New Physics Expectations at the Large Hadron Collider

Shrihari Gopalakrishna

Brookhaven National Lab

...

HRI, Allahabad Jan. 2009

The Standard Model

Building blocks:

[particle adventure.org]

Composites:

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. These are a few of the many types of baryons.								
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin			
р	proton	uud	1	0.938	1/2			
p	antiproton	ūūd	-1	0.938	1/2			
n	neutron	udd	0	0.940	1/2			
Λ	lambda	uds	0	1.116	1/2			
Ω-	omega	SSS	-1	1.672	3/2			

Mesons q\(\bar{q}\) Mesons are bosonic hadrons These are a few of the many types of mesons.							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
π+	pion	ud	+1	0.140	0		
K-	kaon	sū	-1	0.494	0		
ρ+	rho	ud	+1	0.776	1		
\mathbf{B}^{0}	B-zero	db	0	5.279	0		
ης	eta-c	cē	0	2.980	0		

On the hunt for the Higgs boson

The role of the Higgs boson

Spontaneous Electroweak Symmetry Breaking : (Give masses to W^{\pm} , Z) $\mathcal{L} \supset D_{\mu}H^{\dagger}D^{\mu}H + \mu^{2}H^{\dagger}H - \lambda(H^{\dagger}H)^{2}$ $D_{\mu} = \partial_{\mu} - igW_{\mu} < H > \neq 0$

Give fermions mass : $L \supset \lambda H \overline{\psi} \psi$ CP violating Yukawa couplings!

Unitarize WW scattering:

[Lee, Quigg, Thacker, 1977]

$$\mathcal{M} = \sum (2l+1) a_l P_l(\cos\theta)$$

$$W_L \sim W_L$$

$$\gamma, Z \sim W_L$$

$$M = \sum (2l+1) a_l P_l(\cos\theta)$$

$$a_l = A (q/m_W)^4 + B (q/m_W)^2 + C$$
Perturbative Unitarity: $|a_l| \le 1$

$$A = 0$$
 by gauge invariance

B term bad high-energy behavior

Deconstruction of Higgsless Theories: [Foadi, SG, Schmidt, 03, 04]

$$W_{L} = W_{L}$$

$$W_{L$$

Cancels B, delays unitarity violation

"No-loose theorem" from C term: $\Rightarrow m_h^2 \leq \frac{8\pi\sqrt{2}}{3G_F} \approx (1 \, TeV)^2$

Higgs at the LHC

Puzzles in the SM

Gauge hierarchy problem

• Higgs sector unstable (quadratic divergence)

Fermion mass hierarchy problem

- Flavor symmetry?
- Challenge: Tiny neutrino masses
- Is neutrino Majorana or is it Dirac?

Cosmology connection

- What is the dark matter
- Inadequate source of CP vioation for observed baryon asymmetry
- Cosmological constant problem

Hierarchy problem in detail

LEP indicates that the Higgs boson is light

 $\mathcal{L} \supset -rac{1}{2}m_h^2\,h^2$ No symmetry protecting the Higgs mass!

$$h$$
 $-i\frac{y_t}{\sqrt{2}}$
 t_L, t_R

$$\delta m_h^2 = -\frac{3y_t^2}{16\pi^2}\Lambda^2$$

New Physics Expectation

Resonable to demand $rac{m_h^2}{\delta m_h^2} \gtrsim 0.1$

- For $t_{L,R}$ loop $\Rightarrow \Lambda_{NP} \lesssim 2.5 \ TeV$
- So new physics should show up before this

Why didn't LEP collider see hints of this :

S, T parameters,
$$Z b \bar{b}$$
, ...

"LEP paradox", "Little hierarchy problem"

Why not more convincing FCNC deviations?

No dynamical explanation? Landscape of vacuua?

New Physics Expectation

Resonable to demand $rac{m_h^2}{\delta m_h^2} \gtrsim 0.1$

- For $t_{L,R}$ loop $\Rightarrow \Lambda_{NP} \lesssim 2.5 \ TeV$
- So new physics should show up before this

Why didn't LEP collider see hints of this :

S, T parameters,
$$Z\,b\,\bar{b},\,\dots$$

"LEP paradox", "Little hierarchy problem"

Why not more convincing FCNC deviations?

No dynamical explanation? Landscape of vacuua?

The Large Hadron Collider (LHC)

What new physics will the LHC find? How far can it go?

Keep in mind parton distribution function (pdf)

New physics possibilities

Supersymmetry

Extra-dimensions: Warped or Flat

[Constraints and LHC Signatures in ADD: Cao, SG, Yuan, 2003]

Strong dynamics (Note AdS-CFT correspondence)

Neutrino mass connection and lepton number violation

[EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter signals (Missing Energy)

Supersymmetry (SUSY)

SUSY: Fermions \Leftrightarrow Bosons : (Doubles particle spectrum) Superpotential $\mathcal{W}\supset y_t\ t_R^c\ Q\ H_u$

$$\mathcal{L}\supset -rac{1}{2}rac{\partial^2\mathcal{W}}{\partial\phi_i\phi_j}\psi_i\psi_j+\textit{h.c.}-\left|rac{\partial\mathcal{W}}{\partial\phi_i}
ight|^2$$

 Λ^2 divergence cancelled

Proton stability needs R_p symmetry \Rightarrow Dark Matter!

Gauge Coupling Unification - GUT SUSY SO(10)

Includes $\nu_R \Rightarrow \text{Neutrino seesaw mass}$

SUSY breaking

SUSY has to be broken

- Spectrum depends on SUSY Breaking/Mediation + RGE
- Minimal Supersymmetric SM (MSSM) general parametrization

MSSM predicts a LIGHT Higgs. At tree level: $m_h < m_Z$.

- But LEP bound $m_h \gtrsim 114\,\mathrm{GeV}$
- Sizable one loop correction: $\delta m_h^2 \lesssim {3\over 4\pi^2}\,y_t^2\,m_t^2\,\log{{\tilde m_1\tilde m_2}\over {m_t^2}}$

LEP Higgs bound needs heavy stop \Rightarrow Increased fine tuning

FCNC effects in $b \rightarrow s\bar{s}s$?

[SG,Yuan,2004]

SUSY at LHC

- Cascade decays
- Missing energy signals

- Can we determine the spin and couplings to show SUSY?
 - Angular distributions

Warped Extra-dimensions

5D Warped Space

$$ds^2=e^{-2k|y|}ig(\eta_{\mu
u}dx^\mu dx^
uig)+dy^2$$

Z₂ Orbifold -

- Planck (UV) Brane
- TeV (IR) Brane

R: radius of Ex. Dim.

k : curvature

Hierarchy prob soln:

Bulk fields $\rightarrow AdS/CFT$

• TeV Brane Higgs : $M_{FW}\sim k {
m e}^{-k\pi R}$: Choose $k\pi R\sim 34$

• Bulk Fermions explain flavor (FCNC's safe)

[Randall, Sundrum, 99]

Warped Ex-Dim at LHC

Look for heavy Kaluza-Klein (KK) states : KK Gluon, Graviton, W, Z LEP precision electroweak constraints $\Rightarrow V' \gtrsim 2 \text{ TeV}$

Example:
$$W' \rightarrow XX$$

$$pp
ightarrow W'
ightarrow t ar{b}
ightarrow Wb ar{b}
ightarrow \ell
u b ar{b}$$

The Cosmology Connection

Evidence for dark matter

Bullet Cluster [Hubble+Chandra, NASA, ESA, CXC, M. Bradac (UCSB), and S. Allen (Stanford)]

 $\Omega_0=0.222\pm0.02$ [PDG '08]

Particle Dark Matter

Self-Annihilation and Freeze-out

[Kolb & Turner]

$$\sigma v_{rel} = a + b \ v_{rel}^2 + O(v_{rel}^4)$$
 $\langle \sigma v \rangle = a + b/x_f \quad x_f \equiv M_\psi/T_f \approx 21$
 $\Omega_0 h^2 = 10^{-29} x_f \left(\frac{eV^{-2}}{\langle \sigma v \rangle} \right)$

Doesn't apply to Non-thermal DM

[Rt Sneutrino DM & LHC Signatures: de Gouvea, SG, Porod, 06]

$U(1)_X$ Hidden sector

[SG, Lee, Wells: ongoing]

$$\mathcal{L} \supset \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + \kappa \, \phi_{H} \overline{\psi} \psi$$

Accidental Z_2 symmetry : $\psi \rightarrow -\psi$, $SM \rightarrow SM$

ullet So ψ cosmologically stable \Longrightarrow Dark Matter

Hidden sector signature at the LHC?

Direct Detection

Hidden Sector Dark Matter at LHC

Look for signal in $pp o jj +
ot \!\!\!\!/ \!\!\!\!/ T$

Conclusions

Compelling arguments for new physics at the LHC

- Higgs discovery expected
- Physics responsible for stability of EW scale

Exciting Times!

Cosmology connection

Unexpected physics shows up?

LHC inverse problem to get underlying physics