STANDARD MODEL And Beyond

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai, India

Symposium on High Energy Physics, 102nd Indian Science Congress, University of Mumbai, 6 Jan 2015

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

1 BASIC PARTICLE PHYSICS

- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **5** DARK MATTER
- 6 CONCLUSIONS

Standard Model Basic Particle Physics

Quest to understand fundamental aspects of Nature

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Composites

Baryons qqq and Antibaryons qqq Baryons are fermionic hadrons. These are a few of the many types of baryons.								
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spir			
р	proton	uud	1	0.938	1/2			
p	antiproton	ūūd	-1	0.938	1/2			
n	neutron	udd	0	0.940	1/2			
Λ	lambda	uds	0	1.116	1/2			
Ω^{-}	omega	SSS	-1	1.672	3/2			

Mesons qq Mesons are bosonic hadrons These are a few of the many types of mesons.								
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin			
π+	pion	ud	+1	0.140	0			
K-	kaon	sū	-1	0.494	0			
ρ+	rho	ud	+1	0.776	1			
\mathbf{B}^0	B-zero	db	0	5.279	0			
η _c	eta-c	сē	0	2.980	0			

PARTICLE DECAYS : UNSTABLE PARTICLES

Example: Muon μ (heavier cousin of e)

- μ interactions same as e; $Q(\mu) = Q(e)$
- $m_{\mu} \approx 207 \, m_e$; $m_e = 0.510998910(13) \times 10^{-3} \, GeV$; $m_{\mu} = 0.1056583668(38) \, GeV$
- μ unstable, so **Decays** with **lifetime** • $\tau_{\mu} = 2.197034(21) \,\mu s$ μ Anomolous Magnetic Moment • (g-2)/2 = 0.00116592080(63)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

VIRTUAL PARTICLES

Theory and Experiment comparison - Precision Probe

- 1 part in 10⁹ test of the Standard Model Triumph!
- Small disagreement in the last 3 digits New physics or non-perturbative effects?

NATURAL UNITS

- Velocity of light c = 1
- Plancks constant $\hbar = 1$
- Recall $E = mc^2$
 - \Rightarrow Measure Energy (E) & Mass (m) in Giga-electronVolt (GeV)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Eg: Proton mass
$$m_ppprox 1~{
m GeV}$$

Eg: Electron mass $m_e \approx 5 imes 10^{-4} \, {
m GeV}$

ACCELERATORS AS MICROSCOPES

Optical Microscope ($\lambda \approx 0.6 \, \mu m$)

Electron Microsope ($\lambda \approx 0.2 \text{ nm}$)

Particle Accelerator ($\lambda \approx 1/E$)

(*E* is Beam Energy)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• LEP (CERN, Europe), Tevatron (Fermilab, USA): $E \approx 100\,$ GeV , $\lambda \approx 10^{-17}m$

• Large Hadron Collider (LHC - CERN, Europe): E = 14000 GeV , $\lambda \approx 10^{-19} m$

Accelerators as microscopes

Optical Microscope ($\lambda \approx 0.6 \, \mu m$)

Electron Microsope ($\lambda \approx 0.2 \text{ nm}$)

Particle Accelerator ($\lambda \approx 1/E$)

(E is Beam Energy)

- LEP (CERN, Europe), Tevatron (Fermilab, USA): E pprox 100 GeV , $\lambda pprox$ 10⁻¹⁷ m
- Large Hadron Collider (LHC CERN, Europe): E = 14000 GeV , $\lambda pprox 10^{-19} m$

STANDARD MODEL (SM) OF PARTICLE PHYSICS

Physics operating at $\lambda \approx 10^{-17} m$ distance scale

SM constructed and tested in

- Low energy precision experiments
- High energy particle accelerators
 - Create new particles ($E = mc^2$)

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Lorentz Invariance

• 4-dimensional Space-Time

•
$$E = mc^2$$

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Uncertainty Principle $\Delta p \Delta x \ge \hbar$ $\Delta E \Delta t \ge \hbar$ Virtual Particles

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Space-time, continuous symmetry

- Translation symmetry
 ⇒ Momentum Conserved
- Rotation symmetry ⇒ Angular Momentum Conserved

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Space-time, discrete symmetry

• Parity
$$\mathcal{P}$$
 : $(t, \underline{x}) \rightarrow (t, -\underline{x})$

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

```
Internal, continuous local (gauge) symmetry [\alpha(t, \underline{x})]
```

- Electrodynamics : U(1) Invariance
 - \implies Charge Conservation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Internal, continuous global symmetry ($\alpha = const.$)

 $\bullet \ \ \mathsf{Chiral Symmetry} \ \Longrightarrow \ \ \mathsf{Light pion}$

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Internal, discrete global symmetry

• Charge Conjugation $\mathcal{C}: e^-
ightarrow e^+$

- Special Relativity
- Quantum Mechanics
- Symmetries (Groups)
 - Continuous
 - Discrete
 - Space-time
 - Internal

EXAMPLE

Dirac theory for eMatter \leftrightarrow Anti-matter

- $\bullet \ \text{electron} \leftrightarrow \text{positron}$
- proton \leftrightarrow antiproton

EG: QUANTUM ELECTRODYNAMICS (QED)

- QED is an U(1) (Abelian) gauge theory
- The Lagrangian density is

$$\mathcal{L} = -rac{1}{4} (\partial_\mu A_
u - \partial_
u A_\mu) (\partial^\mu A^
u - \partial^
u A^\mu) + \overline{\psi} i \gamma^\mu (\partial_\mu - i \mathsf{e} A_\mu) \psi - m \overline{\psi} \psi$$

- The SM uses these notions : non-Abelian gauge theory
 - Gauge group : $SU(3)_c \times SU(2)_L \times U(1)_Y$

PARTICLE CONTENT AND INTERACTIONS

Matter Particles

• Hadrons (Quarks) (p, n,...); Leptons $(e, \nu,...)$

Interactions (Forces)

Strong Interactions

Responsible for bound Quarks, bound nucleons

• Electroweak Interactions

Maxwell's Electromagnetism

Weak interactions. Can change particle type: Radioactivity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gravity

Trivial in the SM; Quantam gravity?

Mass generation (Spontaneous Symmetry Breaking)

- Higgs mechanism
- Chiral Symmetry Breaking and Confinement

PARTICLE CONTENT AND INTERACTIONS

Matter Particles

• Hadrons (Quarks) (*p*, *n*,...); Leptons (*e*,*ν*,...)

Interactions (Forces)

• Strong Interactions

Responsible for bound Quarks, bound nucleons

Electroweak Interactions

Maxwell's Electromagnetism

Weak interactions. Can change particle type: Radioactivity

Gravity

Trivial in the SM; Quantam gravity?

Mass generation (Spontaneous Symmetry Breaking)

- Higgs mechanism
- Chiral Symmetry Breaking and Confinement

PARTICLE CONTENT AND INTERACTIONS

Matter Particles

• Hadrons (Quarks) (*p*, *n*,...); Leptons (*e*,*ν*,...)

Interactions (Forces)

• Strong Interactions

Responsible for bound Quarks, bound nucleons

Electroweak Interactions

Maxwell's Electromagnetism

Weak interactions. Can change particle type: Radioactivity

Gravity

Trivial in the SM; Quantam gravity?

Mass generation (Spontaneous Symmetry Breaking)

- Higgs mechanism
- Chiral Symmetry Breaking and Confinement

STRONG INTERACTIONS

- Hadrons (Composites)
 - Baryons (*p*, *n*,...)
 - Mesons (π[±], π⁰,...)
- Short range force : Effective theory by Yukawa (1935)
- Confinement (Open problem)
- Hadrons organized into multiplets (representations of SU(3)) [Gell-Mann, Ne'eman]
- Deep Inelastic Scattering (DIS) : Hadrons have structure \implies Quarks

• CP appears to be conserved - why? (open problem)

WEAK INTERACTIONS

• Changes particle type

- Lee and Yang (1956) : Does Weak Interactions respect Parity ${\cal P}$?
- Wu (1956) : \mathcal{P} violation in $Co^{60} \rightarrow Ni^{60} + e + \bar{\nu}_e + 2\gamma$ (Co^{60} oriented in a B field)
 - *e* preferentially emitted in the lower hemisphere $\implies \mathcal{P}$ violation (maximal)
 - ν is left-chiral : "Nature is left-handed"

• V - A structure of weak interactions $\mathcal{L} \supset -\frac{g}{2\sqrt{2}}\bar{u}(\gamma^{\mu} - \gamma^{\mu}\gamma^{5})dW_{\mu}^{+} + h.c.$ [Sudarshan, Marshak; Feynman, Gell-Mann]

WEAK INTERACTIONS

• Changes particle type

- Lee and Yang (1956) : Does Weak Interactions respect Parity ${\cal P}$?
- Wu (1956) : \mathcal{P} violation in $Co^{60} \rightarrow Ni^{60} + e + \bar{\nu}_e + 2\gamma$ (Co^{60} oriented in a B field)
 - e preferentially emitted in the lower hemisphere $\implies \mathcal{P}$ violation (maximal)
 - ν is left-chiral : "Nature is left-handed"

• V - A structure of weak interactions $\mathcal{L} \supset -\frac{g}{2\sqrt{2}}\bar{u}(\gamma^{\mu} - \gamma^{\mu}\gamma^{5})dW_{\mu}^{+} + h.c.$ [Sudarshan, Marshak; Feynman, Gell-Mann]

- **1** Basic Particle Physics
- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **5** DARK MATTER
- 6 CONCLUSIONS

Standard Model The Standard Model (SM)

THE STANDARD MODEL (SM)

Building blocks:

[particleadventure.org]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2012: Added the Higgs Boson (h), mass 125 GeV, spin 0, charge 0

STANDARD MODEL INTERACTIONS

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction	
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge	
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons	
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons	
Strength at $\int_{0}^{10^{-18}} m$	10-41	0.8	1	25	
3×10 ^{−17} m	10 ⁻⁴¹	10 ⁻⁴	1	60	

STANDARD MODEL (SM) STRUCTURE

Theory of Quarks, Leptons and their Interactions (Gauge bosons)

- Quantum Field Theory (QFT)
 - Quantum Mechanics
 - Particle/Antiparticle creation/annihilation
- Symmetry
 - Lorentz Invariance (Space-time symmetry)
 - Gauge symmetry (Internal symmetry)
 - $SU(3)\otimes SU(2)\otimes U(1)$ gauge group
 - Strong, Electromagnetic, Weak forces

Electroweak Symmetry spontaneously broken \Rightarrow Massive gauge bosons $W^{\pm},$ Z

STANDARD MODEL (SM) STRUCTURE

Theory of Quarks, Leptons and their Interactions (Gauge bosons)

- Quantum Field Theory (QFT)
 - Quantum Mechanics
 - Particle/Antiparticle creation/annihilation
- Symmetry
 - Lorentz Invariance (Space-time symmetry)
 - Gauge symmetry (Internal symmetry)
 - $SU(3)\otimes SU(2)\otimes U(1)$ gauge group
 - Strong, Electromagnetic, Weak forces

Electroweak Symmetry spontaneously broken \Rightarrow Massive gauge bosons W^{\pm}, Z

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

SPONTANEOUS SYMMETRY BREAKING (SSB)

Microscopic laws symmetric , but ground state NOT symmetric

Aside: Eg: In Condensed Matter Systems : Spont. Magnetization

[Fig by F. Heylighen]

- In analogy to this, in SM QFT,
 - Vacuum Expectation Value (VEV) of Higgs field breaks Electroweak symmetry

The role of the Higgs boson in the SM

Spontaneous Breaking of Electroweak Symmetry $\mathcal{L} \supset D_{\mu}H^{\dagger}D^{\mu}H - \mathcal{V}(H)$

•
$$\frac{\partial V}{\partial H} = 0 : \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

- $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{EM}$
- Gives particles MASS !!!

Gives mass to Gauge Bosons (W^{\pm} , Z Gives mass to fermions

•
$$L \supset -\lambda_d \bar{Q_L} H d_R - \lambda_u \bar{Q_L} \cdot H^{\dagger} u_R + h.c.$$

(λ are complex CP violating Yukawa couplings)

The role of the Higgs boson in the SM

Spontaneous Breaking of Electroweak Symmetry $\mathcal{L} \supset D_{\mu}H^{\dagger}D^{\mu}H - \mathcal{V}(H)$

•
$$\frac{\partial V}{\partial H} = 0 : \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

- $SU(2)_I \otimes U(1)_Y \rightarrow U(1)_{FM}$
- Gives particles MASS !!!

Gives mass to Gauge Bosons (W^{\pm} , Z)

• $L \supset -\lambda_d \bar{Q}_l H d_R - \lambda_{ll} \bar{Q}_l \cdot H^{\dagger} u_R + h.c.$ (λ are complex CP violating Yukawa couplings)

The role of the Higgs boson in the SM

Spontaneous Breaking of Electroweak Symmetry $\mathcal{L} \supset D_{\mu}H^{\dagger}D^{\mu}H - \mathcal{V}(H)$

•
$$\frac{\partial V}{\partial H} = 0 : \langle H \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$$

- $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{EM}$
- Gives particles MASS !!!

Gives mass to Gauge Bosons (W^{\pm}, Z) Gives mass to fermions

•
$$L \supset -\lambda_d \bar{Q}_L H d_R - \lambda_u \bar{Q}_L \cdot H^{\dagger} u_R + h.c.$$

(λ are complex CP violating Yukawa couplings)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

\mathcal{CP} Violation

• Weak Interaction violates \mathcal{P} , but how about \mathcal{CP} ?

Eg: Kaon (K^0, \bar{K}^0) system $\mathcal{CP}(K^0) = -\bar{K}^0$; $\mathcal{CP}(\bar{K}^0) = -K^0$ Experiment by Cronin, Fitch (1963) in the Kaon system : Weak interaction violates \mathcal{CP} (by a tiny amount)

- Kobayashi, Maskawa (1973) : CP Violation if 3 generations (or more)
 SM CP violation in the W[±] (charged current) interactions (CKM matri
- $B^0_{d,s} \overline{B}^0_{d,s}$ mixing, CP violation studied in B-factories (BaBar and Belle) Largely agrees with SM A few tantalizing hints of new physics? Await more from LHCb, Belle-II
- *CP* violation required for Baryon Asymmetry of the Universe (BAU) (Shakarov)

SM not enough! So new physics? (Open problem)

\mathcal{CP} Violation

• Weak Interaction violates \mathcal{P} , but how about \mathcal{CP} ?

Eg: Kaon (K^0, \bar{K}^0) system $C\mathcal{P}(K^0) = -\bar{K}^0$; $C\mathcal{P}(\bar{K}^0) = -K^0$ Experiment by Cronin, Fitch (1963) in the Kaon system : Weak interaction violates $C\mathcal{P}$ (by a tiny amount)

- Kobayashi, Maskawa (1973) : CP Violation if 3 generations (or more)
 SM CP violation in the W[±] (charged current) interactions (CKM matrix)
- $B^0_{d,s} \overline{B}^0_{d,s}$ mixing, CP violation studied in B-factories (BaBar and Belle) Largely agrees with SM A few tantalizing hints of new physics? Await more from LHCb, Belle-II

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• *CP* violation required for Baryon Asymmetry of the Universe (BAU) (Shakarov)

SM not enough! So new physics? (Open problem)

\mathcal{CP} Violation

• Weak Interaction violates \mathcal{P} , but how about \mathcal{CP} ?

Eg: Kaon (K^0, \bar{K}^0) system $C\mathcal{P}(K^0) = -\bar{K}^0$; $C\mathcal{P}(\bar{K}^0) = -K^0$ Experiment by Cronin, Fitch (1963) in the Kaon system : Weak interaction violates $C\mathcal{P}$ (by a tiny amount)

- Kobayashi, Maskawa (1973) : CP Violation if 3 generations (or more)
 SM CP violation in the W[±] (charged current) interactions (CKM matrix)
- $B^0_{d,s} \overline{B}^0_{d,s}$ mixing, CP violation studied in B-factories (BaBar and Belle) Largely agrees with SM A few tantalizing hints of new physics? Await more from LHCb, Belle-II

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

• *CP* violation required for Baryon Asymmetry of the Universe (BAU) (Shakarov)

SM not enough! So new physics? (Open problem)
\mathcal{CP} Violation

• Weak Interaction violates \mathcal{P} , but how about \mathcal{CP} ?

Eg: Kaon (K^0, \bar{K}^0) system $C\mathcal{P}(K^0) = -\bar{K}^0$; $C\mathcal{P}(\bar{K}^0) = -K^0$ Experiment by Cronin, Fitch (1963) in the Kaon system : Weak interaction violates $C\mathcal{P}$ (by a tiny amount)

- Kobayashi, Maskawa (1973) : CP Violation if 3 generations (or more)
 SM CP violation in the W[±] (charged current) interactions (CKM matrix)
- $B^0_{d,s} \overline{B}^0_{d,s}$ mixing, CP violation studied in B-factories (BaBar and Belle) Largely agrees with SM A few tantalizing hints of new physics? Await more from LHCb, Belle-II
- *CP* violation required for Baryon Asymmetry of the Universe (BAU) (Shakarov)

SM not enough! So new physics? (Open problem)

UNANSWERED IN THE SM

Gauge hierarchy problem

• Higgs sector unstable (quadratic divergence)

Flavor problem

- Fermion mass hierarchy Flavor symmetry?
- Tiny neutrino masses : $m_
 u \sim 10^{-2} \ {
 m eV}$
 - India-based Neutrino Observatory (INO)
 - Is neutrino Majorana or is it Dirac? 0
 uetaeta experiment

Cosmology connection

- What is the dark matter
- Inadequate source of CP vioation for observed baryon asymmetry

• Cosmological constant problem

Quantum theory of gravity?

• String Theory, Loop Quantum Gravity, ...

Standard Model The Standard Model (SM)

GAUGE HIERARCHY PROBLEM IN DETAIL

 $\mathcal{L} \supset -rac{1}{2}m_h^2\,h^2$ No symmetry protecting the Higgs mass!

$$\mathcal{L} \supset -\frac{y_{L}}{\sqrt{2}}ht_{R}t_{L} + h.c$$

$$h_{-i\frac{y_{L}}{\sqrt{2}}} = -\frac{3y_{t}^{2}}{8\pi^{2}}\Lambda^{2} \qquad (\Lambda \text{ is momentum cut-off})$$
Quadratic divergence! \implies unnatural (fine-tuning)

New physics (BSM) restores naturalness? Below what scale (Λ) should it appear?

> Fine-tuning measure: $f_T \equiv \frac{m_h^2}{\delta m_h^2}$ $f_T > 0.1 \implies \Lambda < 2\text{TeV}$ (for $m_h = 120 \text{ GeV}$) So expect new physics below 2 TeV scale

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Standard Model The Standard Model (SM)

GAUGE HIERARCHY PROBLEM IN DETAIL

 $\mathcal{L} \supset -rac{1}{2}m_h^2\,h^2$ No symmetry protecting the Higgs mass!

$$\mathcal{L} \supset -\frac{y_t}{\sqrt{2}}h\bar{t_R}t_L + h.c.$$

$$h_{-i\frac{y_t}{\sqrt{2}}} = -\frac{3y_t^2}{8\pi^2}\Lambda^2 \qquad (\Lambda \text{ is momentum cut-off})$$
Quadratic divergence! \implies unnatural (fine-tuning)

New physics (BSM) restores naturalness? Below what scale (Λ) should it appear?

> Fine-tuning measure: $f_T \equiv \frac{m_h^2}{\delta m_h^2}$ $f_T > 0.1 \implies \Lambda < 2\text{TeV}$ (for $m_h = 120 \text{ GeV}$) So expect new physics below 2 TeV scale

- **1** Basic Particle Physics
- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **5** DARK MATTER
- 6 CONCLUSIONS

Belief that something may cure the Hierarchy problem. But what?

- Supersymmetry
- Extra-dimensions : Warped or Flat
- Strong dynamics (Note AdS-CFT correspondence)
- Little Higgs

Neutrino mass connection and lepton number violation

Baryon Number (B) appears to be conserved - Really?

• Grand-unified Theories (GUT) predict Proton Decay (*B* violation) But $\tau_p\gtrsim 10^{32}$ years

Belief that something may cure the Hierarchy problem. But what?

- Supersymmetry
- Extra-dimensions : Warped or Flat
- Strong dynamics (Note AdS-CFT correspondence)
- Little Higgs

Neutrino mass connection and lepton number violation

Baryon Number (B) appears to be conserved - Really?

• Grand-unified Theories (GUT) predict Proton Decay (*B* violation) But $\tau_p \gtrsim 10^{32}$ years

Belief that something may cure the Hierarchy problem. But what?

- Supersymmetry
- Extra-dimensions : Warped or Flat
- Strong dynamics (Note AdS-CFT correspondence)
- Little Higgs

Neutrino mass connection and lepton number violation

Baryon Number (B) appears to be conserved - Really?

• Grand-unified Theories (GUT) predict Proton Decay (*B* violation) But $\tau_p \gtrsim 10^{32}$ years

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Belief that something may cure the Hierarchy problem. But what?

- Supersymmetry
- Extra-dimensions : Warped or Flat
- Strong dynamics (Note AdS-CFT correspondence)
- Little Higgs

Neutrino mass connection and lepton number violation

Baryon Number (B) appears to be conserved - Really?

• Grand-unified Theories (GUT) predict Proton Decay (*B* violation) But $\tau_p \gtrsim 10^{32}$ years

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Belief that something may cure the Hierarchy problem. But what?

- Supersymmetry
- Extra-dimensions : Warped or Flat
- Strong dynamics (Note AdS-CFT correspondence)
- Little Higgs

Neutrino mass connection and lepton number violation

Baryon Number (B) appears to be conserved - Really?

• Grand-unified Theories (GUT) predict Proton Decay (*B* violation) But $\tau_p \gtrsim 10^{32}$ years

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

OUTLINE

- **1** BASIC PARTICLE PHYSICS
- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 5 DARK MATTER
- 6 CONCLUSIONS

Standard Model The Large Hadron Collider (LHC)

THE LARGE HADRON COLLIDER (LHC)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

14,000 GeV Collision Energy Price tag : About US \$ 9 Billion

The Large Hadron Collider (LHC)

LHC ATLAS DETECTOR

Standard Model The Large Hadron Collider (LHC)

LHC CMS DETECTOR

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

The Large Hadron Collider (LHC)

Higgs at the LHC

HIGGS DISCOVERY @ LHC

· ~ ~

The Large Hadron Collider (LHC) BSM at the LHC

SUPERSYMMETRY (SUSY) AT LHC

- Cascade decays
- Missing energy signals

[ATLAS Physics TDR]

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

- Can we determine the spin and couplings to show SUSY?
 - Angular distributions

The Large Hadron Collider (LHC) BSM at the LHC

Composite Higgs/Warped EX-Dim at LHC

Look for heavy Resonances/Kaluza-Klein states (Heavy Gluon, Graviton, W, Z) LEP precision electroweak constraints \Rightarrow $V'\gtrsim$ 2 TeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **1** BASIC PARTICLE PHYSICS
- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **5** DARK MATTER
- 6 CONCLUSIONS

Standard Model Dark Matter

PARTICLE PHYSICS AND THE UNIVERSE

Standard Model Dark Matter

EVIDENCE FOR DARK MATTER (DM)

Bullet Cluster [Hubble+Chandra, NASA, ESA, CXC, M. Bradac (UCSB), and S. Allen (Stanford)]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\Omega_0=0.222\pm0.02~\text{[PDG '08]}$$

PARTICLE DARK MATTER (DM)

Self-Annihilation cross-section gives present DM Relic density

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Standard Model Dark Matter

DIRECT DETECTION

Standard Model Dark Matter

DARK MATTER AT THE LHC?

Missing momentum!

(ロ)、(型)、(E)、(E)、 E) のQ(()

- **1** BASIC PARTICLE PHYSICS
- 2 The Standard Model (SM)
- **3** Beyond the SM (BSM)
- The Large Hadron Collider (LHC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **5** DARK MATTER
- 6 CONCLUSIONS

CONCLUSIONS

- Standard Model is now firmly established
 - Tested in a multitude of experiments to great precision
- Clues that there is physics beyond SM
 - LHC is looking for BSM
 - Physics responsible for stability of EW scale?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 14 TeV run to start soon Exciting time!
- Cosmology connection
 - Dark Matter, Baryon Asymmetry

Standard Model	dard Model
----------------	------------

Backup slides

BACKUP SLIDES

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Standard Model Backup slides

ROLE OF THE HIGGS (CONTD...)

Unitarizes WW scattering

[Lee, Quigg, Thacker, 1977]

 $\mathcal{M} = \sum (2l+1) a_l P_l(cos heta)$ B term bad high-energy behavior

Cancels B, delays unitarity violation

"No-loose theorem" from C term: $\Rightarrow m_h^2 \leq \frac{8\pi\sqrt{2}}{3C_r} \approx (1 \ TeV)^2$

Standard Model Backup slides

ROLE OF THE HIGGS (CONTD...)

Unitarizes WW scattering

[Lee, Quigg, Thacker, 1977]

 $\mathcal{M} = \sum (2l+1) a_l P_l(cos heta)$ B term bad high-energy behavior

Cancels B, delays unitarity violation

"No-loose theorem" from C term: $\Rightarrow m_h^2 \leq \frac{8\pi\sqrt{2}}{3G_r} \approx (1 \ TeV)^2$

But... a fundamental scalar has (quadratic) divergence instability problem More on this later

ACCELERATOR SCHEMATIC

PARTICLE DETECTORS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EVENT RECONSTRUCTION

D0 Single Top Event (Tevatron)

Standard Model Backup slides

ELECTROWEAK PRECISION OBSERVABLES

Lagrangian parameters in the electroweak sector: g, g', v

 $\equiv i \Pi^{\mu\nu} = i \left[\Pi(q^2) g^{\mu\nu} - \Delta(q^2) q^{\mu} q^{\nu} \right]$ SM and BSM can contribute to "blob" (SM includes Higgs!)

Observables are given by

$$\begin{split} M_Z^2 &= (g'^2 + g^2) \frac{v^2}{4} + \Pi_{ZZ}(M_Z^2) & M_W^2 = g^2 \frac{v^2}{4} + \Pi_{WW}(M_W^2) \\ 4\pi\alpha &= e^2 \left[1 + \Pi_{\gamma\gamma}'(0) \right] & A_{LR}^f : \sqrt{g'^2 + g^2} \left(T^3 - s_*^2 Q \right) \\ \frac{G_F}{\sqrt{2}} &= \frac{1}{2v^2} \left(1 - \frac{\Pi_{WW}(0)}{M_W^2} \right) & s_*^2 &\equiv \frac{g'^2}{\sqrt{g'^2 + g^2}} - \frac{e}{\sqrt{g'^2 + g^2}} \frac{\Pi_{\gamma Z}(M_Z^2)}{M_Z^2} \end{split}$$

"Oblique parameters" :

[Peskin, Takeuchi: 1990,92]

$$\alpha S = 4s_W^2 c_W^2 \left[\Pi'_{ZZ} - \frac{(c_W^2 - s_W^2)}{s_W c_W} \Pi'_{\gamma Z} - \Pi'_{\gamma \gamma} \right]_{q^2 = 0} = -4e^2 \Pi'_{3Y}(0)$$

$$\alpha T = \frac{1}{M_{W}^2} \left[\Pi_{WW} - c_W^2 \Pi_{ZZ} \right]_{q^2 = 0}$$

$$\alpha U = 4s_W^2 \left[\Pi'_{WW} - c_W^2 \Pi'_{ZZ} - s_W^2 \Pi'_{\gamma \gamma} - 2s_W c_W \Pi'_{\gamma Z} \right]_{q^2 = 0}$$

Vertex corrections $(Z\bar{b}b)$ separate constraint

Standard Model Backup slides

LEP (AND TEVATRON) CONSTRAINTS

CERN LEP I & II (e^+e^- collider)

- Tested EW precision observables
- Direct LEP-II bound $m_h\gtrsim 114\,{
 m GeV}$; Best fit : $m_Hpprox 90\,GeV$
 - 4 events consistent with Higgs!

LEP CONSTRAINT ON BSM

[PDG 2005]

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

S

LEP PARADOX

If New Physics is there, LEP should have seen hints of this (but didn't): "LEP paradox" , "Little hierarchy problem"

[Kribs et al, 2008]

(日) (日) (日) (日) (日) (日) (日) (日)

0.4

Why not more convincing FCNC deviations? Kaon, B-meson, g-2, EDM,

No dynamical explanation? *Landscape* of vacuua? Depressing! So we will be hopeful that there's new physics

Standard Model Backup slides LHC

SEARCHING FOR (NEW) PHYSICS AT THE LHC

Quantum Mechanics is probabilistic

• In given theory, predict probability of new particle production and decay into given SM particles

- Compare to LHC event rate observed and see if devation from SM
 - LHC is a counting experiment Statistical Evidence!
SEARCHING FOR (NEW) PHYSICS AT THE LHC

Quantum Mechanics is probabilistic

- In given theory, predict probability of new particle production and decay into given SM particles
- Compare to LHC event rate observed and see if devation from SM
 - LHC is a counting experiment Statistical Evidence!

ANALOGY: COIN TOSS TO ASCERTAIN FAIRNESS

Toss coin many times : plot probability distribution Smaller deviation from fairness \Rightarrow larger number of tosses required

SEARCHING FOR (NEW) PHYSICS AT THE LHC

Quantum Mechanics is probabilistic

- In given theory, predict probability of new particle production and decay into given SM particles
- Compare to LHC event rate observed and see if devation from SM
 - LHC is a counting experiment Statistical Evidence!

LHC OUTCOMES

• Agree with new theory

New particle in Nature New theory established

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ○ ● ● ● ●

SEARCHING FOR (NEW) PHYSICS AT THE LHC

Quantum Mechanics is probabilistic

- In given theory, predict probability of new particle production and decay into given SM particles
- Compare to LHC event rate observed and see if devation from SM
 - LHC is a counting experiment Statistical Evidence!

LHC OUTCOMES • Disagree Consider alternate theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SEARCHING FOR (NEW) PHYSICS AT THE LHC

Quantum Mechanics is probabilistic

- In given theory, predict probability of new particle production and decay into given SM particles
- Compare to LHC event rate observed and see if devation from SM
 - LHC is a counting experiment Statistical Evidence!

EG: HIGGS IN $\gamma\gamma$ CHANNEL

Theoretically compute the cross-section (probability) σ

- "signal" cross-section $\sigma(pp \rightarrow h \rightarrow \gamma \gamma)$
- "background" cross-section $\sigma(\textit{pp} \rightarrow \gamma \gamma)$

At LHC establish signal over background to discover Higgs

Keep in mind parton distribution function (pdf)

LHC RF CAVITIES

Accelerating system:

- Superconducting cavities
- 8 single-cell cavities per ring

- 2 MV/cavity at 400 MHz.
- 1 klystron per cavity

LHC MAGNETS

Dipole Magnets

5000 Dipole magnets (14.2m) Superconducting (1.9K) Liquid Helium 8.33 Tesla field Nominal Current 11796A Stored Energy 7.1 MJ/magnet (1.1 GJ total)

Dipole section

Quadrupole section

LHC Computing

Raw Data 300 GB/s

Trigger - multiple levels - 300 MB/s Interesting events sent to tape

Data processing on World-Wide LHC Computing Grid (WLCG)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- CERN is Tier-0
- 11 Tier-1 Centers
- 150 Tier-2 Centers

Data estimate: $10 - 15 \times 10^6$ GB/yr !!!

Standard Model

Backup slides

LHC

EARLY LHC (ATLAS) EVENTS

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

LHC

EARLY LHC (CMS) EVENTS

LHC HIGGS SIGNIFICANCE

Higgs Significance at the LHC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

LHC

LHC HIGGS PRODUCTION AND DECAY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what?

[SG,Yuan,2004]

Extra-dimensions : Warped or Flat [Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni,, 2007, 08] [Cao, SG, Yuan, 2003] Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation

EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter signals (Missing Energy)

[SG, Jung, Lee, Wells, 2008, 09]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

NEW PHYSICS POSSIBILITIES

Belief that something should cure these problems. But what? Supersymmetry

[SG,Yuan,2004]

Extra-dimensions : Warped or Flat [Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni, 2007, 08] [Cao, SG, Yuan, 2003] Strong dynamics (Note AdS-CFT correspondence) Little Higgs

Neutrino mass connection and lepton number violation

[EDM with Triplet Higgs: de Gouvea, SG, 2005]

Dark Matter signals (Missing Energy)

[SG, Jung, Lee, Wells, 2008, 09]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

SUPERSYMMETRY (SUSY)

Reviews: [Martin] [Dress]

SUSY: Fermions \Leftrightarrow Bosons : (Doubles particle spectrum)

 $Q \ |\Phi\rangle = |\Psi\rangle$; $Q \ |\Psi\rangle = |\Phi\rangle$

SUSY algebra: $\left\{ \begin{array}{l} Q_{\alpha}, \bar{Q}_{\dot{\beta}} \end{array} \right\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu} \\
\left\{ Q_{\alpha}, Q_{\beta} \right\} = \left\{ \bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}} \right\} = 0 \\
\left[P^{\mu}, Q_{\alpha} \right] = \left[P^{\mu}, \bar{Q}_{\dot{\alpha}} \right] = 0 \end{array}$

Introduce fermionic (Grasmann) coordinate θ : $\{\theta, \theta\} = \{\theta, \bar{\theta}\} = \{\bar{\theta}, \bar{\theta}\} = 0$ Superfield : $\Phi(x_{\mu}, \theta, \bar{\theta})$

 $\begin{array}{ll} \text{Finite SUSY transformation} & Q_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i\sigma^{\mu}_{\alpha\dot{\beta}}\bar{\delta}^{\dot{\beta}}\partial_{\mu} \\ \Phi \rightarrow e^{i(\theta Q + \bar{\theta}\bar{Q} - x_{\mu}P^{\mu})} \Phi & \bar{Q}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i\theta^{\beta}\sigma^{\mu}_{\beta\dot{\alpha}}\partial_{\mu} \\ \text{Chiral Superfield: } \bar{D}\Phi_{L} = 0 ; \ D\Phi_{R} = 0 & D_{\alpha} = \frac{\partial}{\partial \bar{\theta}^{\alpha}} + i\sigma^{\mu}_{\alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}\partial_{\mu} \\ \Phi_{L} = \phi(x) + \sqrt{2}\theta\psi(x) + \theta\theta F(x) & \bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i\theta^{\beta}\sigma^{\mu}_{\beta\dot{\alpha}}\partial_{\mu} \\ \text{Vector Superfield: } V = V^{\dagger} \\ V(x, \theta, \bar{\theta}) = -\theta\sigma_{\mu}\bar{\theta}A^{\mu}(x) + i\theta\theta\bar{\theta}\bar{\lambda}(x) - \bar{\theta}\bar{\theta}\theta\lambda(x) + \frac{1}{3}\theta\theta\bar{\theta}\bar{\theta}D(x) \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

SUSY \mathcal{L}

$$\mathcal{L} = \mathcal{L}^{Kin} + \mathcal{L}^{Pot} + \mathcal{L}^{G-Kin}$$

$$\mathcal{L}^{C} = \mathcal{L}^{Kin} + \mathcal{L}^{Pot} + \mathcal{L}^{G-Kin}$$

$$\mathcal{L}^{Pot} = \int d^2\theta \, \mathcal{U}(\Phi_i) + h.c. \quad W \text{ is "Superpotential"}$$

$$\mathcal{L}^{G-Kin} = \frac{1}{32g^2} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} \qquad \mathcal{W}_{\alpha} = \bar{D}De^{-gV}D_{\alpha}e^{gV}$$

$$\mathcal{L} = |D_{\mu}\phi_i|^2 - i\bar{\psi}\sigma_{\mu}D^{\mu}\psi + ig\sqrt{2}(\phi^*\lambda\psi - \lambda\bar{\psi}\phi)$$

$$- \left|\frac{\partial W}{\partial\phi_i}\right|^2 + \left(\frac{\partial^2 W}{\partial\phi_j\partial_k\phi}\psi_j\psi_k + h.c.\right)$$

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-\frac{1}{2}\sum_{a}\left|\sum_{i,j}g\phi_{i}^{*}T_{ij}^{a}\phi_{j}\right|^{2}-\frac{i}{2}\lambda^{a}\sigma_{\mu}\partial^{\mu}\bar{\lambda}_{a}+\frac{1}{2}gf^{abc}\lambda_{a}\sigma_{\mu}A_{b}^{\mu}\bar{\lambda}_{c}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Minimal Supersymmetric Standard Model (MSSM) MSSM Superpotential : $W = y_u U^c Q H_u - y_d D^c Q H_d - y_e E^c L H_d + \mu H_u H_d$

 $SUSY \implies M_{\psi} = M_{\phi}$ Experiment $\implies SUSY$ broker

SUSY \mathcal{L}

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\begin{aligned} \mathcal{L} &= \left| D_{\mu} \phi_{i} \right|^{2} - i\psi \sigma_{\mu} D^{\mu} \psi + ig \sqrt{2} (\phi^{*} \lambda \psi - \lambda \psi \phi) \\ &- \left| \frac{\partial W}{\partial \phi_{i}} \right|^{2} + \left(\frac{\partial^{2} W}{\partial \phi_{j} \partial_{k} \phi} \psi_{j} \psi_{k} + h.c. \right) \\ &- \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \sum_{a} \left| \sum_{i,j} g \phi_{i}^{*} T_{ij}^{a} \phi_{j} \right|^{2} - \frac{i}{2} \lambda^{a} \sigma_{\mu} \partial^{\mu} \bar{\lambda}_{a} + \frac{1}{2} g f^{abc} \lambda_{a} \sigma_{\mu} A_{b}^{\mu} \bar{\lambda}_{c} \end{aligned}$$

Minimal Supersymmetric Standard Model (MSSM) MSSM Superpotential : $W = y_u U^c Q H_u - y_d D^c Q H_d - y_e E^c L H_d + \mu H_u H_d$

 $SUSY \implies M_{\psi} = M_{\phi}$ Experiment $\implies SUSY$ broken

SUSY SOLVES GAUGE HIERARCHY PROBLEM

Similarly h, W^{\pm}, Z divergences cancelled by $\tilde{\lambda}$ Gauge Coupling Unification - GUT SUSY SO(10)Includes $\nu_R \Rightarrow$ Neutrino seesaw mass

SUSY SOLVES GAUGE HIERARCHY PROBLEM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\stackrel{h}{\xrightarrow{-i\frac{y_{l}}{\sqrt{2}}}} \stackrel{t_{L},t_{R}}{\xrightarrow{h}} + \stackrel{()}{\xrightarrow{i\frac{y_{l}}{\sqrt{2}}}} \stackrel{t_{L},t_{R}}{\xrightarrow{i\frac{y_{l}}{\sqrt{2}}}} = 0$$

$$\Lambda^{2} \text{ divergence cancelled}$$

Similarly h, W^{\pm}, Z divergences cancelled by $\tilde{\lambda}$ Gauge Coupling Unification - GUT SUSY SO(10)Includes $\nu_R \Rightarrow$ Neutrino seesaw mass

SUSY BREAKING

SUSY has to be broken

- Spectrum depends on SUSY Breaking/Mediation + RGE
- Minimal Supersymmetric SM (MSSM) general parametrization

 $\mathcal{L}_{SUSY\,Br}^{\text{soft}} \supseteq -\tfrac{1}{2} M_{\tilde{\lambda}} \tilde{\lambda} \tilde{\lambda} - \tilde{u^c} \mathsf{a}_u \tilde{Q} H_u - \tilde{Q}^{\dagger} \tilde{m}_Q^2 \tilde{Q} - m_H^2 H^* H - b \mu H_u H_d + \cdots$

MSSM predicts a LIGHT Higgs. At tree level: $m_h < m_Z$.

- But LEP bound $m_h \gtrsim 114 \, \text{GeV}$
- Sizable one loop correction: $\delta m_h^2 \lesssim \frac{3}{4\pi^2} y_t^2 m_t^2 \log \frac{\tilde{m_1} \tilde{m_2}}{m_t^2}$
 - LEP Higgs bound needs heavy stop \Rightarrow "Little hierarchy problem"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Standard Model Backup slides LHC

R-PARITY

SM gauge symmetry allows $W_{\Delta L} = LH_u + LE^cL + QD^cL$; $W_{\Delta B} = U^cD^cD^c$ These induce proton decay : $\tau_p \sim 10^{-10}s$ for $\tilde{m} \sim 1$ TeV Impose Matter Parity $R_M = (-1)^{3(B-L)}$ to forbid ΔL and ΔB terms For components this implies : R-parity $R_p = (-1)^{3(B-L)+2s}$ Consequence : The Lightest SUSY Particle (LSP) is stable

- Cosmologically stable Dark Matter
- Missing Energy at Colliders

WARPED EXTRA DIMENSION

SM in background 5D warped AdS space

[Randall, Sundrum 99]

y=πR IR

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$ds^2 = e^{-2k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu}) + dy^2$$

- Planck (UV) Brane
- TeV (IR) Brane
- R : radius of Ex. Dim.
- k : AdS curvature scale ($k \lesssim M_{pl}$)

Hierarchy prob soln:

• IR localized Higgs : $M_{EW} \sim ke^{-k\pi R}$: Choose $k\pi R \sim 34$

πR

v=0

UV

• CFT dual is a composite Higgs model

BULK GAUGE GROUP

[Agashe, Delgado, May, Sundrum 03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W_L^3, W_R^3, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

Gauge Symmetry breaking:

• By Boundary Condition (BC):

• $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$

- By VEV of TeV brane Higgs
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

 $A_{-+}(x, y)$ BC: $A|_{y=0} = 0; \ \partial_y A|_{y=\pi R} = 0$

Higgs $\Sigma = (2, 2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

BULK GAUGE GROUP

[Agashe, Delgado, May, Sundrum 03]

Bulk gauge group : $SU(3)_{QCD} \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_X$

- 8 gluons
- 3 neutral EW (W_L^3, W_R^3, X)
- 2 charged EW (W_L^{\pm}, W_R^{\pm})

Gauge Symmetry breaking:

By Boundary Condition (BC):

•
$$SU(2)_R \times U(1)_X \rightarrow U(1)_Y$$

- By VEV of TeV brane Higgs
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

 $A_{-+}(x, y)$ BC: $A|_{y=0} = 0$; $\partial_y A|_{y=\pi R} = 0$

Higgs $\Sigma=(2,2)$

KALUZA-KLEIN (KK) EXPANSION

[See for example: Gherghetta, Pomarol, 2000]

$$S_5 = -\int d^4x \int dy \sqrt{-g} \left[\frac{1}{4g_5^2} F_{MN}^2 + |\partial_M \phi|^2 + i \bar{\Psi} \gamma^M D_M \Psi + m_\phi^2 |\phi|^2 + i m_\Psi \bar{\Psi} \Psi \right]$$

EOM:

$$\left[e^{2\sigma}\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}+e^{s\sigma}\partial_{5}(e^{-s\sigma}\partial_{5})-M_{\Phi}^{2}\right]\Phi(x^{\mu},y)=0$$

Kaluza-Klein expansion

$$\Phi(x^{\mu}, y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0}^{\infty} \Phi^{(n)}(x^{\mu}) f_n(y)$$

Orthonormality relation:

$$\frac{1}{2\pi R} \int_{-\pi R}^{\pi R} dy \, e^{(2-s)\sigma} f_n(y) f_m(y) = \delta_{nm}$$

EOM implies

$$\left[-e^{s\sigma}\partial_5(e^{-s\sigma}\partial_5)+\widehat{M}_{\Phi}^2\right]f_n=e^{2\sigma}m_n^2f_n$$

Solution is

$$f_n(y) = \frac{e^{s\sigma/2}}{N_n} \left[J_\alpha(\frac{m_n}{k}e^{\sigma}) + b_\alpha(m_n) Y_\alpha(\frac{m_n}{k}e^{\sigma}) \right]$$

FIND THE KK TOWER

Prediction: A Kaluza-Klein tower of states Look for it at the LHC

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

CONSTRAINTS ON WARPED EXTRA DIMENSION

Precision Electroweak Constraints (S, T, Zbb)

- Bulk gauge symm $SU(2)_L imes U(1)$ (SM ψ , H on TeV Brane)
 - T parameter $\sim (\frac{v}{M_{KK}})^2 (k\pi R)$

[Csaki, Erlich, Terning 02]

- S parameter also $(k\pi R)$ enhanced
- AdS bulk gauge symm $SU(2)_R \Leftrightarrow CFT$ Custodial Symm

[Agashe, Delgado, May, Sundrum 03]

- T parameter Protected
- S parameter $\frac{1}{k\pi R}$ for light bulk fermions
- Problem: Zbb shifted
- 3rd gen quarks (2,2)

[Agashe, Contino, DaRold, Pomarol 06]

- Zbb coupling Protected
- Precision EW constraints $\Rightarrow M_{KK} \gtrsim 2-3$ TeV

[Carena, Ponton, Santiago, Wagner 06,07] [Bouchart, Moreau-08] [Djouadi, Moreau, Richard 06]

KK STATES AT THE LHC

$$L = 300 \ fb^{-1}$$
 LHC reach is about 2 TeV

$$gg
ightarrow h^{(1)}
ightarrow t ar{t}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[Agashe, Davoudiasl, Perez, Soni 07] [Fitzpatrick, Kaplan, Randall, Wang 07]

•
$$g^{(1)}_{\mu}$$
 (KK Gluon) $qar{q} o g^{(1)} o tar{t}$

$$L = 100 \ fb^{-1}$$
 LHC reach is 4 TeV

[Agashe, Belyaev, Krupovnickas,Perez,Virzi 06] [Lillie, Randall, Wang, 07] [Lillie, Shu, Tait 07]

•
$$Z^{(1)}_{\mu}, W^{(1)\pm}_{\mu}$$
 $(Z_{KK} \equiv Z', W^{\pm}_{KK} \equiv W')$ $q\bar{q} \rightarrow Z', W' \rightarrow XX$

[Agashe, Davoudiasl, SG, Han, Huang, Perez, Si, Soni 0709.0007 & 0810.1497]

• $\psi^{(1)}$ (KK Fermion) [Agashe, Servant 04][Dennis et al 07][Contino, Servant 08][SG et al ongoing]

Radion

Review: [Davoudiasl, SG, Ponton, Santiago, New J.Phys.12:075011,2010. arXiv:0908.1968 [hep-ph]]

Hidden sector dark matter

Coupled to SM (us) via the Higgs Accidental Z₂ symmetry : $\psi \rightarrow -\psi$, SM \rightarrow SM

[SG, Jung, Lee, Wells:2008, 2009]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• So ψ cosmologically stable \implies Dark Matter

Direct Detection?

Hidden sector signature at the LHC?

Standard Model

Backup slides

Hidden sector dark matter

HIDDEN SECTOR DARK MATTER AT LHC

[SG, Lee, Wells:2009]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Look for LHC signal in $pp \rightarrow jj + \not \!\!\!\!/ _T$