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We study a model of freely cooling inelastic granular gas in one dimension, with a restitution coefficient
which approaches the elastic limit below a relative velocity scale �. While at early times (t� ��1) the
gas behaves as a completely inelastic sticky gas conforming to predictions of earlier studies, at late times
(t� ��1) it exhibits a new fluctuation-dominated phase ordering state. We find distinct scaling behavior
for the (i) density distribution function, (ii) occupied and empty gap distribution functions, (iii) the density
structure function, and (iv) the velocity structure function, as compared to the completely inelastic sticky
gas. The spatial structure functions (iii) and (iv) violate the Porod law. Within a mean-field approximation,
the exponents describing the structure functions are related to those describing the spatial gap distribution
functions.
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Flowing granular media exhibit varied physical phe-
nomena [1,2]. A simple, well-studied model that captures
many features of flowing granular systems is a gas of
particles undergoing inelastic collisions [2–11]. The sys-
tem may be externally driven or allowed to cool freely.
However, real granular gases have elastic collisions when
the relative velocity of particles approaches zero [12].
Thus, a realistic model of cooling granular gas should
have a relative velocity dependent restitution coefficient
[12]. In this Letter we focus on such a model.

In general, a system freely relaxing to an ordered state
has a macroscopic length scale L�t� that increases with
time t [13]. In addition, for usual phase ordering systems, a
dominant L�t� results in a robust scaling law called the
Porod law [13,14]. For scalar order parameters, the Porod
law states that the scaled structure function S=Ld �
�kL��� for large kL, with � � 2 in one dimension.
Contrary to this clean scenario, in certain driven systems
[15–18], an unusual phase ordering was observed. These
systems have a macroscopic coarsening length scale L but
the domain lengths have a power-law distribution with a
large negative power. This leads to a violation of the Porod
law with � � 2. We shall refer to such systems as
fluctuation-dominated phase ordering (FDPO) systems.
We demonstrate below that a coarsening granular gas too
has such an unusual FDPO state.

The issue of an inelastic gas showing coarsening and
phase ordering has been addressed in many earlier publi-
cations on the subject [6–9,11,19,20]. It is now well known
that both the freely cooling inelastic gas (0< r< 1) and
the sticky gas (r � 0) undergo coarsening with a growing
length scale L�t� � t1=z, with z � 3=2 in one dimension
[4,6,7]. The sticky gas problem in one dimension can be
solved exactly and is known to be equivalent to the inviscid
Burgers equation [6,21]. From this equivalence, the struc-
ture functions of the sticky gas can be inferred to obey the
Porod law [21].

Numerical studies have tried to relate the behavior of the
inelastic gas to the sticky gas. It has been shown that at
large times the decay of total energy of the inelastic gas is
identical to the sticky gas [7]. Moreover, other quantities
like L�t� and velocity distribution function have the same
scaling form as that of the sticky gas. This suggested that
for any deviation from the elastic limit, the large time
scaling behavior crosses over to that of the sticky gas and
that the underlying continuum equation is the inviscid
Burgers equation [7].

In this Letter, we show that if a granular gas is modeled
as a gas of particles having a velocity dependent restitution
coefficient, interesting new physics appear. In the late time
regime, the equivalence with the sticky gas breaks down
and the system exhibits a FDPO state. For our granular gas
model, velocity dependence of the restitution coefficient is
chosen to be

 r � �1� r0� exp��jvrel=�j�� � r0: (1)

For relative velocity vrel � �, r! 1, and for vrel � �,
r! r0 < 1, mimicking the experimental scenario [12].
The parameter � determines how sharply the crossover
from r0 to 1 happens across the crossover scale �. While
experiments [12] suggest a wide range of values for �, an
analysis of viscoelastic spheres gives � � 1=5 [22]. We
note that taking first the limit �! 1 (r becomes a step
function) and then �! 0, this model becomes the same as
the model studied in Ref. [7]. Other studies of granular
gases with velocity dependent coefficient of restitution
may be found in [23] and references within.

Our main result is that the cooling granular gas has a
time scale t1 � ��1, such that the density distribution
function, and various spatial distribution functions, show
a complete change of behavior across it. Yet at the same
time, the total energy E�t� decays as �t�2=3 throughout,
without any signature of change across the time scale t1.
For t� t1, we find that the granular gas behaves as a sticky
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gas (as in [7]). But for late times t1 � t� t2 (where t2 �
��3), the phase ordering is distinct from the sticky gas. In
particular, the density-density and velocity-velocity struc-
ture functions show violation of the Porod law. We note
that the scale t2, beyond which all collisions are elastic and
E�t� stops decreasing, is easily understood in terms of the
velocity scaling law [7]—v�t2� � t

�1=3
2 � � implying t2 �

��3. On the contrary, the interesting scale t1 that we find is
much smaller.

We now define our model more precisely. We considerN
point particles of equal mass on a ring of length L. Initially,
the particles are distributed randomly in space with their
velocities drawn from a normal distribution. The particles
undergo inelastic, momentum conserving collisions such
that when two particles with velocity ui and uj collide, the
final velocities u0i and u0j are given by

 u0i;j � ui;j

�
1� r

2

�
� uj;i

�
1� r

2

�
: (2)

We define coarse-grained densities and velocities for the
granular gas as follows [10]. At any point of time the
system is divided into N equally sized spatial boxes. The
total number of particles in the ith (i � 1; 2; . . . ; N) box
defines the mass density �i. The velocity vi is defined as
the sum of the velocities of the particles in box i. For the
sticky gas it suffices to talk about distributions of masses
and velocities of individual particles.

We have done an event driven molecular dynamics
simulation for system sizes L, ranging from 20 000–
50 000 (in units of interparticle spacing). The particle
density is set to 1 throughout. The system was evolved
up to time t � 32 000–64 000 (in units of initial mean
collision time). For these times L�t� � L. Simulations
were done for different � (namely 3, 4, 5, 10, and 1), �
(namely 0.001–0.01), and r0 (namely 0.1, 0.5, and 0.8)
values. There was no qualitative difference found for the
various sets of these parameter values. Hence, we choose a
specific set for the data presented below—r0 � 0:5, � �

1, � � 0:01 (unless otherwise mentioned). Whenever
there is a quantitative dependence on �, we mention it.

The existence of the time scale t1 can be seen by
examining h�2i, where � is the density. In Fig. 1 we
show the time dependence of h�2i for systems with the
same � � 3 but different � values. At early times h�2i �

t2=3, as for the sticky gas. The departure from the sticky gas
curve happens at a time scale t1 which increases with
decreasing �. The curves collapse when t is scaled by
��1 (see inset). We have checked that this dependence is
independent of �, i.e., t1 � ��1 for all �.

Currently we do not have a deeper understanding of the
time scale t1. Intriguingly, we find no signature of t1 in the
decay of the total energy E�t� � t�2=3, which is related to
the second moment of the velocity distribution. We now
present results for density distribution, the empty and
occupied gap distributions, and the density and velocity
structure functions. For the early time regime t� t1, we
found these quantities to be numerically equivalent to the
corresponding quantities of the sticky gas [24]. We will
focus on the late time regime t� t1, where there is devia-
tion from the sticky gas.

Let P1��; t� be the probability that a box has mass
density � at time t. In Fig. 2, the variation of P1��; t�
with � is shown for different times. For small � (� <
10), P1��; t� increases with time to a nonzero constant.
For intermediate � the slope increases to a constant. The
cutoff increases to infinity with time. From these features,
we conclude that when t� 1, P1��; t� approaches a non-
zero time independent power-law distribution, i.e.,

 lim
t�t1

lim
L!1

P1��; t� � ���1 : (3)

Conservation of density (h�i � 1) implies that �1 > 2.
Consistent with this, we find that the power law for the
curves at various times extrapolates asymptotically to �1 ’
2:83. The cutoff �max�t� scales as L�t� � t� with � � 2=3.
There are strong corrections to scaling, as is clear from the
change in apparent slope for different times. Hence, it is
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FIG. 1. The variation of h�2i with time t is shown for different
values of � when � � 3:0. The dashed line corresponds to the
sticky gas. Inset: The curves collapse when t is scaled by ��1.
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FIG. 2. The variation of P1��; t� with � is shown for different
times.
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not possible to obtain data collapse by scaling unless one
measures P1��; t� for even larger densities and times. The
value of �1 varies from 2.30 to 2.83 as � varies from 3 to
1.

The data of Fig. 2 imply a scenario in which low density
clusters do not get depleted from the system. This is in
contrast to the sticky gas, where the probability of the mass
clusters, P1s�m; t� �m�1=2t�1=3 for m� t2=3 [6], decays
to zero with time. The coarsening process in the sticky gas
is one of pure aggregation, transferring mass from smaller
to larger mass scales. On the other hand, our model shows
an effective aggregation-fragmentation dynamics at late
times. The effective rates are such that mass loss and
gain at small scales are balanced out.

Further support to the above picture comes from the
interparticle and interhole gap distribution functions. Let
P�e;o�2 �x; t� be the probability of finding a gap of exactly x
empty (e) or occupied (o) boxes. The variation of
P�e;o�2 �x; t� with x for different times is shown in Fig. 3.
For small masses, they decay as a power law with power
�2 ’ �2:2. For large masses, P�o�2 �x; t� has a plateau even-
tually cut off at scales x�L�t�. The shape of the plateau
and cutoff is reminiscent of the number distribution of gaps
in the sticky gas which have the form N2s�x; t� �
t�4=3f2s�x=L�t�� with f2s�z� ! 1 for z� 1 [6]. The large
x of P�o�2 �x; t� scales exactly asN2s�x; t� (see inset of Fig. 3).
Since

R
dxN2s � t

�2=3, the area under the plateau will
eventually go to zero. So while the big gaps in our model
scale as that of the sticky gas, the small gaps decay as a
power law:

 lim
t�t1

lim
L!1

P�e;o�2 �x; t� � x��2 : (4)

The exponent �2 has no discernible dependence on �.
The interparticle gap distribution has a bearing on the

density-density and velocity-velocity correlation func-

tions. The ordering process will be affected by the abun-
dance of smaller gaps and Porod law could be violated. For
the sticky gas, numerical results [21,24] confirm that Porod
law holds for both density-density and velocity-velocity
correlation functions. We now discuss the case of our
granular gas and show that it is different.

Let C���x; t� � h�i�t��i�x�t�i be the equal time density-
density correlation function. The structure function
S���k; t� is the Fourier transform of C���x; t�. Similarly
we define the equal time velocity-velocity correlation func-
tion as Cvv�x; t� � hvi�t�vi�x�t�i, with its corresponding
structure function Svv�k; t�. We show that the structure
functions can be expressed in terms of the gap distribution
through a mean-field approximation. C���x� is approxi-
mately equal to density square times the probability there
is a nonzero density at x given there is a nonzero density at
0. Thus (setting � � 1), C���x� 	

P
1
n�0 p2n�x�, where

p2n�x� is the probability of having exactly n empty gaps
between 0 and x with 0 and x being occupied. Let ~C���s�

and ~P�o;e�2 �s� be the Laplace transforms of C���x� and

P�o;e�2 �x�, respectively. Approximating joint distributions
by products of individual distributions [25], we obtain

 ~p 2n�s� �

1� ~P�o�2 �

2 ~P�e�2 

~P�o�2

~P�e�2 �
n�1

hxios
2 ; n � 1; (5)

 ~p 0�s� �
1

s
�

1� ~P�o�2

s2hxio
; (6)

where hxio �
R
xP�o�2 �x�dx. Equations (5) and (6) give

 

~C���s� �
1

s
�

1� ~P�o�2 �s��
1� ~P�e�2 �s��

hxios
2
1� ~P�e�2 �s� ~P

�o�
2 �s��

: (7)

The correlation function Cvv�x� is exactly the same except
for a factor of hv2i. Thus, ~Cvv�s� � v2

t
~C���s�.

100

10-2

10-4

10-6

10-8

10-10

100 101 102 103 104

P 2
(e

,o
) (x

,t)

x

100

10-2

10010-1

P 2
(e

)  t4/
3

x t-2/3

FIG. 3. The variation of P�e;o�2 �x; t� with x is shown for times
t � 16 000, 32 000, 64 000 (the larger times have larger cutoffs).
P�o�2 �x; t� is shifted downwards for clarity. The straight lines have
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Now, 1� ~P�e;o�2 �s� � s�2�1. Also, hxio �L0 since �2 >
2. This implies that ~C���s� � s

�2�3, where we have
ignored the s�1 which contributes to ��k� in the Fourier
transform. Thus, S���k� will have the scaling form

 S���k� � L3��2f3�kL�; (8)

where f3�x� � x
��� for x� 1, with �� � 3� �2. Using

hv2i �L�1 [7], we obtain

 Svv�k� � L2��2f4�kL�; (9)

where f4�x� � x��v for x� 1 with �v � 3� �2. Since
�2 	 2:20, �v � �� 	 0:80 which is very different from
2.0 seen in Porod law in one dimension.

The mean-field approximation gives a good description
of the actual problem. In Fig. 4 we show the variation of
S���k; t� with k. The data collapse onto one curve when
scaled as in Eq. (8) (see inset of Fig. 4). The scaling
function f3�z� varies as z�0:8 for large z. In Fig. 5, the
variation of Svv�k; t� with k is shown. Again a good col-
lapse is obtained when the data are scaled as in Eq. (9) such
that f4�z� � z�0:8 for large z. We found that the exponents
�� and �v have no dependence on �.

To summarize, we studied a model of freely cooling
granular gas with velocity dependent restitution coeffi-
cient. We showed the existence of a time scale t1 � ��1

beyond which the system deviates from the sticky gas
behavior. The effective dynamics in this regime is one of
aggregation and fragmentation. As a result, the spatial
distribution functions change their forms drastically. We
found new power-law exponents associated with the den-
sity distribution function and empty and occupied gap
distribution functions. The two-point spatial correlation
functions violate Porod law and the structure function
decay exponent is ’ 0:8 instead of the usual value 2. This
deviation and the existence of power laws in the one-point

functions indicate that the phase ordering is dominated by
large scale fluctuations. We hope that experiments on
cooling granular gases in quasi-one-dimension would
find the deviation in Porod law predicted by us.
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(2005); T. Pöschel, N. V. Brilliantov, and T. Schwager,
Physica (Amsterdam) 325A, 274 (2003); M. C. Turner and
L. V. Woodcock, Powder Technol. 60, 47 (1990).

[24] M. Shinde, A. Roy, D. Das, and R. Rajesh (unpublished).
[25] S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell,

Phys. Rev. Lett. 77, 2867 (1996).

10-11

10-10

10-9

10-8

10-4 10-3 10-2 10-1 100 101

S v
v(

k,
t)

k

t = 4000
t = 8000

t =16000
t =32000

10-10

10-9

10-8

102100

S v
v 

t0.
13

k t2/3

FIG. 5. The variation of Svv�k; t� with k is shown for different
times. The inset shows the data scaled as in Eq. (9). The straight
line has power �0:80.
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