4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures 000000000000000000000000000000000000

Composite Higgs

(Warped extradimensional analogues & LHC Signatures)

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai, India

The 4th KIAS Workshop on Particle Physics and Cosmology Oct 2014, KIAS, S. Korea

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Talk Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4D composite Higgs model
 - The Minimal Composite Higgs Model (MCHM)
- Motivations from AdS/CFT correspondence
- 5D AdS (warped) extradimensional analogue
- Phenomenology
 - Precision electroweak constraints
 - LHC Direct production

•
$$Z'_{\mu}$$
, W'_{μ}
• $b'_{(-1/3)}$, $t'_{(2/3)}$, $\chi_{(5/3)}$

• LHC Higgs observables

General Idea of Composite Higgs

[Georgi, Kaplan 1984]

- Sector with global symmetry \mathcal{G}
 - Σ transforms under ${\cal G}$

General Idea of Composite Higgs

[Georgi, Kaplan 1984]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Sector with global symmetry ${\cal G}$
 - Σ transforms under ${\cal G}$
- $\langle \Sigma \rangle \neq 0$ such that ${\cal G}$ broken to ${\cal H}$
 - (massless) Goldstone Bosons (GB) in coset \mathcal{G}/\mathcal{H} : π^*

•
$$\pi^{a}$$
 are $\{\phi^{1,2,3}, H, ...\}$
 $(\phi^{1,2,3}$ become $W_{longi}^{\pm}, Z_{longi}$ after EWSB)

• Note: physical Higgs also a GB (contrast with Technicolor where only $\phi^{1,2,3}$ are GB)

General Idea of Composite Higgs

[Georgi, Kaplan 1984]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Sector with global symmetry ${\cal G}$
 - Σ transforms under ${\cal G}$
- $\bullet \ \langle \Sigma \rangle \neq 0 \text{ such that } \mathcal{G} \text{ broken to } \mathcal{H}$
 - (massless) Goldstone Bosons (GB) in coset \mathcal{G}/\mathcal{H} : π^*

•
$$\pi^{*}$$
 are $\{\phi^{1,2,3}, H, ...\}$
 $(\phi^{1,2,3}$ become $W_{longi}^{\pm}, Z_{longi}$ after EWSB)

- Note: physical Higgs also a GB (contrast with Technicolor where only $\phi^{1,2,3}$ are GB)
- Gauging $SU(2)_L \otimes U(1)_Y$ subgroup & writing Yukawa terms $(SU(3)_c \text{ always implied but not shown})$
 - $\bullet~\mbox{Explicitly breaks}~\ensuremath{\mathcal{G}}$
 - \implies Higgs gets a mass (at loop level): Pseudo-GB (PGB)
 - Analogy: (light) Pions are PGB of $SU(3)_L \otimes SU(3)_R \rightarrow SU(3)$

The Minimal Composite Higgs Model (MCHM)

[Agashe, Contino, Pomarol, 2004] [Agashe, Contino, da Rold, Pomarol, 2006] [Contino, Nomura, Pomarol 2003] [Agashe, Delgado, May, Sundrum 2003] [Contino, TASI Lectures 2009]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- Start with $\mathcal{G} = SO(5) \otimes U(1)_X$ global symmetry (10 + 1 gens)
- $\langle \Sigma \rangle \neq 0$ such that \mathcal{G} broken to $\mathcal{H} = SO(4) \otimes U(1)_X$ (6+1 gens)
- So 4 (massless) Goldstone Bosons (GB): π^a (a = 1, ..., 4) in \mathcal{G}/\mathcal{H}

• $\pi^{a} = \{\phi^{1,2,3}, H\}$ Note: physical Higgs also a GB!

• Gauging $SU(2)_L \otimes U(1)_Y$ subgroup & writing Yukawa terms

• Explicitly breaks $SO(5) \otimes U(1)_X$ \implies Higgs gets a mass (at one loop) : pseudo-GB (PGB)

4D Composite Higgs 0●0000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
The Minimal Composite Hig	gs Model (MCHM)			
Structure of	МСНМ			

- Strongly coupled (CFT) sector (with ${\cal G}$ global symmetry) condenses at a scale $\Lambda>1~\text{TeV}$
 - The "low" energy theory has composite GB: $\pi^a = \{\phi^{1,2,3}, H\}$

• $\Sigma = exp\left(-i\pi^{\hat{a}}T^{\hat{a}}/f_{\pi}\right)$

• SM fields W_{μ}, ψ are elementary states external to the CFT

 $\mathcal{L} = \mathcal{L}_{CFT}(\Sigma) + \mathcal{L}_{SM(NoH)} + J_{\mu}(\Sigma) W^{\mu} + \lambda \mathcal{O}_{CFT}^{\alpha} \psi_{\alpha}$

- SM ψ_{α} fermions mix with CFT fermionic operators
- Anomolous dimension γ of $\mathcal{O}_{\textit{CFT}}^{\alpha}$ dictates running of λ : generates Hierarchical Yukawas
 - Addresses flavor hierarchy puzzle of the SM!

4D Composite Higgs 00●000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
The Minimal Composite Hig	gs Model (MCHM)			
Structure of	МСНМ			

• Strongly coupled sector contributions cannot be computed perturbatively

- So parametrize in terms of effective form-factors $\Pi(p)$
 - In terms of these, write low energy theory \mathcal{L}_{eff}
- AdS side is weakly coupled, and $\Pi(p)$ computed there

4D Composite Higgs 000●00	AdS/CFT	5 <i>D</i> AdS Models	Current limits	LHC signatures
The Minimal Composite Hig	gs Model (MCHM))		
Higgs potent	ial			

- Gauging a subgroup + Yukawa Interactions explicitly breaks $\mathcal{G} = SO(5) \otimes U(1)_X$
 - generates a potential for the Higgs (so pseudo-GB composite Higgs)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- Coleman-Weinberg effective potential
 - Gauge bosons + top loop contributions
- Cannot compute $\mathcal{V}(\Sigma)$
- $\mathcal{H} = SO(4) \otimes U(1)_X \sim SU(2)_L \otimes SU(2)_R \otimes U(1)_X$
 - So SU(2)_R custodial symmetry present
 - *T*-parameter under control

Fermion rep : *Zbb* not protected (DT model)

For custodial symmetry, at least have

- Complete $SU(2)_R$ multiplet
 - $Q_L \equiv (\mathbf{2}, \mathbf{1})_{1/6} = (t_L, b_L)$ $\psi_{t_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (t_R, b')$ $\psi_{b_R} \equiv (\mathbf{1}, \mathbf{2})_{1/6} = (T, b_R)$
 - "Project-out" b', T zero-modes by (-, +) B.C.
 - New ψ_{VL} : b', T

• $b \leftrightarrow b'$ mixing

- *Zbb* coupling shifted
 - So LEP constraint quite severe

Embedding in SO(5) (showing $SO(4) \sim SU(2)_L \otimes SU(2)_R$):

• $4 \text{ of } SO(5) = (2,1) \oplus (1,2)$ (MCHM4)

[Agashe, Delgado, May, Sundrum '03]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fermion rep : *Zbb* protected (ST & <u>TT models</u>)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Fermion rep : *Zbb* protected (ST & TT models)

•
$$Q_L = (2,2)_{2/3} = \begin{pmatrix} t_L & \chi \\ b_L & T \end{pmatrix}$$

[Agashe, Contino, DaRold, Pomarol '06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

...

• $Zb_L\overline{b_L}$ protected by custodial $SU(2)_{L+R} \otimes P_{LR}$ invariance Wt_Lb_L , Zt_Lt_L not protected, so shifts

Two *t_R* possibilities:

- Singlet t_R (ST Model) : $(1,1)_{2/3} = t_R$ New ψ_{VL} : χ , T
- 2 Triplet t_R (TT Model) :

$$(1,3)_{2/3} \oplus (3,1)_{2/3} = \psi_{t_R}' \oplus \psi_{t_R}'' = \begin{pmatrix} \frac{t_R}{\sqrt{2}} & \chi' \\ b' & -\frac{t_R}{\sqrt{2}} \end{pmatrix} \oplus \begin{pmatrix} \frac{t''}{\sqrt{2}} & \chi'' \\ b'' & -\frac{t''}{\sqrt{2}} \end{pmatrix}$$

New $\psi_{VL} : \chi, T, \chi', b', \chi'', t'', b''$

Embedding in SO(5) (showing $SO(4) \sim SU(2)_L \otimes SU(2)_R$):

- $5 \text{ of } SO(5) = (2,2) \oplus (1,1)$ (MCHM5)
- <u>10</u> of $SO(5) = (2,2) \oplus (1,3) \oplus (3,1)$ (MCHM10)

4D Composite Higgs 000000	AdS/CFT	5D AdS Models	Current limits	LHC signatures

AdS/CFT Correspondence

AdS/CFT Correspondence

[Maldacena, 1997]

- A classical supergravity theory in $AdS_5 \times S_5$ at weak coupling is **dual** to a 4D large-N CFT at strong coupling
- The CFT is at the boundary of AdS [Witten 1998; Gubser, Klebanov, Polyakov 1998]

$$Z_{CFT}[\phi_0] = e^{-\Gamma_{AdS}[\phi_0]}$$

$\mathcal{L} \supset \int d^4 x \mathcal{O}_{CFT}(x) \phi_0(x)$	$\Gamma_{AdS}[\phi]$ supergravity eff. action
Eg: $\langle \mathcal{O}(x_1) \mathcal{O}(x_2) \rangle = \frac{\delta^2 Z_{CFT}[\phi_0]}{\delta \phi_0(x_1) \delta(x_2)}$	$\phi(y,x)$ is a solution of the EOM ($\delta\Gamma=0$)
with Z_{CFT} given by the RHS	for given bndry value $\phi_0(x) = \phi(y = y_0, x)$

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures
$4D \leftrightarrow 5D d$	escriptio	ns		

[Arkani-Hamed, Porrati, Randall, 2000; Rattazzi, Zaffaroni, 2001]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Dual of Randall-Sundrum model RS1 (SM on IR Brane)
 - Planck brane \implies UV Cutoff; Dynamical gravity in the 4D CFT
 - $\bullet~{\rm TeV}~({\rm IR})$ brane $\implies~{\rm IR}$ Cutoff; Conformal invariance broken below a TeV
 - All SM fields are composites of the CFT
- Dual of Warped Models with **Bulk SM**
 - UV localized fields are elementary
 - IR localized fields (Higgs) are composite
 - 4D dual is Composite Higgs model [Georgi, Kaplan 1984]
 - Shares many features with Walking Extended Technicolor
 - Partial Compositeness
 - AdS dual is weakly coupled and hence calculable!
 - KK states are dual to composite resonances

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models ●○○	Current limits 00	LHC signatures 000000000000000000000000000000000000	
Warped models					
Randall-Sundrum Model					

SM in background 5D warped AdS space

[Randall, Sundrum '99]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $ds^2 = e^{-2k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}) + dy^2$

 Z_2 orbifold fixed points:

Planck (UV) Brane

TeV (IR) Brane

R : radius of Ex. Dim.

k : AdS curvature scale ($k \lesssim M_{pl}$)

Hierarchy prob soln:

- IR localized Higgs : $M_{EW} \sim ke^{-k\pi R}$: Choose $k\pi R \sim 34$
 - Gauge-theory dual is a composite Higgs model

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models ⊙●○	Current limits 00	LHC signatures
Warped models				
Explaining S	SM mass	hierarchy		

Bulk Fermions explain SM mass hierarchy

[Gherghetta, Pomarol 00][Grossman, Neubert '00]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L}_{Yuk}^{(5)} \supset \sqrt{|g|} \left\{ \frac{c_L k \, \bar{\psi}_L \psi_L + c_R k \, \bar{\psi}_R \psi_R + \left(\lambda_5 \, \bar{\psi}_R \psi_L H + h.c. \right) \right\}$$

$$\Psi_L(x,y) = \frac{e^{(2-c)ky}}{\sqrt{2\pi R}N_0} \Psi_L^{(0)}(x) + \dots$$

FCNC largely under control, but still strong constraints

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models ○○●	Current limits 00	LHC signatures
5D AdS dual of MCHM				
AdS dual of	MCHM			

[Agashe, Contino, Pomarol, 2004]

- AdS/CFT Corrsp : \mathcal{G} global symm of CFT \leftrightarrow AdS gauge symm
 - Bulk gauge group : $SO(5) \otimes U(1)_X$ $A_M = (A_\mu, A_5)$
- Impose boundary condition (BC) to keep/break a symm:
 - $(UV, IR) = (\pm, \pm) : +$ is Neumann, is Dirichlet
 - Dirichlet BC (-) breaks a symmetry on that boundary
 - $A_{-+}(x,y)$ BC: $A|_{y=0} = 0$; $\partial_y A|_{y=\pi R} = 0$
- MCHM dual is $\begin{array}{c} [SO(5) \otimes U(1)_X] / [SO(4) \otimes U(1)_X] & A_{\mu}^{\flat}(--), A_{5}^{\flat}(++) \\ T_L, T_R^{\flat} + X & A_{\mu}(++), A_5(--) \\ T_R^{\pm}, T_R^{\flat} - X & A_{\mu}(-+), A_5(+-) \end{array}$

• $A_5^{\hat{a}}(++)$ dual of PGB $\pi^a = \{\phi^{1,2,3}, H\}!$ [Com

[Contino, Nomura, Pomarol 2003]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Gauge symmetry forbids tree-level mass
- Mass at loop-level from gauge and top loops

[Hosotani 1983]

4D Composite Higgs AdS/CFT 5D AdS Models Current limits LHC signatures 000000
Precision Electroweak Constraints

Precision Electroweak Constraints

Precision Electroweak Constraints (S, T, $Zb\bar{b}$) (perturbatively calculable on the warped side)

- Bulk gauge symm $SU(2)_L \times U(1)$ (SM ψ , H on TeV Brane)
 - T parameter $\sim (\frac{v}{M_{VV}})^2 (k\pi R)$
 - S parameter also $(k\pi R)$ enhanced
 - AdS bulk gauge symm $SU(2)_R \Leftrightarrow$ CFT Custodial Symm

[Agashe, Delgado, May, Sundrum 03]

- T parameter Protected
- S parameter $\frac{1}{k\pi R}$ for light bulk fermions
- Problem: *Zbb* shifted
- 3rd gen quarks (2,2)
 - $Zb\overline{b}$ coupling Protected
 - Precision EW constraints \Rightarrow $M_{KK}\gtrsim 1.5-2.5$ TeV

[Carena, Ponton, Santiago, Wagner 06,07]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[Agashe, Contino, DaRold, Pomarol 06]

Constraints from 125 GeV Higgs coupling measurements

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits	LHC signatures
KK states a	t the I H	IC		

•
$$h_{\mu\nu}^{(1)}$$
 (KK Graviton)

$$L = 300 \ fb^{-1}$$
 LHC reach is about 2 TeV

 $gg
ightarrow h^{(1)}
ightarrow t \overline{t}$

[Agashe, Davoudiasl, Perez, Soni 07] [Fitzpatrick, Kaplan, Randall, Wang 07]

•
$$g^{(1)}_{\mu}$$
 (KK Gluon) $q ar q o g^{(1)} o t ar t$

$$L = 100 \ fb^{-1}$$
 LHC reach is 4 TeV

[Agashe, Belyaev, Krupovnickas,Perez,Virzi 06] [Lillie, Randall, Wang, 07] [Lillie, Shu, Tait 07]

•
$$Z^{(1)}_{\mu}$$
, $W^{(1)\pm}_{\mu}$ $(Z_{KK} \equiv Z', W^{\pm}_{KK} \equiv W')$ $q\bar{q} \rightarrow Z', W' \rightarrow XX$

[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni 0709.0007 & 0810.1497]

 ψ⁽¹⁾ (KK Fermion) [Agashe, Servant 04][Dennis et al 07][Contino, Servant 08] [Mandal, Mitra, Moreau, SG, Tibrewala '11, '13]
 Radion [Csaki, Hubisz, Lee, '07]

Review: [Davoudiasl, SG, Ponton, Santiago, New J.Phys.12:075011,2010. arXiv:0908.1968 [hep-ph]]

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Vector Boson Signatures				
Bulk Gauge (Group			

[Agashe, Delgado, May, Sundrum 03]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W_L^3, W_R^3, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures ●000000000000000000000000000000000000
Vector Boson Signatures				
Bulk Gauge	Group			

[Agashe, Delgado, May, Sundrum 03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W_L^3, W_R^3, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

Gauge Symmetry breaking:

By Boundary Condition (BC):

•
$$SU(2)_R \times U(1)_X \rightarrow U(1)_Y$$

- By VEV of TeV brane Higgs
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

 $A_{-+}(x, y)$ BC: $A|_{y=0} = 0$; $\partial_y A|_{y=\pi R} = 0$

Higgs $\Sigma=(2,2)$

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Vector Boson Signatures				
Z' production	on at the	e LHC		

[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni 0709.0007 & 0810.1497]

Total Z' Cross Section at LHC

三 つへぐ

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures 000000000000000000000000000000000000
Vector Boson Signatures				
7' channels	summar	V		

$$[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni 0709.0007] (\mathcal{L}_{2 \ TeV}; \mathcal{L}_{3 \ TeV}) \text{ in } fb^{-1}$$

$$pp \rightarrow Z' \rightarrow W^+W^-$$

$$& \text{Fully leptonic : } W \rightarrow \ell\nu ; W \rightarrow \ell\nu \\ & \text{Semi leptonic : } W \rightarrow \ell\nu ; W \rightarrow \ell\nu \\ & \mathcal{L} : (100; 1000) \ fb^{-1} \\ \mathcal{L} : (100; 1000) \ fb^{-1} \\ \mathcal{L} : (100; 1000) \ fb^{-1} \\ & \mathcal{L} : (200; 1000) \ fb^{-1} \\ & \mathcal{L} : (200; 1000) \ fb^{-1} \\ & \mathcal{L} : (1000; -) \ fb^{-1} \\ & \mathcal{L} : (100; -) \ fb^{-1} \\ & \mathcal{L} : ($$

KK gluon "pollution"

J

[Djouadi, Moreau, Singh 07]

(ロ)、(型)、(E)、(E)、 E) の(()

4D Composite Higgs	AdS/CFT	5D AdS Models	Current limits 00	LHC signatures 000000000000000000000000000000000000
Vector Boson Signatures				
W'^{\pm} channe	els summ	nary		

 $\begin{array}{l} \mbox{[Agashe, SG, Han, Huang, Si, Soni 0810.1497]} \\ \mbox{(\mathcal{L}_{2 TeV}$; \mathcal{L}_{3 TeV}$) in fb^{-1}} \end{array}$

•
$$W'^{\pm} \rightarrow t b$$
:

 \mathcal{L} : (100; 1000) fb⁻¹

• $t \bar{t}$ becomes (reducible) bkgnd since collimated t can fake a b-jet Jet-mass cut : cone size 1.0 and $0 < j_M < 75 \Rightarrow 0.4\%$ of *tops* fake b

•
$$W'^{\pm} \rightarrow Z W$$
:
• Fully leptonic
• Semi leptonic
• $U: (100; 1000) fb^{-1}$
 $\mathcal{L}: (300; -) fb^{-1}$
• $W'^{\pm} \rightarrow W h$:
• $h \rightarrow b b$
 $\mathcal{L}: (100; 300) fb^{-1}$

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures		
Fermion signatures						
Warped vectorlike fermions						

- SM fermions : (+, +) BC \rightarrow zero-mode
- "Exotic" fermions : (-,+) BC \rightarrow No zero-mode
 - 1st KK vectorlike fermion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[Contino, da Rold, Pomarol, '06]

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

t^\prime , b^\prime , $\chi_{5/3}$ Vectorlike fermions at the LHC

Model independent analysis,

motivated by Warped extra dimensions

[SG, T.Mandal, S.Mitra, R.Tibrewala, arXiv:1107.4306, PRD84 (2011) 055001] [SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656, JHEP 1408 (2014) 079]

> See Also (a partial list!): [Dennis et al, '07] [Carena et al, '07] [Contino, Servant, '08] [Atre et al, '08, '09, '11] [Aguilar-Saavedra, '09] [Mrazek, Wulzer, '09] [Man et al. '10] [SG, Moreau, Singh, '10] [Bini et al. '12][Buchkremer et al. '13] [Delaunay et al. '14][Flacke et al. '14] [Backovic et al. '14]

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures
Fermion signatures				
Decay Mod	es of t'	$\frac{b'}{v}$		

EWSB induced mixing \implies Tree-level NC Couplings

- as usual will have $t'_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- also, from Yukawa coupling $\langle \Sigma \rangle = v \implies t \leftrightarrow t'$, $b \leftrightarrow b'$ mixing

$$\mathcal{L} \supset \left(\begin{array}{cc} b & b' \end{array} \right) \gamma^{\mu} \left(\begin{array}{cc} g_Z & 0 \\ 0 & g'_Z \end{array} \right) \left(\begin{array}{cc} b \\ b' \end{array} \right)_{L,R} Z_{\mu} + \left(\begin{array}{cc} b_L & b'_L \end{array} \right) \left(\begin{array}{cc} m_b & 0 \\ \vec{m_b} & M_{b'} \end{array} \right) \left(\begin{array}{cc} b_R \\ b'_R \end{array} \right) + h.c.$$

Diagonalize to go to mass basis

- v
 ightarrow v(1+h/v) leads to b'bh coupling
- $g_Z \neq g'_Z$ leads to b'bZ coupling
- Similarly t'tZ, t'th couplings also, in addition to t'bW

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				
Decay Mod	es of t'	$\frac{b'}{v}$		

EWSB induced mixing \implies Tree-level NC Couplings

- as usual will have $t'_L b_L W^{\pm}$ and $b'_L t_L W^{\pm}$ CC couplings
- also, from Yukawa coupling $\langle \Sigma \rangle = v \implies t \leftrightarrow t'$, $b \leftrightarrow b'$ mixing

$$\mathcal{L} \supset \left(\begin{array}{cc} b & b' \end{array} \right) \gamma^{\mu} \left(\begin{array}{cc} g_Z & 0 \\ 0 & g'_Z \end{array} \right) \left(\begin{array}{cc} b \\ b' \end{array} \right)_{L,R} Z_{\mu} + \left(\begin{array}{cc} b_L & b'_L \end{array} \right) \left(\begin{array}{cc} m_b & 0 \\ \vec{m_b} & M_{b'} \end{array} \right) \left(\begin{array}{cc} b_R \\ b'_R \end{array} \right) + h.c.$$

• Diagonalize to go to mass basis

- v
 ightarrow v(1+h/v) leads to b'bh coupling
- $g_Z \neq g'_Z$ leads to b'bZ coupling
- Similarly t'tZ, t'th couplings also, in addition to t'bW

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VL Tree-level Decays

•
$$b' \rightarrow tW$$
, $b' \rightarrow bZ$, $b' \rightarrow bh$
• $t' \rightarrow bW$, $t' \rightarrow tZ$, $t' \rightarrow th$
• $\chi \rightarrow tW$

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

b' Single & Double Resonant channels

- ... followed by $b_2 \rightarrow bZ$
 - Both b₂ on-shell : **Double Resonant (DR)** channel
 - Only one b₂ on-shell : Single Resonant (SR) channel

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $|M(bZ) - M_{b_2}| \ge \alpha_{cut}M_{b_2}; \quad \alpha_{cut} = 0.05$

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				
b' Double F	Resonant			

Pair Production : $pp \rightarrow b'\bar{b}' \rightarrow bZ\bar{b}Z \rightarrow bjj\bar{b}\ell\ell$

Cuts:

 $\begin{array}{l} {\it Rapidity:} \ -2.5 < y_{b,j,Z} < 2.5, \\ {\it Transverse momentum:} \ p_{T\,b,j,Z} > 25 \ {\rm GeV}, \\ {\it Invariant mass cuts:} \\ {\it M_Z} - 10 \ {\rm GeV} < {\it M_{jj}} < {\it M_Z} + 10 \ {\rm GeV}, \\ {\it 0.95} {\it M_{b_2}} < {\it M_{(bZ)}} < 1.05 {\it M_{b_2}} \ . \end{array}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures
Fermion signatures				
b' Single Re	esonant -			

Single Resonant : $bg \rightarrow b'bZ \rightarrow bZbZ \rightarrow bbJJ\ell\ell$ Model Independent LHC-14 reach

Brown dots : DT Model Green dots : TT Model

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures				
Fermion signatures	Fermion signatures							
b' Single Pr	roduction	i – 11						

Single Production : $bg \rightarrow b'Z \rightarrow bZZ \rightarrow bjj\ell\ell$

Rapidity: $-2.5 < y_{b,j,Z} < 2.5$, Transverse momentum: $p_{T,b,j,Z} > 0.1 M_{b_2}$, Cuts: Invariant mass cuts: $M_Z - 10 \; {\rm GeV} < M_{jj} < M_Z + 10 \; {\rm GeV},$ $0.95M_{b_2} < M_{(bZ)} OR_{(bjj)} < 1.05M_{b_2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

χ Phenomenology at the LHC

[SG, T.Mandal, S.Mitra, G.Moreau : arXiv:1306.2656]

[Contino, Servant '08][Mrazek, Wulzer '10][Cacciapaglia et al. '12]

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

χ Double and Single Resonant channels

$\it pp ightarrow \chi tW ightarrow tW tW ightarrow tW t\ell u$

X	M_{χ}	σ_{tot}	σ_{SR}	cuts	S	BG	\mathcal{L}
	(GeV)	(<i>fb</i>)	(<i>fb</i>)		(<i>fb</i>)	(<i>fb</i>)	(fb^{-1})
X_1	500	2406	261.5	Basic	977.5	3.257	-
				Disc.	146.1	0.115	0.826
X_2	750	235.5	29.31	Basic	99.99	3.257	-
				Disc.	42.74	0.115	2.824
X_3	1000	39.19	5.198	Basic	17.92	3.257	-
				Disc.	11.36	0.115	10.63
X_4	1250	8.576	1.231	Basic	4.305	3.257	-
				Disc.	3.226	0.115	37.42
X_5	1500	2.188	0.364	Basic	1.235	3.257	-
				Disc.	1.010	0.115	119.5
X ₆	1750	0.613	0.121	Basic	0.393	3.257	-
				Disc.	0.339	0.115	355.8

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

χ Single Resonant Channel

Blue Dots - ST Model Green Dots - TT Model

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

t' Phenomenology at the LHC

[SG, Tanumoy Mandal, Subhadip Mitra, Gregory Moreau : arXiv:1306.2656]

See also: [Harigaya et al., '12] [Giridhar, Mukhopadhyaya, 2012] [Azatov et al., '12] [Berger, Hubisz, Perelstein, '12] [Cacciapaglia et al., '10, '12] [Aguilar-Saavedra et al. '05]

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
Fermion signatures				

t' Double and Single Resonant channels

 $pp \rightarrow t_2 th \rightarrow thth \rightarrow tbbtbb \rightarrow 6 \ b \ 4 \ j$ (4 b-tags)

T	M _{t2}	σ_{tot}	σ_{SR}	cuts	S	BG	L
	(GeV)	(<i>fb</i>)	(fb)		(<i>fb</i>)	(fb)	(fb^{-1})
T_1	500	1207	223.0	Basic	237.4	102.7	-
				Disc.	52.38	0.389	6.379
T ₂	750	115.2	18.30	Basic	22.67	102.7	-
				Disc.	13.25	0.389	25.22
T ₃	1000	18.38	2.715	Basic	3.088	102.7	-
				Disc.	2.421	0.389	138.0
T_4	1250	3.821	0.590	Basic	0.477	102.7	-
				Disc.	0.415	0.389	1889.2

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ニヨーのへで

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures				
Fermion signatures	Fermion signatures							
t' Single Resonant channel								

Blue Dots - ST Model Green Dots - TT Model

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures			
SM-like VL fermion extension							
VL fermions Decoupling							

- Independent source of mass M (not given by $m = \lambda v$)
 - Can make M arbitrarily large
 - without hitting Landau pole in Yukawa coupling (4th Gen)
 - *M* could be related to EW scale (or not)
 - Eg: ExtraDim Th $M = M_{\rm KK} \sim TeV$, SUSY solutions to μ problem
 - Decoupling behavior : S,T, U, $h \rightarrow \gamma \gamma$, $gg \rightarrow h$, ...

VL fermions in EWPT and Higgs Observables

Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications

[S.Ellis, R.Godbole, SG, J.Wells; 1404.4398 [hep-ph], JHEP 1409 (2014) 130]

Precision electroweak observables (S, T, U)

SM-like VL fermion exter	nsion	000				
SM-like vectorlike fermions						

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple VL extensions of SM (No mixing to SM fermions)

- $1\overline{1}$: SU(2) singlet VL pair
- $2\overline{2}$: SU(2) doublet VL pair
- 22+11: MVSM
- $2\overline{2} + 1\overline{1} + 1\overline{1}$: Vector-like extension of the SM (VSM)

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models 000	Current limits 00	LHC signatures
SM-like VL fermion exten	sion			
$2\bar{2} + 1\bar{1}$: M	1VQD			

 $\lambda_D=$ 1, $M_D=M_Q,~Y_Q=(1/6,-1/6)$ (solid, dashed)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

4D Composite Higgs	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
SM-like VL fermion exten	sion			
$2\bar{2} + 1\bar{1}$: N	1VQD			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

4D Composite Higgs 000000	AdS/CFT	5 <i>D</i> AdS Models	Current limits 00	LHC signatures
SM-like VL fermion extensio	n			
Conclusions				

- Minimal Composite Higgs Model (MCHM) as a paradigm
- Warped extradimensional theory is a calculable analogue
- Probe these in
 - precision EW and Flavor observables
 - h couplings shifts
 - direct LHC searches for: $V_{\mu}^{\prime},\psi^{\prime},h_{\mu
 u}^{\prime},\phi^{\prime}$
- Upcoming LHC run exciting!

BACKUP SLIDES

BACKUP SLIDES

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Yukawa Couplings

Yukawa Couplings

- No $Zb\overline{b}$ protection $\mathcal{L}_{Yuk} \supset \lambda_t \ \overline{Q}_L \Sigma \psi_{t_R} + \lambda_b \ \overline{Q}_L \Sigma \psi_{b_R} + h.c.$
- With $Zb\bar{b}$ protection

• ST Model
$$\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma] t_R + h.c.$$

• TT Model $\mathcal{L}_{Yuk} \supset \lambda_t \operatorname{Tr}[\bar{Q}_L \Sigma \psi'_{t_R}] + \lambda'_t \operatorname{Tr}[\bar{Q}_L \Sigma \psi''_{t_R}] + h.c.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Warped model b' parameters

Warped model χ parameters

୍ର୍ବ୍

Warped model Γ_{χ}

ST Model

TT Model

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Warped model t' parameters

Warped model t' BR

b' Pair Production Details

pp
ightarrow b' ar b'
ightarrow bZ ar b Z
ightarrow bZ ar b bZ

	Signal σ	Signal σ_s (in fb)		Background σ_b (in fb)			
M_{b_2}	bΖ	bΖ	bZ	ЪZ	(bjjbZ	Z) _{tot}	L
(GeV)	у, рт	All	у, рт	All	у, рт	All	(fb^{-1})
	cuts	cuts	cuts	cuts	cuts	cuts	
250	25253	25082	21.804	0.3797	16938	29.52	0.021
500	171.34	148.69	21.804	0.047	16938	3.74	3.514
750	14.508	12.221	21.804	0.0097	16938	0.997	42.752
1000	2.314	1.9214	21.804	0.0027	16938	0.259	271.92
1250	0.484	0.399	21.804	0.0011	16938	0.048	1310

	QCD background (in fb)						
M _{b2}	bj	ibZ	bbj	ibZ	bbbbZ		
$(Ge\overline{V})$	у, <i>р</i> _Т	All	у, р _Т	All	у, <i>р</i> _Т	All	
	cuts	cuts	cuts	cuts	cuts	cuts	
250	16790	27.304	255.41	2.7	81.01	1.92	
500	16790	3.513	255.41	0.256	81.01	0.194	
750	16790	0.958	255.41	0.031	81.01	0.057	
1000	16790	0.2514	255.41	0.0052	81.01	0.008	

b' Signature (Model Independent)

Benchmark Points (Model I):

M_{b_2} (GeV)	250	500	750	1000	1250	1500
κ ^L _{b2bZ}	0.185	0.121	0.084	0.064	0.051	0.043
κ _{b2} tW	0.322	0.161	0.107	0.080	0.064	0.054
κ _{hbL} b _{2R}	0.714	0.937	0.972	0.985	0.990	0.993
M_{b_2} (GeV)	1750	2000	2250	2500	2750	3000
κ ^L _{b2bZ}	0.037	0.032	0.029	0.026	0.024	0.022
κ _{b2} tW	0.046	0.040	0.036	0.032	0.029	0.027
κ _{hbL} b _{2R}	0.995	0.996	0.997	0.998	0.998	0.998

Warped model b' : Γ and BR

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

b' Single Resonant II Details

$pp \rightarrow b'Z \rightarrow bZZ \rightarrow bjj\ell^+\ell^-$

	signal σ_s	(in fb)	background σ		σ_b (in fb)		
M _b	bjj	Ζ	(bjjZ)	EW	(bjjZ)	QCD	$\mathcal{L}_{\text{SemiLep}}$
(GeV)	Primary	all	Primary	all	Primary	all	$(fb^{-1})^{-1}$
	cuts	cuts	cuts	cuts	cuts	cuts	
250	1017.66	995.86	77.03	10.33	7853.02	867.82	0.66
500	16.84	15.50	8.81	0.68	419.75	14.11	45.94
750	1.26	1.14	1.85	0.10	56.26	0.86	551.26
1000	0.14	0.12	0.47	0.01	12.38	0.05	3399.67

M _b	QCD background (in fb)				
(GeV)	bjjZ	bjbZ	bbbZ		
250	546.36	634.32	17.19		
500	10.14	7.76	0.35		
750	0.52	0.66	0.03		
1000	0.02	0.06	0.002		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Vectorlike fermions

- Theory with Vectorlike fermions:
 - both χ and $\chi^{\rm c}$ present
 - can write vectorlike mass term $\mathcal{L} \supset -M \ \chi \chi^c + h.c.$

• contrast with SM (chiral theory):

$$q_{1} = (3, 2)_{1} c_{1}$$
 No $(\overline{3}, \overline{2})_{1} c_{2}$

$$\begin{array}{l} U_R = (3,1)_{+2/3} & \text{No} \ (\bar{3},1)_{-2/3} \\ D_R = (3,1)_{-1/3} & \text{No} \ (\bar{3},1)_{1/3} \end{array}$$

• For a VL pair, define a Dirac state $\mathcal{X} \equiv \left(\begin{array}{c} \chi_{\alpha} \\ \chi^{c\dot{\alpha}} \end{array} \right)$

• in terms of which the mass term is: $\mathcal{L} \supset -M \bar{\mathcal{X}} \mathcal{X}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Eg: SU(2) doublet
$$\mathcal{X} \equiv \begin{pmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{pmatrix}$$

Implications of VL Theory

Vectorlike fermions	Chiral (4-gen) fermions
M allowed by EW symmetry	m only after EWSB, $=\lambda\left\langle H ight angle$
can be arbitrarily heavy	Landau pole in Yukawa coupling
CC + NC tree-level decays	only CC tree-level decays
loops decoupling	some loops nondecoupling

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$2\bar{2}+1\bar{1}+1\bar{1}:\,\mathsf{VSM}$

•
$$VSM \equiv VLQ (\mathcal{X}_Q, \xi_U, \Upsilon_D) \oplus VLL (\mathcal{X}_L, \xi_N, \Upsilon_E)$$

• where $\mathcal{X}=(2,Y_{\chi});$ $\Upsilon=(1,Y_{\chi}-1/2);$ $\xi=(1,Y_{\chi}+1/2)$

$$\mathcal{L}_{\mathrm{Yuk}} \supset -\lambda_{\xi} \bar{\mathcal{X}} \cdot H^* \xi - \lambda_{\Upsilon} \bar{\mathcal{X}} H \Upsilon + h.c.$$

	Y_{χ}	-1/2	-1/6	1/6	1/2
$Y_{\chi}=\pm Y_{SM}$ assignments:	Q_1, Q_4	0	1/3	2/3	1
	Q ₂ , Q ₃	-1	-2/3	-1/3	0

$$\mathcal{L}_{\mathrm{mass}} \supset - \begin{pmatrix} \bar{\mathcal{X}}_1 & \bar{\xi} \end{pmatrix} \begin{pmatrix} M_{\chi} & \tilde{m} \\ \tilde{m} & M_{\xi} \end{pmatrix} \begin{pmatrix} \mathcal{X}_1 \\ \xi \end{pmatrix} - \begin{pmatrix} \bar{\mathcal{X}}_2 & \bar{\Upsilon} \end{pmatrix} \begin{pmatrix} M_{\chi} & m \\ m & M_{\Upsilon} \end{pmatrix} \begin{pmatrix} \mathcal{X}_2 \\ \Upsilon \end{pmatrix}$$

Diagonalize and obtain W^a_μ , B_μ and h couplings We assume tiny VL-SM mixing Yukawa terms

$$\mathcal{L}_{\mathrm{Yuk}} \supset -\lambda'_{\xi} \bar{Q} \cdot H^* \xi - \lambda'_{\Upsilon} \bar{Q} H \Upsilon - \lambda'_{U} \bar{\mathcal{X}} \cdot H^* U - \lambda'_{D} \bar{\mathcal{X}} H D + h.c.$$

similarly for the VL-leptons

• EWSB
$$\langle H \rangle = v/\sqrt{2}$$
 will mix SM \leftrightarrow VL fermions

- Here, take λ' small
 - such that flavor constraints are satisfied
 - Zbb coupling is not shifted too much
 - but big enough to have prompt decays
 - no significant effect in Higgs observables

For sizable mixing case, see: [Dawson, Furlan '12] [Aguilar-Saveedra '13] [Fajfer et al. '13] [Dermisek, Raval '13]

$2\bar{2}+1\bar{1}$: MVLE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

$2\overline{2} + 1\overline{1}$: MVLE

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

$2\bar{2}+1\bar{1}+1\bar{1}:\,\mathsf{VSM}$

$2\overline{2} + 1\overline{1} + 1\overline{1}$: VSM

 $M_Q = M_U = M_D, \quad M_L = M_E = M_N, \quad \lambda_U = \lambda_D \equiv \lambda_Q, \quad \lambda_E = \lambda_N \equiv \lambda_L, \quad \underbrace{Y_Q}_{\leftarrow} = \frac{1}{4} - \frac{1}{2}, \quad \underbrace{Y_L}_{\equiv} = -\frac{1}{2} - \frac{1}{2} -$

χ^2 fit to the LHC Data

[ATLAS arXiv:1307.1427] [CMS-PAS-HIG-13-005, 2013]

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Coupling	ATLAS	CMS
κ _g	1.04 ± 0.14	0.83 ± 0.11
κ_{γ}	1.2 ± 0.15	0.97 ± 0.18

$$\chi^2 = \sum_{i=1}^4 \left(\kappa_i^{\rm Exp} - \kappa_i^{\rm Th}\right)^2 / \left(\sigma_i^{\rm Exp}\right)^2$$

$2\overline{2} + 1\overline{\overline{1}} + 1\overline{\overline{1}}$: VSM χ^2 fit

 $Y_Q=1/6,\;Y_L=-1/2,\lambda_q=1,\lambda_\ell=1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$2\overline{2}+1\overline{1}+1\overline{1}$: VSM χ^2 fit

 $Y_Q = 1/6, \, Y_L = -1/2, \, M_q = 1000 \, \, \text{GeV}, \, M_\ell = 500 \, \, \text{GeV}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ