-5} eV$ $10^{12} GeV$
- Vigorous search underway Direct and Collider
- Exciting times! We might discover DM particle soon
- Dark Energy Only for the brave!

Image: A matrix

Candidates Direct detection At Colliders

Backup Slides

Backup Slides

Shrihari Gopalakrishna Dark Matter in Particle Physics

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

	Introduction Dark Matter	Candidates Direct detection At Colliders
Ω_m		

WMAP result (2003) $\Omega_m h^2 = 0.135 \stackrel{+0.008}{-0.009}$; $h^2 \approx 0.5$

Shrihari Gopalakrishna Dark Matter in Particle Physics

æ

《曰》《聞》《臣》《臣》。

Candidates Direct detection At Colliders

Thermal History of the Universe

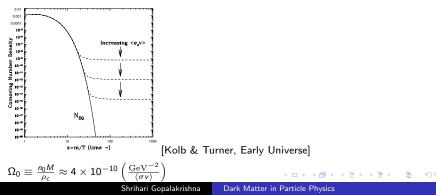
$\mathsf{Big}\;\mathsf{Bang}\to\mathsf{Inflation}\to\cdots\to\mathsf{BBN}\to\mathsf{Today}$

Hubble rate:

$$H \equiv \frac{\dot{a}}{a}; \quad H^2 = \frac{8\pi G}{3}\rho$$
$$H = 1.66\sqrt{g_*}\frac{T^2}{M_{Pl}} \quad (\text{Rad Dom})$$

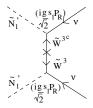
イロト イボト イヨト イヨト

э


Candidates Direct detection At Colliders

Boltzmann Equation

 $\mathsf{Big}\;\mathsf{Bang}\to\mathsf{Inflation}\to\cdots\to\mathsf{BBN}\to\mathsf{Today}$


$$\frac{d}{dt}n_{\tilde{\nu}_0} = -3Hn_{\tilde{\nu}_0} - \langle \sigma v \rangle_{SI} \left(n_{\tilde{\nu}_0}^2 - n_{\tilde{\nu}_0 \ eq}^2\right) - \langle \sigma v \rangle_{CI} \left(n_{\tilde{\nu}_0}n_{\phi} - n_{\tilde{\nu}_0 \ eq}n_{\phi \ eq}\right) + C_{\Gamma}$$

Thermal equilibrium if $\langle \sigma v \rangle_{SI} n_{\tilde{\nu}_0} > 3H$; $\langle \sigma v \rangle_{CI} n_{\phi} > 3H$ **Freeze-out**

Candidates Direct detection At Colliders

Mixed $\tilde{\nu}_0$ Dark Matter

$$\Omega_0 h^2 = \frac{10^{-4}}{s_1^4} \left\{ \left[g^2 \left(\frac{100 \text{ GeV}}{M_{\tilde{W}}} \right) + {g'}^2 \left(\frac{100 \text{ GeV}}{M_{\tilde{B}}} \right) \right]^2 \right\}^{-1}$$

 \therefore $s_1 \approx 0.2$ results in observed relic density

æ

イロト イヨト イヨト イヨト