Hidden Sector Dark Matter and its Signatures (0801.3456 & 0904.2007 [hep-ph])

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai

with Sunghoon Jung, Seung Lee, James Wells

Dark Matter in the LHC Era, SINP Kolkata Jan 2011

.

Motivation

 $U(1)_X$ gauge factor appears in many BSM theories $U(1)_X$ Hidden sector :

Gauge Boson (X_{μ}) , Scalar (Φ_H) , Fermion (ψ)

LHC signals of X_{μ} [S.Jung, SG, J.Wells : 08]

•
$$h \to X_{\mu} X_{\mu} \to \ell^+ \ell^- \ell^+ \ell^-$$

Phenomenology of ψ [SG, S.Lee, J.Wells : 09]

- ψ can be Dark Matter
- Direct detection
- LHC signals: $h \rightarrow \psi \psi$

[Holdom : 86] [Schabinger, Wells : 05] [Patt, Wilczek : 06] [Kumar, Wells : 06]

[Feldman, Liu, Nath : 07] [Strassler, Zurek : 07] [Kim, Lee, Shin : 08]

[Arkani-Hamed, Finkbeiner, Slatyer, Weiner : 08]

3

Framework

 $\begin{array}{l} \mathsf{SM} \ \times \ U(1)_X \\ U(1)_X \textit{sector} : \textit{GaugeBoson}(X_\mu), \textit{Scalar}(\Phi_H), \textit{Fermion}(\psi) \\ \\ \mathsf{SM} \ \leftrightarrow \ U(1)_X \ \textit{communication} \end{array}$

$$\mathcal{L} \supset -\alpha |\Phi_{SM}|^2 |\Phi_H|^2 + \frac{\eta}{2} X_{\mu\nu} B^{\mu\nu}$$

$$\overset{B_{\mu}}{\swarrow} \overset{X_{\mu}}{\checkmark} \overset{\Psi}{\downarrow} \overset{\Psi}{\downarrow}$$

$$\mathcal{V} \text{ is such that}$$

$$SU(2)_L \times U(1)_Y \text{ breaking }: \langle \phi_{SM} \rangle = v$$

$$U(1)_X \text{ breaking }: \langle \phi_H \rangle = \xi$$
Causes $\phi_H \leftrightarrow \phi_{SM}$ mixing (angle: $s_h \equiv sin(\theta_h)$; masses: m_h, m_H)
 $\begin{pmatrix} \phi_{SM} \\ \phi_H \end{pmatrix} = \begin{pmatrix} c_h & s_h \\ -s_h & c_h \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}$

[Schabinger, Wells : 05] [Bowen, Cui, Wells : 07]

Explore X_{μ} signatures via

 $\mathcal{L} \supset rac{\eta}{2} X_{\mu
u} B^{\mu
u}$

[S.Jung, SG, J.Wells : 0801.3456 [hep-ph]]

æ

See also: [Chun et al: 10] [Mambrini et al: 09, 10] (talks in this workshop)

X_{μ} effects via $\mathcal{L} \supset rac{\eta}{2} X_{\mu u} B^{\mu u}$

- Diagonalize Gauge Boson sector : $(B_{\mu}, W^3_{\mu}, X_{\mu}) \rightarrow (A_{\mu}, Z_{\mu}, Z'_{\mu})$
 - Mixing angle $s_{\alpha} \equiv sin(\theta_{\alpha}) \approx -\frac{s_W \eta}{1-M_\chi^2/M_Z^2}$ for $\eta \ll 1$
- Shifts in M_Z , $g_{\psi\psi Z}$, $sin^2\theta_W$, ...
 - Electroweak precision constraint : $~~\frac{\eta}{\sqrt{|1-M_{Z'}^2/M_Z^2|}} \lesssim 10^{-2}$

See also: [Babu, Kolda, March-Russell : 98] [Chang, Ng, Wu : 06, 07] [Feldman, Liu, Nath : 07]

Pick: $\eta = 10^{-4}$; $c_h^2 = 0.5$ • If $M_{Z'} < \frac{m_h}{2}$ can have $h \rightarrow Z'Z'$ decay See also: [Strassler : 08]

Benchmark points:

Point	A	В	С	D	E	F
(<i>M_h</i> , <i>M_{Z'}</i>) (GeV)	120, 5	120, 50	150, 5	150, 50	250, 5	250, 50

イロト 不得 トイヨト イヨト 二日

æ

-> -< ≣ >

Looking for Z' at the LHC

Basic cuts :	$p_{T\ell} \geq 20, 10, 10, 10{\rm GeV}$;	$ \eta_\ell < 2.5$
ΔR cut :	$0.05 < \Delta R_{\ell^+\ell^-} < 2.5$		
M _{ij} cuts :	$M_{ee}=M_{\mu\mu}\pm 10{\rm GeV}\ ,$		
M _{ijkl} cut :	$M_{ee\mu\mu}=M_h\pm 10{\rm GeV}$		

문▶ 문

Tevatron	Á	В	Ċ	D	Ē	F	
Z'Z'	8.8, 4.3	3.9, 0.8	4.2, 2.4	2.3, 0.8	0.05, 0.02	0.03, 0.01	
hZZ (ab)	0.8,0	1.4,0	7.4,0	12.8,0	17, 1.6	21.4, 1.8	
VV	$9.7, 4.3 imes 10^{-3}$		$9.7, 3.5 imes 10^{-3}$		9.7,	0.01	
LHC	A	В	C	D	E	F	
Z'Z'	631, 245	236,44	348, 173	212, 57	12, 5.6	6.5, 2.2	
hZZ (ab)	0,0	130, 1.2	630, 2.3	1280, 2.	5 3440, 850	4840, 846	
VV	67, 0.02		67, 0.03		6	67, 0.3	

(c.s. in fb : w/o cuts , with cuts)

Explore hidden-sector ψ (coupled to Φ_H) via

$$\mathcal{L} \supset -\alpha \ |\Phi_{SM}|^2 |\Phi_H|^2$$

[SG, S.Lee, J.Wells 0904.2007 [hep-ph]]

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Fermion sector (concrete example)

Two vector-like pairs : $\psi,\,\psi^{\rm c}$; $\chi,\,\chi^{\rm c}$

Writing in 2-comp (Weyl) spinors:

$$\mathcal{L} \supset \mathcal{L}^{CD} - \left(\lambda_{s} \Phi_{H} \psi \chi + \lambda'_{s} \Phi_{H}^{*} \psi^{c} \chi^{c} + h.c.\right) +$$

$$- \left(M_{\psi} \psi^{c} \psi + M_{\chi} \chi^{c} \chi + h.c.\right)$$

$$\mathcal{L}_{\psi}^{CD} = \psi^{\dagger} i \bar{\sigma}^{\mu} \partial_{\mu} \psi + g_{\chi} \psi^{\dagger} \bar{\sigma}^{\mu} q_{\psi} \psi \hat{X}_{\mu}$$

Writing in 4-comp spinors:

$$\Psi \equiv \begin{pmatrix} \psi \\ \psi^c \end{pmatrix} \quad ; \qquad \mathcal{X} \equiv \begin{pmatrix} \chi \\ \chi^c \end{pmatrix} \ ,$$

$$\mathcal{L}_{\rm mass} = - \begin{pmatrix} \bar{\Psi_R} & \bar{\mathcal{X}}_R^c \end{pmatrix} \begin{pmatrix} M_\psi & m_D' \\ m_D & M_\chi \end{pmatrix} \begin{pmatrix} \Psi_L \\ \mathcal{X}_L^c \end{pmatrix} + h.c.$$

Rotate to Mass basis: $\{\Psi, \mathcal{X}^c\}_{L,R} \rightarrow \{\Psi_1, \Psi_2\}_{L,R}$

Focus on the pheno of ψ_1 (lightest). Call it ψ henceforth. Note Z_2 symmetry

伺い イヨト イヨト

$$\mathcal{L} \supset \overline{\psi} i \gamma^{\mu} D_{\mu} \psi + \kappa \ \phi_{H} \overline{\psi} \psi + M_{\psi} \ \overline{\psi} \psi$$

Accidental Z₂ symmetry : $\psi \rightarrow -\psi$, $SM \rightarrow SM$

- So ψ cosmologically stable \implies Dark Matter
- ψ Vector-like or Chiral. Dirac or Majorana
- Here focus on Higgs Mixing route

Parameters :

 $M_{\psi}, \kappa, s_h, m_h, m_H$

• • = • • = •

 $\label{eq:Observations} \begin{array}{c} \mbox{Observations}:\ \Omega_0=0.222\pm0.02\ \mbox{[PDG '08]}\\ \mbox{Channels}\ \psi\psi\to b\bar{b}, W^+W^-\,,\,ZZ\,,\,hh\,,\,t\bar{t} \end{array}$

Obtain thermally averaged c.s. (Analytical and Numerical)

Cross-check with micrOMEGAs [Belanger, Boudjema, Phukov, Semenov]

For example:

$$\sigma \left(\psi \bar{\psi} \to f \bar{f} \right) \approx \frac{N_c \kappa_{11}^2 \lambda_f^2 s_h^2 c_h^2}{8 \pi v_{\rm rel}} \frac{|\mathbf{p}_{\psi}|^2}{(s - m_h^2)^2} \left(1 - \frac{4m_f^2}{s} \right)^{3/2}$$

伺 ト イヨト イヨト

Direct Detection

Effective $h\bar{N}N$ coupling $\approx 2\times 10^{-3}$ [Shifman, Vainshtein, Zakharov (1973)]

 $\psi\text{-}$ Nucleon c.s. :

$$\sigma\left(\psi N \to \psi N\right) \approx \frac{\kappa_{11}^2 s_h^2 c_h^2 \lambda_N^2}{8\pi v_{rel}} \frac{\left(|\mathbf{p}_{\psi}|^2 + m_N^2\right)}{(t - m_h^2)^2}$$

Direct Detection Expt.

• □ ▶ • < </p>
• □ ▶ • < </p>

.⊒⇒

ψ Relic Density + Direct Detection

Shaded:

 $\sigma_{Dir}\gtrsim 10^{-43}~{
m cm}^2$ (dark); $\gtrsim 10^{-44}~{
m cm}^2$ (medium); $\gtrsim 10^{-45}~{
m cm}^2$ (light)

• • = • • = •

э

Higgs decay and BR

If $m_h > 2M_{\psi}$: $h \rightarrow \psi \overline{\psi}$ Invisible Decay!

Decay channels: $h \rightarrow \psi \bar{\psi} , \ b \bar{b} , \ WW , \ ZZ , \ t \bar{t}$

For example

$$\Gamma(h \to \psi \bar{\psi}) = \frac{\kappa_{11}^2 s_h^2}{16\pi} m_h \left(1 - \frac{4M_{\psi}^2}{m_h^2}\right)^{3/2}$$

 $M_{\psi} \approx 59 \, GeV, s_h = 0.25, \kappa_{11} = 2.0, \kappa_{3\phi} = 1.0, m_H = 1 \, TeV$

NB: Relic density not enforced

< A >

- ₹ 🖬 🕨

Scan for BR_{INV} ($m_h = 120$)

Correct relic density; Direct detection constraint

$h \rightarrow INV$ LHC Signature (qqh - WBF)

[O. J. P. Eboli and D. Zeppenfeld, 2000]

$$\begin{split} p_T^J &> 40 \ , \ |\eta_j| < 5.0 \ , \ |\eta_{j_1} - \eta_{j_2}| > 4.4 \ , \ \eta_{j_1} \cdot \eta_{j_2} < 0 \ , \\ \dot{p}_T &> 100 \ {\rm GeV} \ , \ M_{ij} > 1200 \ {\rm GeV} \ , \ \phi_{ij} < 1 \ . \end{split}$$

For $s_h = 0.25$, $BR_{INV} = 0.25$:

m_h (GeV)	$\sigma_S BR_{inv}(fb)$	$\sigma_B(fb)$	$\mathcal{L}_{5\sigma}$ (fb ⁻¹)
120	22.7	167	8
200	18	167	12.8
300	13.2	167	23.7

[R.M.Godbole, M.Guchait, K.Mazumdar, S.Moretti, D.P.Roy, 2003] [H. Davoudiasl, T. Han and H. E. Logan, 2004]

 $p_{T\,\ell} > 10 \;,\; |\eta_\ell| < 2.5 \;,\; \not p_T > 100 \; {\rm GeV} \;,\; |M_{\ell^+\ell^-} \; - \; m_Z| < 10 \; {\rm GeV} \;.$

For $s_h = 0.25$, $BR_{INV} = 0.25$:

m_h (GeV)	$\sigma_S BR_{inv}(fb)$	$\sigma_B(fb)$	$\mathcal{L}_{5\sigma}$ (fb ⁻¹)
120	2.1	26.3	146
200	0.8	26.3	1059
300	0.26	26.3	-

イロト イポト イヨト イヨト 二日

- $U(1)_X$ hidden sector *naturally* explains Ω_{DM}
- If $m_h > 2M_{Z'}$: $h \to Z'Z' \to \ell^+ \ell^- \ell^+ \ell^-$ via K.E. mixing

• Good reach at Tevatron, LHC

- If $m_h > 2M_\psi$: $h \rightarrow INV$ via Higgs quartic
 - $h \rightarrow SM$ suppressed
 - Vector Boson Fusion promising at the LHC
- Direct Detection in ongoing/upcoming experiments

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Backup slides

御 と く き と く き と

æ

Rough estimate :

 $\sigma_\ell(\psi\psi \to YY) < 16\pi/s$

Consider $\psi\psi \rightarrow \psi\psi$ Stronger constraint at lower energies Bound: $\kappa_{11}s_h \lesssim 2.5$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Recent indirect detection hints

Fermi LAT [0905.0025 [astro-ph.HE]]

Dark matter annihilations? or astrophysical sources (pulsars);?