WHAT WE EXPECT TO FIND AT THE LARGE HADRON COLLIDER (LHC)

Shrihari Gopalakrishna

The Insitute of Mathematical Sciences (IMSc) Chennai

SERC Preparatory School, IIT Madras Oct. 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2 The Standard Model (SM)
- 3 The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Beyond the SM
- **5** DARK MATTER

PARTICLE PHYSICS

Quest to understand fundamental aspects of Nature

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

ACCELERATORS AS MICROSCOPES

 $\begin{array}{l} \mbox{Optical Microscope} \ (\lambda \approx 0.6 \ \mu m \) \\ \mbox{Electron Microscope} \ (\lambda \approx 0.2 \ nm) \\ \mbox{HEP Microscope} \ (\mbox{Particle Accelerator}) \ (\lambda \sim 1/E) \\ \end{array} \ (\mbox{E is Beam Energy})$

- LEP (CERN, Europe), Tevatron (Fermilab, USA): $E \approx 100 \,\text{GeV}$ $\lambda \approx 10^{-17} \,m$
- Large Hadron Collider (LHC CERN, Europe): $E = 14000 \, {
 m GeV}$ $\lambda pprox 10^{-19} m$

NB: $m_p \approx 1 GeV$

Physics operating at $\lambda \approx 10^{-17} m \text{ scale} \rightarrow \text{Standard Model (SM)}$ How do we probe this? $E = m c^2 \rightarrow \text{new particles!}$

ACCELERATOR SCHEMATIC

PARTICLE DETECTORS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EVENT RECONSTRUCTION

D0 Single Top Event (Tevatron)

- 2 The Standard Model (SM)
- 3 The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Beyond the SM
- **5** DARK MATTER

THE STANDARD MODEL (SM)

Building blocks:

							[P=8]					
FERMIONS matter constituents spin = 1/2, 3/2, 5/2, Leptons spin =1/2 Quarks spin =1/2					`	BOSONS force carriers spin = 0, 1, 2,						
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge		Vinified Ele	Mass GeV/c ²	spin = 1 Electric charge	Name	Mass	Electric
VL lightest neutrino*	(0-0.13)×10 ⁻⁹	0	U up	0.002	2/3		Ŷ	0	0	g	0	0
e electron	0.000511 (0.009-0.13)×10 ⁻⁹	-1	d down	1.3	-1/3		photon	80.39	-1	gluon		
μ muon	0.106	-1	S strange	0.1	-1/3		W ⁺	80.39	+1			
𝒫 heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	top	173	2/3		W bosons	91.188	0			
τ tau	1.777	-1	bottom	4.2	-1/3		Z boson					

[narticleadventure org]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Composites: proton \rightarrow u u d ; neutron \rightarrow u d d ; ...

On the hunt for the Higgs boson

STANDARD MODEL INTERACTIONS

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction	
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons	
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	
Strength at $\int 10^{-18} m$	10 ⁻⁴¹	0.8	1	25	
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60	

PARTICLE PHYSICS THEORY FRAMEWORK

EXAMPLE

Implications

- Special Relativity
- Quantum Mechanics
- Space-Time Symmetries
- Internal Symmetries

- Lorentz Invariance
- 4-dimensional Space-Time

•
$$E = mc^2$$

Natural Units: c = 1Measure E, m in GeV

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dirac : QM + Sp. Rel.
$$\implies$$
 Anti-matter
electron $(e^-) \leftrightarrow$ positron (e^+)
proton $(\bar{p}) \leftrightarrow$ antiproton (p)

PARTICLE PHYSICS THEORY FRAMEWORK

- Special Relativity
- Quantum Mechanics
- Space-Time Symmetries
- Internal Symmetries

EXAMPLE

Implications

• Uncertainty Principle

 $\Delta E \Delta t \ge h$ Virtual Particles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dirac : QM + Sp. Rel. \implies Anti-matter electron $(e^-) \leftrightarrow$ positron (e^+) proton $(\bar{p}) \leftrightarrow$ antiproton (p)

PARTICLE PHYSICS THEORY FRAMEWORK

- Special Relativity
- Quantum Mechanics
- Space-Time Symmetries
- Internal Symmetries

EXAMPLE

Implications

• Momentum Conserved

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dirac : QM + Sp. Rel. \implies Anti-matter electron $(e^-) \leftrightarrow$ positron (e^+) proton $(\bar{p}) \leftrightarrow$ antiproton (p)

PARTICLE PHYSICS THEORY FRAMEWORK

- Special Relativity
- Quantum Mechanics
- Space-Time Symmetries
- Internal Symmetries

EXAMPLE

Implications

- Charge Conserved
- Some Internal Symm broken

Dirac : QM + Sp. Rel. \implies Anti-matter electron $(e^-) \leftrightarrow$ positron (e^+) proton $(\bar{p}) \leftrightarrow$ antiproton (p)

UNSTABLE PARTICLES (EG: MUON μ^- & Antimuon μ^+)

Heavier cousins of $e^-\& e^+$

• $Q(\mu) = Q(e)$ So μ interacts same as e• $m_{\mu} \approx 207 m_{e}$ $m_{e} = 0.510998910(13) \times 10^{-3} \, GeV$; $m_{\mu} = 0.1056583668(38) \, GeV$

Unstable, so Decays with lifetime

• $\tau_{\mu} = 2.197034(21) \, \mu s$

Anomolous Magnetic Moment

• (g-2)/2 = 0.00116592080(63)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VIRTUAL PARTICLES

Theory and Measurement agree!

- 1 part in 10⁹ test of the Standard Model theory
- Seeing small disagreement in the last 3 digits New Physics?

STANDARD MODEL (SM) THEORETICAL STRUCTURE

- Standard Model (SM)
 - Quantum Field Theory (QFT)
 - Gauge symmetry (Internal Symmetry)
 - $SU(3)\otimes SU(2)\otimes U(1)$ gauge group
 - Strong & EM & Weak forces
- Eg: EM is invariance under local U(1) transformations : QED : Massless γ

Spontaneously broken Gauge Symmetry \Rightarrow Massive gauge boson

STANDARD MODEL (SM) THEORETICAL STRUCTURE

- Standard Model (SM)
 - Quantum Field Theory (QFT)
 - Gauge symmetry (Internal Symmetry)
 - $SU(3)\otimes SU(2)\otimes U(1)$ gauge group
 - Strong & EM & Weak forces
- Eg: EM is invariance under local U(1) transformations : QED : Massless γ

Spontaneously broken Gauge Symmetry \Rightarrow Massive gauge boson

SPONTANEOUS SYMMETRY BREAKING (SSB)

SSB : Ground State NOT Symm , Microscopic laws Symm

Aside: Eg: In Condensed Matter Systems : Spont. Magnetization

[Fig by F. Heylighen]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- In Analogy to this, in QFT,
 - Vacuum Expectation Value (VEV) of a field breaks Internal Symm
 - SM Higgs VEV breaks EW Symm

The role of the Higgs boson in the SM

Spontaneous Electroweak Symmetry Breaking : (Give masses to W^{\pm} , Z) Give fermions mass Unitarize WW scattering [Lee, Quigg, Thacker, 1977]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But... a fundamental scalar comes with its own problems. More on this later.

The hunt for the Higgs is on!

The role of the Higgs boson in the SM

Spontaneous Electroweak Symmetry Breaking : (Give masses to W^{\pm} , Z) Give fermions mass Unitarize WW scattering [Lee, Quigg, Thacker, 1977]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But... a fundamental scalar comes with its own problems. More on this later.

The hunt for the Higgs is on!

The role of the Higgs boson in the SM

Spontaneous Electroweak Symmetry Breaking : (Give masses to W^{\pm} , Z) Give fermions mass Unitarize WW scattering [Lee, Quigg, Thacker, 1977]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

But... a fundamental scalar comes with its own problems. More on this later.

The hunt for the Higgs is on!

- 2 The Standard Model (SM)
- ³ The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Beyond the SM
- **5** DARK MATTER

THE LARGE HADRON COLLIDER (LHC)

Will we find the Higgs? ... and more?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

14,000 GeV Energy First collisions in Nov 2009

LHC MAGNETS

Dipole Magnets (14.3m)

5000 Dipole magnets (14.2m) Superconducting (1.9K) Liquid Helium 8.33 Tesla field Nominal Current 11796A Stored Energy 7.1 MJ/magnet (1.1 GJ total)

Dipole section

Quadrupole section

ATLAS DETECTOR

CMS DETECTOR

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

LHC HIGGS SIGNIFICANCE

Higgs Significance at the LHC

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What we expect to find at the Large Hadron Collider (LHC) Bevond the SM

- 2 The Standard Model (SM)
- 3 The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Beyond the SM
- **5** DARK MATTER

Beyond the SM

BUT... THE SM IS NOT WITHOUT PROBLEMS

Gauge hierarchy problem

• Higgs sector unstable (quadratic divergence)

Fermion mass hierarchy problem

- Flavor symmetry?
- Challenge : Tiny neutrino masses
- Is neutrino Majorana or is it Dirac?

Cosmology connection

- What is the dark matter
- Inadequate source of CP vioation for observed baryon asymmetry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Cosmological constant problem

h

HIERARCHY PROBLEM IN DETAIL

LEP indicates that the Higgs boson is light

$$\delta m_h^2 = -\frac{3y_t^2}{16\pi^2} \Lambda^2$$

Beyond the SM

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what?

Supersymmetry Extra-dimensions : Warped or Flat Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation Dark Matter signals (Missing Energy)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what? Supersymmetry Extra-dimensions : Warped or Flat Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation Dark Matter signals (Missing Energy)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what? Supersymmetry Extra-dimensions : Warped or Flat Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation Dark Matter signals (Missing Energy)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dark Matter

- **1** BASIC PARTICLE PHYSICS
- 2 The Standard Model (SM)
- 3 The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 4 Beyond the SM
- **5** DARK MATTER

Dark Matter

PARTICLE PHYSICS AND THE UNIVERSE

Dark Matter

EVIDENCE FOR DARK MATTER (DM)

<ロト <回ト < 注ト < 注ト

э

Bullet Cluster [Hubble+Chandra, NASA, ESA, CXC, M. Bradac (UCSB), and S. Allen (Stanford)]

 $\Omega_0 = 0.222 \pm 0.02$ [PDG '08]

Dark Matter

PARTICLE DARK MATTER (DM)

Self-Annihilation cross-section gives present DM Relic density

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dark Matter

DIRECT DETECTION

Dark Matter

DARK MATTER AT THE LHC?

Missing momentum!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Dark Matter

CONCLUSIONS

Compelling arguments for new physics at the LHC

- Higgs discovery expected
- Physics responsible for stability of EW scale

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exciting Times !

Cosmology connection

Unexpected physics shows up?

Backup slides

BACKUP SLIDES

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Backup slides

NEW PHYSICS EXPECTATION

Resonable to demand $rac{m_h^2}{\delta m_h^2}\gtrsim 0.1$

- For $t_{L,R}$ loop $\Rightarrow \Lambda_{NP} \lesssim 2.5 \ TeV$
- So new physics should show up before this

Why didn't LEP collider see hints of this :

S, T parameters, $Z b \overline{b}$, ...

 W, Z, γ

"LEP paradox" , "Little hierarchy problem"

Why not more convincing FCNC deviations?

No dynamical explanation? Landscape of vacuua?

Backup slides

NEW PHYSICS EXPECTATION

Resonable to demand $\frac{m_h^2}{\delta m_h^2} \gtrsim 0.1$

- For $t_{L,R}$ loop $\Rightarrow \Lambda_{NP} \lesssim 2.5 \ TeV$
- So new physics should show up before this

Why didn't LEP collider see hints of this :

S, T parameters, $Z b \bar{b}$, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

"LEP paradox" , "Little hierarchy problem"

Why not more convincing FCNC deviations?

No dynamical explanation? Landscape of vacuua?

LHC PDF

Keep in mind parton distribution function (pdf)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Backup slides

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what?

[SG, Yuan, 2004]

Extra-dimensions : Warped or Flat [Agashe, DavoudiasI, SG, Han, Huang, Perez, Si, Soni., 2007, 08] [Cao, SG, Yuan, 2003] Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation

EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter signals (Missing Energy)

[SG, Jung, Lee, Wells, 2008, 09]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Backup slides

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what? Supersymmetry

[SG,Yuan,2004]

Extra-dimensions : Warped or Flat [Agashe, Davoudias], SG, Han, Huang, Perez, Si, Soni, 2007, 08] [Cao, SG, Yuan, 2003] Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation

[EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter signals (Missing Energy)

[SG, Jung, Lee, Wells, 2008, 09]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SUPERSYMMETRY (SUSY)

SUSY: Fermions \Leftrightarrow Bosons : (Doubles particle spectrum)

$$\begin{array}{c} h \\ -i \frac{y_{L}}{\sqrt{2}} \end{array} \begin{array}{c} t_{L}, t_{R} \\ -i \frac{y_{L}}{\sqrt{2}} \end{array} + \begin{array}{c} (\cdot) \\ -i \frac{y_{L}}{\sqrt{2}} \end{array} \end{array} + \begin{array}{c} 0 \\ 0 \end{array}$$

Λ^2 divergence cancelled

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proton stability needs R_p symmetry \Rightarrow Dark Matter! Gauge Coupling Unification - GUT SUSY SO(10)Includes $\nu_R \Rightarrow$ Neutrino seesaw mass

SUPERSYMMETRY (SUSY)

SUSY: Fermions \Leftrightarrow Bosons : (Doubles particle spectrum)

$$\begin{array}{c} h \\ -i\frac{y_{1}}{\sqrt{2}} \end{array} \begin{array}{c} t_{L}, t_{R} \\ -i\frac{y_{1}}{\sqrt{2}} \end{array} + \begin{array}{c} (1) \\ -i\frac{y_{1}}{\sqrt{2}} \end{array} \begin{array}{c} -i\frac{y_{1}}{\sqrt{2}} \end{array} \end{array} = 0$$

 Λ^2 divergence cancelled

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proton stability needs R_p symmetry \Rightarrow Dark Matter! Gauge Coupling Unification - GUT SUSY SO(10)Includes $\nu_R \Rightarrow$ Neutrino seesaw mass

SUSY BREAKING

SUSY has to be broken

- \bullet Spectrum depends on SUSY Breaking/Mediation + RGE
- Minimal Supersymmetric SM (MSSM) general parametrization MSSM predicts a LIGHT Higgs. At tree level: $m_h < m_Z$.
 - But LEP bound $m_h\gtrsim 114\,{
 m GeV}$
 - Sizable one loop correction: $\delta m_h^2 \lesssim \frac{3}{4\pi^2} y_t^2 m_t^2 \log \frac{\tilde{m}_1 \tilde{m}_2}{m_t^2}$

LEP Higgs bound needs heavy stop \Rightarrow Increased fine tuning FCNC effects in $b \rightarrow s\bar{s}s$?

[SG, Yuan, 2004]

SUSY AT LHC

- Cascade decays
- Missing energy signals

[ATLAS Physics TDR]

ж

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Can we determine the spin and couplings to show SUSY?
 - Angular distributions

Backup slides

EG: 5-D WARPED EXTRA-DIMENSIONS

[Randall, Sundrum, 99]

Prediction: A Kaluza-Klein tower of states Look for it at the LHC

 2nd KK
 1st KK
 SM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Backup slides

WARPED EX-DIM AT LHC

Look for heavy Kaluza-Klein (KK) states : KK Gluon, Graviton, W, Z LEP precision electroweak constraints $\Rightarrow V' \gtrsim 2 TeV$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

$U(1)_X$ HIDDEN SECTOR

Coupled to SM (us) via the Higgs Accidental Z₂ symmetry : $\psi \rightarrow -\psi$, SM \rightarrow SM

[SG, Jung, Lee, Wells:2008, 2009]

• So ψ cosmologically stable \implies Dark Matter

Direct Detection?

Hidden sector signature at the LHC?

Backup slides

HIDDEN SECTOR DARK MATTER AT LHC

[SG, Lee, Wells:2009]

Look for LHC signal in $pp \rightarrow jj + \not \!\!\!\!/ \!\!\!\!/_T$