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Abstract

We study a d-dimensional lattice model of diffusing coalescing massive particles, with
two parameters controlling deposition and evaporation of monomers. The unique stationary
distribution for the system exhibits a phase transition in all dimensions d ≥ 1 between a
growing phase, in which the expected mass is infinite at each site, and an exponential phase
in which the expected mass is finite. We establish rigorous upper and lower bounds on the
critical curve describing the phase transition for this system, and some asymptotics for large
or small deposition rates.
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1 Introduction

In section 1.1 we state the rules for the interacting particle system studied throughout the
paper, describe the main new results on the phase transition, and explain the intuition behind
the results. In section 1.2 we describe some previous work on this and related models, including
numerical and theoretical intuition into the two phases.

1.1 Summary of main results

Particle Rules. Particles live on Zd. Each particle has a mass with value in N = {1, 2, . . .}.
Particles move between nearest neighbour sites as independent rate one simple random walks.
When a particle moves onto an occupied site, the two particles instantly coalesce producing
a single particle whose mass is the sum of the masses of the two interacting particles. Thus
each site contains either zero or one particle at all times. There are two additional dynamics
controlled by parameters p, q ≥ 0.

Evaporation. Rate p evaporation, independently for each particle, reduces their mass by

one. A particle of mass one therefore disappears at the time of an evaporation.
Deposition. At rate q, independently at each site x ∈ Zd, particles of mass one, often called

monomers, are deposited. A monomer deposited onto an occupied site will instantly coalesce,
increasing the mass of the existing particle by one.
There is a unique stationary distribution for this process, and the law of any solution converges

to this stationary distribution (see Proposition 3). However the properties of the stationary
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distribution depend strongly on the values of the parameters (p, q). In the next section we
summarize some earlier work which describes two phases for this stationary distribution, called
the exponential phase and the growing phase. In this paper we characterize these phases by the
expected mass at a site x ∈ Zd. Note the stationary distribution is translation invariant.

Theorem 1. Let M∞(0) have the distribution of the mass of the particle at the origin in the
stationary distribution. Then, there is a non-decreasing function qc : [0,∞)→ (0,∞) so that if
q ∈ [0, qc(p)) then E[M∞(0)] <∞, while if q > qc(p) then E[M∞(0)] =∞.

The existence and non-triviality of qc(p) will be shown, in section 2, by analysing the equa-
tions for the first and second moments of the mass at a fixed site. The moment equations are
not closed. However by exploiting global properties of the distribution, namely monotonicity
and pairwise negative correlation, they yield a differential inequality for the first moment that
implies the non-triviality of qc(p). This was a surprise to the authors, and it seems to be the
presence of negative correlations, natural for systems undergoing coalescence, that allows the
moment equations to be replaced by differential inequalities that are in the correct direction
to yield non-trivial information about the phase curve. Contrast this with the contact process,
which has positive correlations and where moments equations do not seem to help in establishing
the phase transition. For large or small values of the parameters p, q the system should simplify.
In section 3 we give quite detailed theoretical reasoning behind the following asymptotics.

Conjecture. Large p, q asympotics. In all dimensions qc(p) < p and

lim
p→∞

p− qc(p)
p1/2

= βc(d) ∈ (0,∞). (1)

Small p, q asympotics. In dimension d = 1

lim
p→0

qc(p)p
−3/2 = αc ∈ (0,∞), (2)

and in dimensions d ≥ 3
lim
p→0

qc(p)p
−2 = (4pd)

−1 (3)

where pd is the escape probability for simple random walk on Zd, that is the probability that
a walk leaving the origin never returns to the origin. For each of the three limits, there is
a continuum approximation that suggests the answer. The intuition behind the asymptotic
for large p, q is that the many mass changes occur between each random walk step, so that the
model can be approximated, on suitable time-mass scales, by a simpler model with continuously
evolving masses. We will show that this simpler model has a one-parameter phase transition
with critical value βc(d). For small p, q in d = 1 there are many random walk steps between
each deposition and the model can be approximated, on suitable space-time scales, by one with
coalescing massive Brownian particles, and this model too has a one-parameter phase transition
with critical value αc. For small p, q in transient dimensions d ≥ 3, where there is no continuum
approximation for the dynamics. However the when p is small and q = αp2 the occupation
density in the stationary distribution is O(p). By rescaling the stationary distribution in space
by p1/d we expect a continuum approximation which has a compound Poisson distribution,
that is particles are positioned at a Poisson rate ŝα, and the particles have independent masses
attached with a law determined by a generating function φ̂α. There is a phase transition for
these compound Poisson limits which can be analysed, following the route used in [12] for the
mean field analysis of this model. The critical value for the continuum approximation can be
exactly found as α = (4pd)

−1, suggesting the asymptotic (3). The idea that there are various
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one parameter models that reflect the limiting situations in the two parameter phase diagram
is similar to the situation for a branching reacting system studied in [14]. In this paper we
do not establish all the weak convergence arguments needed to establish the conjectured exact
asymptotics, but the moment methods are already sufficient to imply the following weaker forms
of the asymptotics for some cases:

Theorem 2.

0 < lim inf
p→∞

p− qc(p)
p1/2

≤ lim sup
p→∞

p− qc(p)
p1/2

<∞, in all d, (4)

0 < lim inf
p→0

qc(p)p
−3/2 ≤ lim sup

p→0
qc(p)p

−3/2 <∞, in d = 1. (5)

1.2 Background for model

An earlier paper on this model [6] gives a brief bibliography for models of various physical
phenomena that involve diffusion, coalescence (or aggregation) and deposition (or immigration)
including the survey [13]. The river network model in [19] and the Takayasu model [20] are close
to our model but with zero evaporation. This zero evaporation model is well understood and has
a (non-reversible) stationary distribution with a constant mass flux from small to large masses.
The mass distribution at a fixed site has polynomial tail, which behaves like m−4/3 for large m
in d = 1 and m−3/2 in d ≥ 3. See [17, 4] for recent developments. The effect of evaporation
was studied in [12], which demonstrated numerically the phase transition that we study in this
paper and included a mean field analysis. A more detailed description of the two phases is
given in [6],[5] where the mass balance in stationarity is analysed formally, and confirmed by
numerical investigations. In the exponential phase, where q < qc(p), the mass distribution at a
site has exponential tails. In the growing phase, where q > qc(p) the mass distribution at a site
has polynomial tail and mimics the tails when there is no evaporation. Indeed it is conjectured
that the entire space-mass distribution, at large masses, should be well approximated by that
of the model with zero evaporation but with a modified deposition rate q′ = q − ps(∞), where
s(∞) is the occupation probability for any site in the stationary distribution. Note that in [6]
the phase transition is considered as q̂c(p) = inf{q : s(∞) < q/p}. (One can show, see appendix
4.1, that s(∞) < q/p for s > q̂c(p) so that this defines a true transition). If s(∞) < q/p then
the first moment equation shows that the first moment is infinite in the stationary distribution,
and hence qc(p) ≤ q̂c(p). We do not know whether qc(p) = q̂c(p), and we believe this might be
a useful tool in proving some of the many predictions about this model: exponential moments
throughout the exponential phase, behaviour at criticality (see the scaling predictions in [6]),
regularity of the critical curve p→ qc(p) e.t.c. Numerical simulations shown in Fig. 1 illustrate
the relation between our bounds and the true phase boundary in d = 1, 2, 3. It is often observed
that mean field approximations become exact in the limit d→∞ and so one may conjecture that
the critical curve approaches the lower bound (13) as d grows. An approximate d = ∞ model
has been simulated using particles that jump to any other lattice site with equal probability,
and the simulated critical curve for this model supports the large d conjecture.

2 The phase diagram

In section 2.1 we state monotonicity properties, which follow from standard methods as in [10],
and negative correlation property for the model. In section 2.2 we use these and the moment
equations to show the existence of the critical curve qc(p). The proof of negative correlation,
based on the BKR inequality as in [2], is given in section 2.3.
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Figure 1: Numerical investigation of the phase boundary. Squares, white circles and black circles
are numerical measurements of qc(p) in d = 1, 2, 3 correspondingly. Triangles are numerical
measurements of phase boundary in the approximate ’d = ∞’ model. The solid curve is the
rigorous lower bound.

2.1 Tools

We write Mt(x) for the mass of the particle at site x at time t. The construction of the process
Mt = (Mt(x) : x ∈ Zd) started from suitable initial conditions follows from standard arguments
on particle models (see for example chapter IX of [10]). One method is to consider M as the
solution of the following system of stochastic differential equations driven by Poisson processes
and indexed over the lattice: almost surely, for all t ≥ 0, x ∈ Zd

dMt(x) = dP
(q)
t (x)−χ(Mt−(x) > 0) dP

(p)
t (x)−

∑
y∼x

Mt−(x) dPt(x, y)+
∑
y∼x

Mt−(y) dPt(y, x) (6)

where y ∼ x means that y and x are nearest neighbours, and the independent families of Poisson
processes (P (q)(x) : x ∈ Zd) of rate q control the deposition, (P (p)(x) : x ∈ Zd) of rate p control
evaporation and (P (x, y) : x, y ∈ Zd) of rate (2d)−1 control the random walk steps. We consider
only solutions where for all x the path t → Mt(x) is cadlag (right continuous with left limits).
Furthermore solutions should be adapted to a filtration (Ft) where, for any s < t, the increment
Pt − Ps of any driving Poisson processes is independent of Fs. Such solutions can be found
without any further restrictions on the initial conditions. Indeed we may take as state space
the product space S = NZd

(with the product topology). The point is that for independent
random walkers without coalescence there would normally be a growth condition at infinity on
the initial state, but this is unnecessary for instantly coalescing particles (due to the bounded
jump intensities). We collect together some basic results on existence, uniqueness, stationary
distributions, moments, monotonicity and correlation, giving comments on the proofs at the
end of this section.
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Proposition 3. (i) For any initial condition M0 ∈ S that is independent of the driving
Poisson processes, there exists a pathwise unique solution to (6) with initial condition M0.
The laws of solutions form a Markov family with a Feller semigroup.

(ii) If for some θ > 0 and k ∈ N the initial moments E
∑

x |M0(x)|k exp(−θ|x|) are finite,
then one has finite moments at all times

E sup
t≤T

∑
x

|Mt(x)|ke−θ|x| <∞, for all T . (7)

(iii) There exists a unique stationary measure on S. For any solution as above, the law of Mt

converges in distribution, as t→∞, to the stationary distribution.

A stochastic monotonicity property holds, frequently used for interacting particle systems,
as follows. Put a partial order on S by writing η ≤ η for if η(x) ≤ η(x) for all x ∈ Zd. A
function F : S → R is called non-decreasing if F (η) ≤ F (η) whenever η ≤ η.

Lemma 4. Let (Mt : t ≥ 0) be the solution to (6) started from M0 ≡ 0. Then for all measurable
and non-decreasing F : S → [0,∞) the expectation E [F (Mt)] is non-decreasing in t and q and
non-increasing in p.

Lemma 5. Let (Mt : t ≥ 0) be the solution to (6) started from a deterministic initial condition
M0 = η ∈ S. Then for any t ≥ 0 the variables (Mt(x) : x ∈ Zd) are negatively associated. In
particular,

E [f(Mt(x))g(Mt(y))] ≤ E [f(Mt(x))] E [g(Mt(y))] (8)

for measurable and increasing f, g : N→ [0,∞).

Comments. 1. Proposition 3 and the monotonicity Lemma 4 are rather standard results for
(suitable) particle systems (for example see chapter 2 of Liggett [10]). We give some details in
appendix 4.1, where we emphasize the use of differential equation comparison methods. Indeed
there is a basic comparison theorem for solutions to (6): if two solutions (Mt : t ≥ 0) and (M t :
t ≥ 0) satisfy M0 ≤M0 a.s., then Mt ≤M t for all t ≥ 0 a.s. This can be obtained by standard
differential equation methods, namely a Gronwall estimate on E

∑
x e
−θ|x|χ(Mt(x) > M t(x)).

A similar comparison theorem, with suitably coupled Poisson drivers, yields the monotonicity
in p, q in Lemma 4. The monotonicity in t comes from the fact that M0 ≡ 0 is a minimal initial
condition.

2. The monotonicity can be used to show the existence of a stationary distribution, again in
familiar way for attractive particle systems. Convergence starting from zero initial condition
follows from the monotonicity of the Laplace transforms E[exp(−

∑
xMt(x)φ(x))], for φ : Zd →

[0,∞) of compact support. One needs however to check that the limit variables (M∞(x) : x ∈
Zd) are non-degenerate. Informally, if P [M∞(x) = ∞] > 0 then there would be a steady state
for an extended particle system that allowed particles with infinite mass. But in this extended
system the infinite mass particles do not feel collisions with finite mass particles, and hence
act as an autonomous coalescing system, with no immigration. Such a system does not have
a non-zero steady state. Pushing this argument further, one can find a maximal entrance law
for the extended system where all sites start with infinite mass. The decay of the infinite mass
particles leads to the coupling of the maximal and minimal entrance laws and this implies the
facts about the stationary distribution. Details are in the appendix.

3. Negative association is the strongest of various negative correlation type properties for
random vectors, with pairwise negative correlation (8) being perhaps the weakest. Pairwise
negative correlation, which is all we need for our arguments, was established for coalescing
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random walks in Arratia [1] by a Markov duality argument. We will prove Lemma 5 by a small
modification of the arguments in van den Berg and Kesten [2], which deals with purely coalescing
system, and which uses the van den Berg, Kesten, Reimers (BKR) inequality. Although their
argument goes through without much trouble for our model, we do have to check that the
extra deposition and evaporation mechanisms do not destroy the proof. This is a key tool for
this paper, and rather less standard, and so we give the proof in section 2.3. Some restriction
on initial conditions is necessary. The examples in Liggett [11] show that negative correlation
properties do not mesh well with random initial conditions, which is one reason why, unlike
positive correlations, differential techniques have not been that successful in establishing such
properties.

2.2 Phase transition via moments equations

Throughout this section we consider zero initial conditions. The distribution of (Mt(x) : x ∈ Zd)
at each fixed t is then translation invariant on Zd (by the uniqueness of solutions to (6)).
Monotonicity, as in Lemma 4, implies that the moments E[Mk

t (0)], for k > 0, are non-decreasing
in t and q, and non-increasing in p. Set

qc(p) = inf
{
q : lim

t→∞
E[Mt(0)] =∞

}
where the expectation uses zero initial conditions and parameter values (p, q). This defines qc(p)
as a non-decreasing function with values in [0,∞]. Once we have shown that qc(p) ∈ (0,∞) the
remaining statement in Theorem 1 follows from monotonicity. We use the differential equations
for the first moment m1(t) = E[Mt(0)] and the second moment m2(t) = E[M2

t (0)]. These can be
derived from (6) by developing Mk

t (0) using calculus and then taking expectation and exploiting
translation invariance. They imply that the first moment m1(t) is continuously differentiable
and satisfies

dm1

dt
(t) = q − p s(t) (9)

where s(t) = P [Mt(0) > 0], the probability the origin is occupied at time t. In particular
if q > p then m1(t) ↑ ∞ showing that the steady state will be in the growing phase where
E[M∞(0)] =∞. This shows qc(p) ≤ p, but it is simple to improve this upper bound. Indeed

ds

dt
(t) = q(1− s(t))− pP [Mt(0) = 1] + P [Mt(0) = 0, Mt(e) > 0]− s(t)

where the last two terms arise from the simple random walking into and out of the origin, and
e denotes a nearest neighbour to the origin. Bounding

P [Mt(0) = 0, Mt(e) > 0] ≤ P [Mt(0) = 0] = 1− s(t)

and discarding the term involving p one reaches

ds

dt
(t) ≤ (1 + q)− (2 + q)s(t).

Since s(0) = 0 this implies that s(t) ≤ (1 + q)/(2 + q) for all t ≥ 0 and substituting this into
the first moment equation (9) one sees that m1(t) ↑ ∞ whenever q(2 + q) > p(1 + q). This in
turn shows that

qc(p) ≤
(p− 2) +

√
p2 + 4

2
. (10)
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Further incremental improvements like this are possible on the upper bound, but without any
particular hope that one is approaching the true critical curve. For a lower bound we start with
the second moment equation

dm2

dt
(t) = q(2m1(t) + 1)− p(2m1(t)− s(t)) + 2E[Mt(0)Mt(e)] (11)

where the last term arises from the particles leaving or entering the origin. By monotonicity
dm2/dt(t) ≥ 0 and by negative correlation E[Mt(0)Mt(e)] ≤ m2

1(t). With these substitutions
we find

2m2
1(t)− 2(p− q)m1(t) + q + ps(t) ≥ 0.

The first moment equation (9) and monotonicity of m1(t) imply that s(t) ≤ q/p for all t. This
last substitution yields a quadratic inequality for the first moment:

m2
1(t)− (p− q)m1(t) + q ≥ 0 for all t ≥ 0. (12)

Note that the initial condition is m1(0) = 0 and that t → m1(t) is continuous and non-
decreasing. Therefore whenever the quadratic in (12) attains a strictly negative minimum
on (0,∞) the first moment m1 stays bounded by the first positive real root for all t ≥ 0. This
happens precisely if p > q and (p− q)2 > 4q, and the corresponding upper bound is

m1(t) ≤
(p− q)−

√
(p− q)2 − 4q

2
for all t ≥ 0.

Resolving the condition (p−q)2 > 4q with respect to q < p we find that when q < p+2−2
√
p+ 1

the first moment stays bounded and hence

qc(p) ≥ p+ 2− 2
√
p+ 1. (13)

Note that this analysis is dimension independent. Moreover the formula for the lower bound
appears in the mean field analysis performed in [12]. This is no surprise since the negative
correlation allows us to replace the second moment equation by a differential inequality that
agrees with the mean field approximation. It is natural to try to apply the same differential
inequality methods to investigate other moments, but we have not profited much from this.
Fro example, exponential moments E[eθM∞(0)] are conjectured to be finite, for suitable θ >
0, whenever q < qc(p). Consider the following exponential moment, under the zero initial
condition, for a fixed z ≥ 1.

ψ(z, t) = E[zMt(0) − 1]

This solves formally (since the finiteness of such moments is not yet established) the equation

dψ

dt
(t) = −(pz−1 − q)(z − 1)ψ(t) + (q − ps(t)z−1)(z − 1)

+E[zMt(0)+Mt(e) − zMt(0) − zMt(e) + 1].

Monotonicity implies that ψ(t) is increasing and negative correlation shows that

E[zMt(0)+Mt(e) − zMt(0) − zMt(e) + 1] ≤ ψ2(t).

Using this we obtain the following inequality involving the exponential moment ψ(t) and the
non-occupation probability s(t):

ψ(t)2 − (pz−1 − q)(z − 1)ψ(t) + (q − ps(t)z−1)(z − 1) ≥ 0 for all t ≥ 0.
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Now the previous upper bound on s(t) is acting in the wrong direction, but using s(t) ≥ 0 we
reach the quadratic ψ(t)2− (pz−1− q)(z− 1)ψ(t) + q(z− 1) ≥ 0. As before, if this quadratic in
ψ has a strictly negative minimum at a positive value of ψ then the exponential moment stays
bounded. It is easy to see that this holds when q > 0 is small, for suitable z ∈ (1, q/p). This
suggests that the method could be used to show some information on exponential moments,
but only for q far from the critical curve.

2.3 Proof of negative association

Various notions of negative correlation are studied, and they have been exploited for a variety of
interacting particle systems. See Newman [15], Pemantle [16], Liggett [11] for overviews. Real
variables (X1, . . . , Xn) are called negatively associated if for any two disjoint subsets J1, J2 ⊆
{1, . . . , n} and any non-decreasing fi : RJi → [0,∞) and one has

E[f1(Xj ; j ∈ J1)f2(Xj : j ∈ J2)] ≤ E[f1(Xj ; j ∈ J1)]E[f2(Xj : j ∈ J2)].

Infinite vectors of variables are called negatively associated if each finite subset is negatively
associated. We give here the details for the proof of Lemma 5, following the strategy from
Lemmas 2.4-2.7 in van den Berg and Kesten [2]. They exploit the BKR inequality, an inequality
for product measures on finite sets, which we state here. Suppose V, S are finite sets and that
µ is a product measure on the product space SV . For K ⊂ V and ω = (ωv : v ∈ V ) ∈ SV

define [ω]K = {ω ∈ SV : ωv = ωv for v ∈ K}. The set [ω]K is called a cylinder set with base set
K. For A,B ⊆ Ω define A�B to be those ω for which there exist disjoint K,K ′ ⊆ V so that
[ω]K ⊆ A and [ω]K′ ⊆ B. The BKR inequality states (see [18]) that µ[A�B] ≤ µ[A]µ[B]. Fix
t > 0. A graphical construction for the process over [0, t] can be given using the same Poisson
processes that drive the equation (6). This graphical construction contains, in a direct fashion,
information on the genealogy of individual particles, and we recap the required notation. For
each x ∼ y, at each jump of P (x, y), place on the space time lattice [0, t]×Zd an arrow starting
at (t, x) and ending at (t, y). This arrow corresponds to the particle at (t−, x), if it exists,
jumping to site (t, y). Using only a realization of these arrows there is a natural notion of a
path from (s, x) → (s′, x′) when 0 ≤ s < s′ ≤ t. If such a path exists a particle at (s, x)
would end up at (s′, x′) (ignoring the mass labels for the moment). See, for example, chapter
3 of Durrett [7] for a careful definition. Using the other Poisson drivers (P (q)(x) : x ∈ Zd),
(P (p)(x) : x ∈ Zd) we add Poisson points where evaporations and depositions occur. Almost
surely, one can then trace through the evolution of the masses (η(x) : x ∈ Zd) at time zero
to yield the final masses (Mt(x) : x ∈ Zd). We define an embedded discrete time structure
which will yield the finite product structure required for BKR. Fix N,L ∈ N. Define variables
(N(k, x), Z(k, x) : 0 ≤ k ≤ N − 1, x ∈ Zd) as follows: let Ik,N be the time interval (ktN ,

(k+1)t
N ];

write P ((r, s]) for the increment Ps − Pr; let

N(k, x) =
∑
y∼x

P (x, y)(Ik,N ) + P (p)(x)(Ik,N ) + P (q)(x)(Ik,N ),

namely the number of Poisson events that occur at x during the time interval Ik,N ; and let

Z(k, x) =


0 if N(k, x) = 0,

p if N(k, x) = 1 and P (p)(x)(Ik,N ) = 1,

q if N(k, x) = 1 and P (q)(x)(Ik,N ) = 1,
±ei if N(k, x) = 1 and P (x, x± ei)(Ik,N ) = 1,
∆ if N(k, x) ≥ 2,

8



where (±ei : i = 1, . . . , d) are the unit vectors in Zd. Let S be the finite set of labels
{0, p, q,±ei,∆}. Let V = {0, . . . , N − 1} × (Zd ∩ [−L,L]d). Then the vector

Z := (Z(k, x) : 0 ≤ k ≤ N − 1, |x| ≤ L)

has the desired product law on SV . Fix finite disjoint sets J1, J2 ⊆ Zd. Choose L0 so that
|x| ≤ L0 for all x ∈ J1 ∪ J2. Fix non-decreasing fi : RJi → [0,∞), and ai ≥ 0, for i = 1, 2, and
set

Âi = {fi(Mt(xj) : j ∈ Ji) ≥ ai}, for i = 1, 2.

Negative association follows if we can show P [Â1 ∩ Â2] ≤ P [Â1]P [Â2]. We define a good set
G = G1

L,N ∩ G2
L as follows.

G1
L,N =

{
N(k, x) +

∑
y∼x

N(k, y) ∈ {0, 1} for all (k, x) ∈ V

}

is the set where at most one Poisson event occurs during each interval Ik,N for each |x| ≤ L, and
furthermore if one occurs then neighbouring sites have zero Poisson events during this interval.

G2
L = {there is no path (x, s)→ (y, t) for any s ∈ [0, t), |y| ≤ L0 and |x| > L}

is the set where no particle moves from outside [−L,L]d to affect the values of (Mt(y) : |y| ≤ L0).

Claim 1. (i) P [G2
L] → 1 as L → ∞; (ii) P [G1

L,N ] → 1 as N → ∞. Write (Xx
t : t ≥ 0) for

a simple rate one random walk started at x. To estimate P [G2
L] it is enough, for each x with

|x| > L, to consider only paths started at the points (x, 0) or (x, s) where s < t is a jump time
of P (x, y). The expected number of such points that start paths leading to a (y, t) with |y| ≤ L0

is bounded by ∑
|x|>L

(1 + t) sup
s≤t

P [Xx
s ∈ [−L0, L0]d]

and simple random walk estimates show this approaches zero as L grows. Part (ii) is a simple
Poisson calculation. Let Ω0 be the (good) subset of SV where the value ∆ is never taken

and where no pair of neighbouring sites, (k, x), (k, y) with x ∼ y, simultaneously take values
different from 0. On G1

L,N we know that Z ∈ Ω0.

Claim 2. There exist A1, A2 ⊆ Ω0 ⊆ SV so that

Âi ∩ G = {Z ∈ Ai} ∩ G for i = 1, 2.

Indeed, we may take Ai = {ω ∈ Ω0 : {Z = ω} ∩ G ⊆ Âi ∩ G}. To see this, it is sufficient check
that on the set G the values of (Mt(x) : |x| ≤ L0) can be reconstructed only from Z and the
the initial masses (η(x) : |x| ≤ L). Of course, this is the purpose of the good set. For ω ∈ Ω0

we may define (inductively in k) mass values (m(k, x, ω) : |x| ≤ L, k = 0, . . . , N − 1), starting
at k = 0 with the initial masses (η(x) : |x| ≤ L). This is the natural discrete analogue of our
process. If ωk,x takes the value p or q the value m(k−1, x, ω) can be updated to m(k, x, ω) in the
appropriate manner (since no neighbouring site will affect the mass at x during this interval).
If ωk,x = ±ei the mass m(k, x, ω) is set to 0, and the mass m(k − 1, x, ω) is added to the mass
at y = x± ei (if |y| ≤ L). Again the restriction to Ω0 ensures there is never a conflict due to a
pair of events occuring which would require us to decide which action (deposition, evaporation,
movement) to do first. The mass values m(k, x, ω) do not take into account any mass entering
from sites |y| > L. But on the set G2

L we may ignore all Poisson points at sites x 6∈ [−L,L]2

9



without affecting the values of (Mt(x) : |x| ≤ L0). Hence the final values (m(N, x,Z) : |x| ≤ L0)
will agree, on G, with (Mt(x) : |x| ≤ L0).

Claim 3. There are maps Ki : Ω0 → P(V ) (where P(V ) is the power set of V ) so that

Ai =
⋃
ω∈Ai

[ω]Ki(ω) for i = 1, 2, (14)

and
K1(ω) ∩K2(ω) = ∅ for all ω ∈ SV . (15)

There is a natural notion of paths on Ω0. For a fixed ω ∈ Ω0, and for 0 ≤ k < k′ ≤ N and
|x|, |x′| ≤ L, we write (k, x) (k′, x′) if there exist (zj : j = 0, . . . , n) ∈ Zd ∩ [−L,L]d satisfying

(1) z0 = x, zn = x′, n = k′ − k,
(2) |xj − xj−1| ∈ {0, 1} for j = 1, . . . , n,

(3) if xj − xj−1 = ±ei then ωk+j,xj = ±ei for all j = 1, . . . , n,

(4) if xj − xj−1 = 0 then ωk+j,xj ∈ {0, p, q} for all j = 1, . . . , n.

In words, the values of ωk+j,zj along j = 0, . . . , n guarantee that a particle starting at (k, x)
would end up at (k′, x′). Sites (k, x) can have a (unique) path to at most one site (N, y) (some
will exit the region [−L,L]d). Any two such paths will coalesce at the first site in common.
Now define, for ω ∈ Ω0,

Ki(ω) = {(k, x) : (k, x) (N, y) for some y ∈ Ji} .

Then Ki(ω) is the union of the coalescing paths that lead to a site in Ji. Claim (15) is immediate
since a path cannot lead both to J1 and J2. It remains to check that if ω ∈ Ai then [ω]Ki(ω) ⊆ Ai.
Observe that (m(k, x, ω) : x ∈ Ji) can be calculated using only on the values (ωk,x : (k, x) ∈
Ki(ω)), indeed m(N, y, ω) is found by tracking the mass of the initial condition and depositions
along paths that lead to (N, y). For ω′ ∈ [ω]Ki(ω) we have Ki(ω) ⊆ Ki(ω

′) by definition of a
cylinder set, with a strict inclusion possible if other sites are now connected to ((N, y) : y ∈ Ji).
But these extra sites can only lead to larger values of mass ending up in Ji, that is m(N, y, ω′) ≥
m(N, y, ω) for all y ∈ Ji. Since fi are non-decreasing we must have

fi
(
m(N, y, ω′) : y ∈ Ji

)
≥ fi (m(N, y, ω) : y ∈ Ji) ≥ ai

and hence {Z = ω′} ∩ G ⊆ Âi ∩ G as desired.

Proof of negative association. We proceed as in Lemma 2.4 of [2]. Using claims 2 and 3

Â1 ∩ Â2 ∩ G ⊆ Z ∈ A1 ∩A2

= Z ∈
⋃
ω∈A1

[ω]K1(ω) ∩
⋃
ω∈A2

[ω]K2(ω)

⊆ Z ∈ A1�A2,

The last line following from (15). Hence, applying BKR to the law of Z,

P [Â1 ∩ Â2] ≤ P [Z ∈ A1�A2] + P [Gc]
≤ P [Z ∈ A1]P [Z ∈ A2] + P [Gc]
≤ P [Â1]P [Â2] + 3P [Gc].

Now claim 1 completes the proof.
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Remark. One might start by proving negative association for a purely discrete time process
on a finite lattice, defined on a finite product structure, and this avoids the need for the good
set G. One then might show that the such discrete time processes converge to the desired
continuous limit, noting the conclusion carries over naturally under convergence in distribution.
The trick of embedding a discrete time structure inside a graphical structure for the desired
infinite lattice continuous process, and the good set G, is designed specifically to avoid a lengthy
weak convergence argument.

3 Asymptotics

Examining the upper bound (10) and lower bound (13) on qc(p) for large and small p, q one
finds the asymptotic inequalities (that is in terms of limiting quotients)

p− 2
√
p � qc(p) � p− 1 as p→∞,

p2

4 � qc(p) �
p
4 as p→ 0.

In this section we show that more accurate, dimension dependent, asymptotic information on
the critical curve is often possible.

3.1 Large p, q

For large q, p there are many evaporations and depositions between each random walk step.
The correct approximating model is one with continuous masses in [0,∞) at discrete lattice
sites x ∈ Zd. We first study this continuous mass model.

3.1.1 Continuous mass model.

Masses (Xt(x) : x ∈ Zd, t ≥ 0), indexed over sites in Zd, evolve as follows. Between jumps the
masses Xt(x) evolve according to the stochastic differential equations

dX(x) = −β dt+
√

2 dB(x) + dL(x), (16)

driven by independent Brownian motions (Bt(x) : x ∈ Zd, t ≥ 0). The parameter β will reflect
the excess of the evaporation rate q over the deposition rate p in the original model. The term
L(x) is the local time of X(x) at zero, so that dL(x) charges only the set {t : Xt(x) = 0} and
ensures that Xt(x) ≥ 0. Additionally the mass at each site x has independent rate one Poisson
driven jumps, where at a jump time t a nearest neighbour y is chosen at random and the masses
change to

Xt(x) = 0, Xt(y) = Xt−(x) +Xt−(y),

that is the mass at x jumps onto y and coalesces. We now argue that the moment method
again establishes the existence of a phase transition with a critical parameter βc(d). Since
we use it only as a guide to a later calculation for the discrete mass model, we do not give a
careful construction of the model or prove the required monotonicity and dependence properties
(although one way to establish them is to take limits in the corresponding properties for discrete
mass model). Define moments for the system, with zero initial condition, by mk(t) = E[Xk

t (0)]
and set the critical value as

βc(d) = inf{β ≥ 0 : m1(∞) =∞}.

11



We aim to show βc(d) ∈ (0,∞). The second moment equation works smoothly. Ito calculus
and negative correlation show that

dm2(t)

dt
= 2− 2βm1(t) + 2E[Xt(0)Xt(1)] ≤ 2− 2βm1 + 2m2

1.

The argument from section 2.2 shows that m1 stays bounded if β > 2 so that βc(d) ≤ 2. For
the first moment one has d

dtm1(t) = −β + d
dtE[Lt(0)]. A direct estimate on the local time term

does not seem useful, but we may examine this equation at discrete times t = 1, 2, . . . to find

m1(n+ 1)−m1(n) = −β + E[Ln(0)]− E[Ln−1(0)].

The idea is to show that E[Lt(0)] − E[Lt−1(0)] is bounded below for all t ≥ 0 by a non-zero
constant. Then the first moment equation shows at least linear growth of the first moment if
β is small enough and hence that βc(d) > 0. In the interval [t− 1, t] there is probability e−2 of
the event Ω that there is a single jump time τ ∈ [t− 1, t− 1

2 ] of mass away from the origin, no
further jumps away from the origin during [t − 1

2 , t] and and that no neighbouring sites jump
onto the origin during [t − 1, 1]. Conditional on Ω, the local time of the mass at the origin
evolves, during [τ, t], like the local time L̂ for a (rate 2) reflected Brownian motion X̂ with drift
−β starting at zero, that is

X̂s = Ws − βs+ L̂s, s ≥ 0.

Then E[L̂s] ≥ E[X̂s]. Moroever a comparison argument shows that E[X̂s] is decreasing in β,
and when β = 0 the variable X̂s is just modulus of a normal N(0, s) variable. This shows there
exists c1 > 0, independent of β, so that E[L̂s] ≥ c1 for all s ∈ [1

2 , 1], establishing the desired
lower bound.

3.1.2 Proof of the asymptotics (4).

We return to the discrete mass model. Consider a single isolated site undergoing only evap-
oration at rate p and monomer deposition at rate q = p − βp1/2. Then the rescaled mass
Xt = p−1/2Mt is a Markov chain satisfying, on {Mt ≥ 1},

E[Xt+∆ −Xt|σ(Xs : s ≤ t)] = β∆ +O(∆2),

E[|Xt+∆ −Xt|2|σ(Xs : s ≤ t)] = (2− βp−1/2)∆ +O(∆2).

Using these it is straightforward to establish a diffusion approximation: the rescaled mass
Xt = p−1/2Mt converge in distribution, as p→∞, to the diffusion in (16). Extending this to the
Zd case one expects that, when q = p−βp1/2, the rescaled masses ((p−1/2Mt(x) : x ∈ Zd) : t ≥ 0)
converge in distribution to the continuous mass model described above. This convergence
together with the existence of the critical value βc(d), suggest the asymptotics in (1). The
convergence could be set up, for example, in the space of continuous paths taking values in some
set of measures on R (simply the empirical measure of the particle positions and masses) with
a (suitable) weak topology. However convergence for all finite time intervals [0, T ] would not be
sufficient to read off the asymptotic. One would like the convergence of the associated stationary
distributions (and note the convergence to equilibrium is not expected to be exponential). We
leave these ideas for later, but we quickly show that the argument for the continuum case applies
approximately to the (suitably scaled) lattice case, although this inevitably leads to the cruder
upper and lower constant asymptotics that do not reflect the continuum critical value. Define
scaled moments by m̄k(t) = p−k/2mk(t). Choose q = p − βp1/2. In these scaled variables the
the second moment inequality (12) becomes

m̄2
1(t)− βm̄1(t) + (1− p−1/2β) ≥ 0 for all t ≥ 0.
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Then if β > 2 and p is large enough we see that m̄1(t), and hence also m1(t), remains bounded.
This shows that lim supp→∞ p

−1/2(p−qc(p)) ≤ 2. The scaled first moment equation (9) becomes

dm̄

dt
= −β + p1/2(1− s(t)). (17)

The argument for the continuum model suggests bounding 1− s(t) = P [Mt(0) = 0] from below.
For t ≥ 1, there is a probability e−2 of the event Ω that there is single jump time τ ∈ [t−1, t− 1

2 ]
where the mass at the origin jumps to a neighbour, no further jumping of mass from the origin
during [t− 1

2 , t], and no mass jumps into the origin during [t−1, 1]. Conditional on Ω, the mass
at the origin during the interval [τ, t] follows a reflected random walk, increasing by one at rate q
and decreasing by one at rate p, and starting at zero. For a bound from below of P [Mt(0) = 0|Ω]
we may compare, using a simple coupling, with a reflected symmetric random walk M̂ at rate
p (that is we may, as in the continuous mass case, take β = 0). But then exact formulae for
simple symmetric random walks shows that there exists c

′
1 > 0 so that P [M̂s = 0] ≥ c′1p−1/2 for

all p ≥ 1 and s ∈ [1
2 , 1]. Using this estimate in (17) shows that when β is small enough the first

moment grows at a strictly positive rate, indeed that p−1/2(qc(p) − p) ≥ c
′
1e
−2, for all p ≥ 1,

completing the crude asymptotics.

3.2 Small p, q in d = 1

In d = 1, for small p, q the system is well approximated, on large space-time scales, by the anal-
ogous continuous space system of massive coalescing Brownian motions on R with evaporation
and Poisson immigration. We study this model first.

3.2.1 Continuous space model

Standard independent Brownian motions on R instantly coalesce upon meeting. Particles have
masses with values in N, and masses add at coalescence. Also there is deposition of monomers
at a Poisson rate q, and mass evaporation of each particle, reducing the mass by one, at rate
p. Let (Xi

t ,M
i
t : i ∈ It) list the positions and masses at time t. We use QR,Np,q to denote

the distribution for this model considered with zero initial conditions. Under diffusive scaling,

namely X
i
t = c−1Xi

c2t and M
i
t = M i

c2t for c > 0, we obtain a new system of coalescing particles

with distribution QR,N
c2p,c3q

. We will argue below, by similar arguments to the lattice case, that

the one parameter system, under QR,N1,α , has a single critical αc ∈ (0,∞). Then the scaling

shows the continuum system under QR,Np,q has the critical value of qR,Nc (p) = αcp
3/2. Consider

a system with distribution QR,N1,α . Since our argument for a critical value of α will only be used
as a guide for a corresponding lattice argument, we do not give a careful construction of the
model or proof of the required monotonicity and dependence properties. We may define the
occupation density and moments by fixing a test function φ : R → [0,∞) with

∫
φ = 1 and

setting

s(t) = E
∑
i

φ(Xi
t), mk(t) = E

∑
i

|M i
t |kφ(Xi

t).

Note by translation invariance that any such test function φ defines the same quantity. Mono-
tonicity still implies that s(t) and mk(t) (for k > 0) are non-decreasing in t and α and we
set

αc = inf{α : m1(∞) =∞}.
The first moment equation for m1(t) is

dm1

dt
(t) = α− s(t).
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We may bound s(t) from above by s̄(t) the occupation density for the system with zero evapo-
ration, that is under the distribution QR,N0,α . For this simpler system the scaling, as above, shows
that the stationary state has a scaling property. Indeed the stationary occupation distribution
under QR,N0,α is a scaled copy, by a factor of α1/3, of the stationary distribution under QR,N0,1 .

Thus s̄(∞) = c2α
1/3 for some c2 ∈ (0,∞) (in fact c2 is known - see the appendix). Substituting

in s(∞) ≤ c2α
1/3 into the first moment equation we find that αc ≤ c3/2

2 . To find a lower bound
on αc we consider the second moment m2(t). Again it seems difficult to use a differential in-
equality (a problem familiar from the density decay estimates for coalescing Brownian motions
in Bramson and Griffeath [3]). Instead we watch m2(t) along integer times t = 1, 2, . . . and
bound m2(n+ 1)−m2(n) from above. The argument is a little fiddly as each of the dynamics
(coalescence, evaporation and deposition) contribute, so we start with a heuristic overview. The
contribution to m2(n + 1) −m2(n) due to coalescence will be bounded by Cm1(n)2 by using
negative correlation for the mass distribution at time n. The contribution due to the rate one
evaporation will be bounded by −2m1(n) + s(∞) ≤ −2m1(n) + c2α

1/3. Finally the deposition
of monomers will contribute 2Cαm1(n) + Cα2. Monotonicity of n→ m2(n) leads to

0 ≤ m2(n+ 1)−m2(n) ≤ Cm1(n)2 + 2Cαm1(n)− 2m1(n) + Cα2 + c2α
1/3. (18)

For small α the quadratic inequality prevents m1(n) from entering the interval ( 1
2C ,

3
2C ). But

the first moment equation shows m1(n+1)−m1(n) ≤ α. This prevents m1(n) jumping over this
forbidden interval and forces it to remain bounded for such small α. Hence the critical value
αc is strictly positive. Now we expand the above argument with a more careful construction
of the process between times n and n + 1. The construction exploits the fact that systems of
coalescing particles can be constructed particle by particle, with each new particle following
an independent motion until it first hits a previously constructed path, and then following the
path of the particle it hits. List the (random) positions and masses of the particles at time n
as (zi,mi : i ∈ N). We will give a pathwise construction of the system at time n + 1 in three
steps.

Step 1: Run CBMs. Run coalescing Brownian paths (independent from the evolution up to
time n) starting from (zi : i ∈ N) over the time interval [0, 1].

Step 2: Add deposition. Construct (independently) the rate α Poisson points (yi, ti : i ∈ N)
in R× [0, 1] of the monomer depositions. Then construct (independently) coalescing Brownian
paths started from these points that also coalesce with any paths in step 1. Now attach masses
to the particles by tracking the mass through each coalescence. This yields particle positions
and masses (Xi

t , M̂
i
t : i ∈ It) for t ∈ [0, 1].

Step 3: Add evaporation. Add (independently) Poisson marks onto the paths of these co-
alescing Brownian motions to indicate the times of rate one evaporations. Define the adjusted
masses (M i

t : i ∈ It) along the paths due to these evaporations, (so that some M i
t may take

value 0).

After all three steps the collection (Xi
t ,M

i
t : i ∈ It,M i

t 6= 0) is then a realization of the true
system at time n + t. We now estimate the changes in the second moment through each of
these steps in the construction. Consider the change in the second moment after steps 1 and 2,
namely

∆1 :=
∑
i∈I1

φ(Xi
1)|M̂ i

1|2 −
∑
i

φ(zi)m
2
i .

We rewrite ∆1 in a different way. For each particle (zi,mi) we let Zi denote the final position
of this mass at time t = 1 after step 1. Thus Zi will agree with one of the positions (Xi

1 : i ∈ I1)
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but due to coalescence we may have Zi = Zj for many i 6= j. Similarly for each position (yi, ti)
we let Y i denote final position of mass one monomer that was deposed at (yi, ti). Then

∑
i∈I

φ(Xi
1)|M̂ i

1|2 =
∑
i∈I1

φ(Xi
1)

∑
j

mjχ(Zj = Xi
1) +

∑
k

χ(Y k = Xi
1)

2

=
∑
j

φ(Zj)m2
j +

∑
j 6=j′

φ(Zj)χ(Zj = Zj
′
)mjmj′

+
∑
k,k′

φ(Y k)χ(Y k = Y k′) + 2
∑
j,k

mjφ(Zj)χ(Zj = Y k)

=: ∆1,1 + ∆1,2 + ∆1,3 + ∆1,4.

Each position Zj is, conditionally on σ((xi,mi : i ∈ N)), a N(zj , 1) variable. Hence, writing
(Pt) for the Brownian semigroup,

E[∆1,1] = E
∑
j∈Z

P1φ(zj)m
2
j = m2(n)

by translation invariance. Each pair (Zj , Zk), conditionally on σ((xi,mi : i ∈ N)) and when
j 6= k, are the positions of a coalescing pair of Brownian motions at time t = 1 started at
(zj , zk). We choose φ(x) = 1

2χ(|x| ≤ 1) and use the following crude estimate. Suppose (Bx, By)
denotes a pair of coalescing Brownian motions started at (x, s1)and (y, s2). Then there exists
c3 so that for all 0 ≤ s1 ≤ s2 ≤ 1 and x, y ∈ R

P [|Bx
1 | ≤ 1 and Bx, By coalesce before time 1] ≤ c3(|x|−2 ∧ 1)(|x− y|−2 ∧ 1). (19)

See the appendix for a short derivation. Using this we may bound the expectation

E[∆1,2] ≤ c3E
∑
j 6=j′

mjmj′(|zj |−2 ∧ 1)(|zj − zj′ |−2 ∧ 1)

≤ c3m
2
1(n)

∫
R2

(|z|−2 ∧ 1)(|z − z′|−2 ∧ 1)dz dz′

= 16c3m
2
1(n).

Here we have used negative correlation for the second inequality. Next, using (19) for each pair
of deposed particles (arriving at Poisson α rate),

E[∆1,3] ≤ c3α
2

∫
dy

∫
dy′
∫ 1

0
ds1

∫ 1

0
ds2(|y|−2 ∧ 1)(|y − y′|−2 ∧ 1) = 16c3α

2,

and

E[∆1,4] ≤ 2c3α

∫
dy

∫ 1

0
ds

∫
E
∑
j

mj(|z|−2 ∧ 1)(|z − y|−2 ∧ 1) = 32c3αm1(n).

Next we look at the change due to evaporation defined by

∆2 =
∑
i∈I1

φ(Xi
1)|M i

1|2 −
∑
i∈I1

φ(Xi
1)|M̂ i

1|2.
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The decrease in mass due to evaporation occurs at a Poisson rate along the paths. When a
mass m at x suffers an evaporation it produces a jump of size φ(x)(1− 2m). Hence

E[∆2] = E

∫ 1

0

∑
i∈I1t

φ(Xi
t)χ(M i

t− > 0)dt− 2E

∫ 1

0

∑
i∈I1t

φ(Xi
t)M

i
t−dt

=

∫ 1

0
s(t) dt− 2

∫ 1

0
m1(n+ t) dt

≤ c2α
1/3 − 2m1(n).

Combining the estimates on ∆1 and ∆2 justifies the difference inequality (18) given at the start
with the choice C = 16c3.

3.2.2 Proof of the asymptotics (5).

We return to the lattice model and choose q = αp3/2 for some α > 0. List at time t the positions
and corresponding masses of all particles as (Xi

t ,M
i
t : i ∈ It). Then the rescaled process(

(p1/2Xi
p−1t,Mp−1t : i ∈ Ip−1t) : t ≥ 0

)
should converges in distribution as p ↓ 0 to a system of coalescing massive Brownian motions
with distribution QR,N1,α as described above. This convergence, together with the critical value
αc, suggest the asymptotics in (2). However, here we simply aim for crude asymptotics by
mimicking the continuous argument for the lattice model. Guided by the continuous space
argument we may bound the occupancy s(t) by the stationary occupancy probability s(∞) for
the zero evaporation model. For d = 1 models without evaporation a (time reversal) Markov
duality tool is applicable and one finds s(∞) = 1− hq(1) where

hq(x) = E exp

(
−q
∫ τ

0
Xx
s ds

)
, with τ = inf{t : Xx

t = 0}, (20)

and (Xx
t : t ≥ 0) is a rate 2 continuous time simple random walk on N started at x. Details of

the duality argument leading to (20) are in the appendix 4.3. Note that hq ∈ [0, 1] solves

∆hq(x) = qxhq(x) for x ∈ N+ = {1, 2, . . .},

where ∆ is the discrete Laplacian on N, with boundary conditions hq(0) = 1 and hq(x)→ 0 as
x→∞. To see the scaling of hq(1) in q we define Aq(x) = hq(xq

−1/3), so that Aq solves

∆Aq(x) = xAq(x) for x ∈ q1/3N+,

where ∆ is the discrete Laplacian on q1/3N, with boundary conditions Aq(0) = 1 and Aq(x)→ 0
as x → ∞. Then one can check that supx |Aq(x) − A0(x)| → 0 as q → 0, where A0 : [0,∞) →
[0, 1] is the corresponding C2([0,∞)) Airy function solving A

′′
0(x) = xA0(x). Moreover one can

check (details are in the appendix 4.4) that the discrete derivative

q−1/3 (1− hq(1)) = q−1/3
(
Aq(0)−Aq(q1/3)

)
→ −A′0(0) > 0, (21)

Substituting s(t) ≤ s(∞) = 1 − hq(1) into the first moment equation dm1/dt = q − ps(t) and
using the above asymptotics leads to

lim sup
p→0

qc(p)p
−3/2 ≤ (−A′0(0))3/2.
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For the second moment equation we again mimic the argument for the continuous space Brown-
ian motion case. We consider the second moments m2(t) at the discrete set of times tn = np−1.
The scaling above suggests that m2(tp−1) is O(p1/2), and so we aim for a difference inequality
of the form: there exists C <∞, p0 > 0 so that for p ≤ p0, α ≤ 1

0 ≤ m2(tn+1)−m2(tn) ≤ Cp−1/2m1(tn)2 + 2Cαm1(tn)− 2m1(tn) + C(α2 + α1/3)p1/2. (22)

This implies for small enough α that the values of p−1/2m1(tn) cannot lie in ( 1
2C ,

3
2C ). However

the first moment equation implies that p−1/2m1(tn+1)− p−1/2m1(tn) ≤ α. So for small enough
α the first moment is bounded. This gives

lim inf
p→0

qc(p)p
−3/2 > 0.

To establish (22) we way repeat the three step construction from section 3.2.1 to construct
the process between times tn and tn+1 making the natural changes, namely: replace coalescing
Brownian motions on R by rate one coalescing random walks on Z; replace rate α deposition
on [0, 1]×R by rate q deposition on [0, 1]× Z; and replace rate 1 evaporation along the paths
by rate p evaporation. We may rewite the moments as mk(t) = E

∑
x φ(x)Mk

t (x) for any test
function φ satisfying

∑
x φ(x) = 1. We choose φ(x) = N−1

p χ(|x| ≤ p−1/2) where Np ≈ 2p−1/2 is
chosen so that the constraint holds. Decompose m2(tn+1)−m2(tn) into terms ∆1,∆2 as before,
where we work however over a time interval of length p−1. We use an analogue of (19), which is
derived in the appendix 4.2. Let (Xx, Xy) be a pair of coalescing rate one simple random walks
started at (x, s1)and (y, s2). Then there exists c

′
3 so that for all 0 ≤ s1 ≤ s2 ≤ p−1, x, y ∈ Z

and p ≤ 1

P
[
|Xx

p−1 | ≤ p−1/2and Xx, Xy coalesce by time p−1
]
≤ c′3(p−1|x|−2∧1)(p−1|x−y|−2∧1). (23)

Following the steps from section 3.2.1, we find E[∆1,1] = m2
2(tm) and

E[∆1,2] ≤ c
′
3N
−1
p E

∑
j 6=j′

mjmj′(p
−1|x|−2 ∧ 1)(p−1|x− y|−2 ∧ 1)

≤ c
′
3N
−1
p m2

1(tn)
∑
z,z′

(p−1|z|−2 ∧ 1)(p−1|z − z′|−2 ∧ 1)

≤ 1

3
c
′
3c

2
4m

2
1(tn)p−1/2.

The second inequality uses the negative correlation in (8), and the third inequality uses Np ≤
p−1/2 and

∑
z(p
−1|z|−2 ∧ 1) ≤ c4p

−1/2 for all p ≤ 1. In a similar way we find

E[∆1,3] ≤ 1

3
c
′
3c

2
4α

2p1/2 and E[∆1,4] ≤ 2

3
c
′
3c

2
4αm1(tm).

Using (21) we may choose p0 ≤ 1 small enough that

s(∞) ≤ (−2A
′
0(0))q1/3 = (−2A

′
0(0))α1/3p1/2.

Then E[∆2] ≤ s(∞)−2m1(tn) ≤ (−2A
′
0(0))α1/3p1/2−2m1(tn). Together these estimates imply

(22) with C = (−2A
′
0(0)) ∨ 1

3c
′
3c

2
4, completing the proof.
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3.3 Remarks on small p, q in d ≥ 3

There is no continuous space model approximation in d > 1, and the intuition is somewhat
different. We give a purely heuristic argument suggesting that qc(p) ≈ p2 as p, q ↓ 0. The
argument exploits the small occupation densities and the transience of random walks in d ≥ 3.
It follows the intuitive argument given in [2] for the modified rate equations that gives the
decay of the occupation density in coalescing random walks. In [2] they exploit large times to
obtain low densities, where we exploit small p, q values. We use the informal notation z → z′

to denote the event that the particle at z moves to position z′. Choose 0 << r << t so that
p−2/d << r << p−1. Choose q = O(p2). The first moment equation shows that the occupation
density satisfies s(t) ≤ q/p = O(p). Then the following approximations seem reasonable for
small p:

P [Mt(0) > 0, Mt(e) > 0] ≈ P [∪x 6=y{Mt−r(x) > 0, Mt−r(y) > 0, x→ 0, y → e}]

≈
∑
x 6=y

P [Mt−r(x) > 0, Mt−r(y) > 0, x→ 0, y → e]

≈
∑
x 6=y

pdpr(x, 0)pr(y, e)P [Mt−r(x) > 0, Mt−r(y) > 0]

≈
∑
x,y

pdpr(x, 0)pr(y, 0)P [Mt−r(x) > 0]P [Mt−r(y) > 0]

= pds
2(t− r)

≈ pds
2(t). (24)

We expect all expressions in these approximations to be O(p2). The first approximation throws
away the event that the particles at 0, e were deposited between t− r and t. The expected mass
of deposited particles during [t − r, t] that reach 0 at time t is of order qr << p, suggesting
this approximation is valid. The second approximation uses low densities: the error should
involve three occupied sites and be of order O(p3). The third approximations involves the
probability P [x→ 0, y → ewithout coalescing]. Evaporation at rate p can be ignored for these
two particles over this interval since r << p−1. Considering the time reversed paths we need to
find P [0→ x, e→ ywithout coalescing], which by transience of the walks is well approximated,
for |x−y| >> 1, by pdpr(0, x)pr(0, y). Negative correlation shows that the fourth approximation
is an upper bound. Moreover∑

x 6=y
pr(x, 0)pr(y, e)P [Mt−r(x) > 0, Mt−r(y) > 0]

= E

[
(
∑
x

pr(x, 0)χ(Mt−r(x) > 0))2

]
−
∑
x

p2
r(x, 0)P [Mt−r(x) > 0]

≥

(
E

[∑
x

pr(x, 0)χ(Mt−r(x) > 0)

])2

− s(t− r)
∑
x

p2
r(x, 0)

= s2(t− r)− s(t− r)
∑
x

p2
r(x, 0).

The error in the fourth approximation is thus bounded by

s(t− r)
∑
x

p2
r(x, 0) ≤ Cpr−d/2

which is o(p2) since p−2/d << r. Similar approximations are used in [2], where careful error
bounds are established. We show that just the approximation (24) suggests the scaling for qc(p).
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Note

0 ≤ ds(t)

dt
(t) = q(1− s)− pP [Mt(0) = 1]− P [Mt(0) > 0, Mt(e) > 0]

≤ q − P [Mt(0) > 0, Mt(e) > 0].

Using the approximation (24) above suggests that s(∞) ≤ p−1/2
d q1/2. Using this in the first mo-

ment equation then suggests that lim supp→0 qc(p)p
−2 ≤ p−1

d p2. This compliments the rigourous
upper bound, but we believe we can guess the correct asymptotic. For the case of purely coalesc-
ing random walks in d ≥ 3, with initially one monomer per site, the occupation density drops
as p−1

d t−1. Arratia [1] showed that one can rescale space by t−1/d to leave an asymptotically
constant density of occupied sites, and the positions of the rescaled sites converge to a Poisson
point process on Rd. Moroever the mass of the rescaled particles become independent, leading
to a compound Poisson limit for the empirical measure. The aim is to mimic this for a rescaled
version of the stationary distribution of our model as p→ 0. There is similar underlying intu-
ition for a Poisson limit, as follows. Run the process in its stationary distribution for an interval
of length t. If t << p−1 then in bounded regions of space one expects negligible amounts of
deposition or evaporation. Provided t >> p−2/d the particles will move far beyond the typical
inter-particle distance O(p1/d). Due to transience the process is therefore well approximated
by free independent motion over this interval, and free motion converges to a Poisson limit.
To find the approximating compound Poisson approximation we use a more general version of
approximations such as (24). Take q = αp2 for some α > 0. We expect

E[F (M∞(0))F (M∞(x))] ≈ pd(x)E[F (M∞(0))]E[F (M∞(x))] (25)

for all bounded F : N → R satisfying F (0) = 0, where pd(x) is the probability of a simple
random walker never hitting the origin starting at x. Taking F (m) = zm − 1 allow us to
characterize the mass via its transform, and already suggests that the set of massed particles
will also converge to a compound Poisson limit. To find the Poisson intensity ŝα and the
generating function φ̂α(z) for the attached masses, we start by developing d

dtEz
Mt(0) and taking

t→∞ to find in the stationarity

0 = q(z − 1)EzM∞(0) + p(z−1 − 1)EzM∞(0)χ(Mt(0) > 0) + 1− 2EzM∞(0) + EzM∞(0)+M∞(e).

Define φ(z) := E[zM∞(0)|M∞(0) > 0] so that

EzM∞(0) = Ee−θM∞(0)χ(Mt(0) > 0) + P [M∞(0) = 0] = s(∞)φ(θ) + 1− s(∞).

Apply (25) to approximate for small p

1− 2EzM∞(0) + EzM∞(0)+M∞(e) ≈ pd
(

1− EzM∞(0)
)2
.

We find, for small p,

0 ≈ q(z − 1)(s(∞)φ(z) + 1− s(∞)) + p(z−1 − 1)s(∞)φ(z) + pds
2(∞)(1− φ(z))2.

Now we suppose, as p→ 0 with q = αp2, that

p−1s(∞)→ ŝα, φ(z)→ φ̂α(z)

and obtain
0 = α(z − 1) + (z−1 − 1)ŝαφ̂α(z) + pdŝ

2
α(1− φ̂α(z))2.
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Solving, with the correct sign, we find

2pdŝαz(φ̂α(z)− 1) = −(1− z) +
√

(1− z)Q(z)

where Q(z) = 1 − (4pdαŝα + 1)z + 4pdαz
2. We need to discover the unknown ŝα. We now

follow the steps of the mean field analysis in [12] (although our case is slightly simpler in that
Q is quadratic, due to reducing to a one parameter model). The tail of the variable M with
generator φ̂α can be found by inverting the generating function via the Cauchy integral

P [M = m] = (2πi)−1

∫
C

φ̂α(z)

zm+1
dz.

where C is a contour around the origin. The contour can be deformed so that it goes around the
singularities of φ̂α. We expect a growth phase where the first moment predicted by φ̂α is infinite
and sα = α. Solving for the roots of Q(z) when sα = α gives roots z = 1 and z = (4pdα)−1. Let
αc = (4pd)

−1. Then, for α > αc, φ̂α has only a single singularity due to the branch cut for the
root z = (4pdα)−1 > 1, and the inversion then shows the tail P [M = m] drops exponentially.
For α < αc we consider values of ŝα ∈ [0, α]. Looking at the sum of the roots of Q(z) one finds
that there must be a root with a real part less than 1 and the inversion would then predict
exponential growth of P [M = m], except if there is a double root, which would not lead to a
singularity for φ̂α. The unique value for ŝα leading to a double root is (4

√
pdα − 1)/4pd. We

summarize below our beliefs.

Conjecture. Under the stationary distribution with q = αp2, the scaled empirical measures∑
xM∞(x)δp1/dx converge in distribution as p ↓ 0, in the space of locally finite point measures

with the vague topology, to a compound Poisson limit
∑

iMiδxi , where where (Xi) are Poisson
with intensity ŝα and the masses (Mi) are, conditionally, independent identically distributed
with Laplace transform φ̂α(θ).

4 Appendix: details for some proofs.

4.1 Proof of Proposition 3 and Lemma 4.

We first consider the comparison theorem and uniqueness for solutions to (6). Suppose M,M
are two solutions, with the same driving Poisson processes, satisfying M0 ≤M0 a.s. Then

dχ(Mt(x) > M t(x))

= −χ(Mt−(x) = 1, M t−(x) = 0)dP
(p)
t − χ(Mt−(x) > M t−(x))

∑
y∼x

dPt(x, y)

+
∑
y∼x

(
χ(Mt−(x) +Mt−(y) > M t−(x) +M t−(y))− χ(Mt−(x) > M t−(x))

)
dPt(y, x)

≤
∑
y∼x

χ(Mt−(y)−M t−(y) > 0)dPt(y, x)

where in the final inequality we have used χ(x+y > 0)−χ(x > 0) ≤ χ(y > 0). Then, for θ > 0,

E
∑
x

e−θ|x|χ(Mt(x) > M t(x)) ≤ eθ
∫ t

0
E
∑
x

eθ|x|χ(Ms(x) > M s(x))ds

and Gronwall’s inequality implies that Mt ≤M t a.s. This implies the comparison theorem and
pathwise uniqueness of solutions. As usual, uniqueness implies the Markov property. Let M be
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the solution started from the minimal initial condition M0 = 0 and write νs for the distribution
of Ms. The comparison theorem allows one to run a larger coupled solution M started from
a random initial condition M0 with distribution νs (but independent of the Poisson drivers).
Then for non-decreasing F one has

E [F (Mt)] ≤ E
[
F (M t)

]
= E [F (Mt+s)]

by the Markov property. This establishes the monotonicity in t in Lemma 4. A simpler argument
establishes the monotonicity in p and q. Let M be a solution to (6) and let M be a solution
with the drivers dP (q)(x) replaced by dP (q)(x) + dP (q−q)(x), where (P (q−q)(x) : x ∈ Zd) is a
further independent family of rate q − q > 0 Poisson processes. Another Gronwall estimate as
above shows, if M0 = M0 a.s., that Mt ≤M t and this establishes the monotonicity in q. From
zero initial conditions one may check, as before, that E[M t(0)−Mt(0)] is non-decreasing, and
so

0 ≤ d

dt
E[M t(0)−Mt(0)] = (q − q)− pP [Mt(0) = 0,M t(0) > 0].

Writing s(q)(t), s(q)(t) for the occupancy probabilities of Mt,M t, we find

s(q)(t)− s(q)(t) = P [Mt(0) = 0,M t(0) > 0] ≤ (q − q)/p.

Letting t → ∞ one deduces, as in section 2.1, that s(q)(∞) < q/p for s > q̂c(p). Monotonicity
in p is similar, by constructing the evaporation driver as the sum of two independent families
P (p)(x) = P p(x)+P (p−p)(x) of rates p and p−p > 0. Existence of solutions can be established by

the usual iteration argument: set M
(0)
t = M0 for all t ≥ 0 and define cadlag adapted processes

by

dM
(n)
t (x) = −

∑
y∼x

M
(n−1
t− (x) dPt(x, y) +

∑
y∼x

M
(n−1
t− (y) dPt(y, x)

dP
(q)
t (x)− χ(M

(n−1)
t− (x) > 0) dP

(p)
t (x).

Note that d(η, η′) =
∑

x e
−θ|x|χ(η(x) 6= η′(x)) is a complete metric generating the topology on

S. Using the simple inequality χ(x+ y 6= x′ + y′)− χ(x 6= x′) ≤ χ(y 6= y′) one finds

sup
s≤t

χ(M (n)
s (x) 6= M (n−1)

s (x)) ≤
∫ t

0
χ(M

(n−1)
s− (x) 6= M

(n−2)
s− (x))(dP (p)

s +
∑
y∼x

dPs(x, y))

+

∫ t

0
χ(M

(n−1)
s− (y) 6= M

(n−2)
s− (y))

∑
y∼x

dPs(y, x)

and hence

E

[
sup
s≤t

d(M (n)
s ,M (n−1)

s )

]
≤ (2 + eθ)

∫ t

0
E
[
d(M (n−1)

s ,M (n−2)
s )

]
ds.

Now the usual argument shows that M (n) converges uniformly over compact time intervals
to a cadlag adapted limit which is the solution to (6) started at M0. An argument as for
the comparison theorem shows the solutions are non-negative. For two solutions M, M ′ with
deterministic conditions M0 = η, M

′
0 = η′, one has similarly

E
[
d(Mt,M

′
t )
]
≤ C(t, θ)d(η, η′)

21



and this implies the Feller property for the semigroup. The moments (7) are established in
the same manner, that is by developing dMk

t (x) and establishing a Gronwall estimate. For the
attractiveness of the stationary distribution it is convenient to construct an extended system
that allows particles of infinite mass. Let N ∪ {∞} be N with ∞ added as a discrete site. At
the slight risk of confusion we continue to write the equations (6) for this extended system,
but where we assign natural rules for sites with the value ∞. We extend the state space to
Ŝ = (N ∪ {∞})Zd

. We allow addition, subtraction and comparison on N ∪ {∞} via

∞± n =∞, ∞+∞ =∞, ∞−∞ = 0, n <∞.

(The operation ∞−∞ will only occur when a particle of mass leaves a site due to a random
walk step.) The metric d(η, η′) extends to Ŝ and still generates the product topology. The proof
of existence, comparison and uniqueness of solutions carries over with only the (small) natural
changes. The system is a true extension, in that solutions to the original system continue to be
solutions to the extended system, but which never take the value ∞. The comparison theorem
shows there is maximal solution M̂ with initial condition M̂0(x) =∞ for all x. Define

At = {x ∈ Zd : M̂t(x) =∞}.

Examining the evolution of dχ(M̂t(x) = ∞) shows that the evolution of At is precisely that
of the set of occupied sites for instantly coalescing random walkers, started from all sites in
Zd occupied. In particular P (x ∈ At) is constant in x and converges to 0 as t → ∞. If M is
the minimal solution started from M0 = 0, then comparison implies Mt ≤ M̂t for all t. We
claim that Mt(x) = M̂t(x) for x ∈ Act . The proof is another simple Gronwall estimate showing
E[
∑

x∈Ac
t
e−θ|x|χ(Mt(x) < M̂t(x))] = 0, by using

dχ(Mt(x) < M̂t(x) <∞) ≤
∑
y∼x

χ(Mt−(y) < M̂t−(y) <∞)dPt(y, x).

This gives all the ingredients needed to complete the proof of Proposition 3. Starting from zero
initial conditions, the monotonicity of the Laplace functional implies convergence in distribution
to M∞ ∈ Ŝ. But the coupling above by M̂ and the decay of P [x ∈ At] implies that M∞ ∈ S
almost surely. The limit distribution ν∞ is a stationary distribution (an argument that uses
the Feller property). Any other solution can be coupled between M and M̂ and so converges
in distribution to ν. In particular the stationary distribution is unique.

4.2 Proof of the coalescent pair estimates (19) and (23).

We give the argument for the discrete walk case (23), and note the Brownian case can be treated
entirely similarly. We do not seek accurate bounds. Split the problem in two by using Cauchy
Schwarz, namely(

P [|Xx
p−1 | ≤ p−1/2 and Xx, Xy coalesce by time p−1]

)2

≤ P [|Xx
p−1 | ≤ p−1/2]P

[
Xx, Xy coalesce by time p−1

]
. (26)

For |x| ≥ 2p−1/2 and p ≤ 1 we have

P [|Xx
p−1 | ≤ p−1/2] ≤ P [|X0

p−1 | ≥ |x|/2] ≤ 16|x|−4E[|X0
p−1 |4] = 16|x|−4(p−1 + 3p−2).

Thus, for suitable C, P [|Xx
p−1 | ≤ p−1/2] ≤ C(p−2|x|−4 ∧ 1) for all x and p ≤ 1. Take walks

Xz and Xy starting at (z, s2) and (y, s2). Write Qx for the law of a simple random walk on Z
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started at x on pathspace.

P [Xz, Xy coalesce by time p−1]

= Qz−y[X hits zero before 2(p−1 − s2)]

≤ Q|z−y|[X hits zero before 2p−1]

≤ 2Q|z−y|[X2p−1 ≤ 0] by the reflection principle

≤ 2 min{Qz−y[X2p−1 ≤ 0], Qy−z[X2p−1 ≤ 0]}.

By conditioning at time s2 we have

P [Xx, Xy coalesce by time p−1]

≤ 2Emin{QXx
s2
−y[X2p−1 ≤ 0], Qy−Xx

s2
[X2p−1 ≤ 0]}

≤ 2 min{EQXx
s2
−y[X2p−1 ≤ 0], EQy−Xx

s2
[X2p−1 ≤ 0]}

= 2Q|x−y|[X2p−1+s2−s1 ≤ 0]

≤ C(|x− y|−4p−2 ∧ 1)

by a Markov inequality as before. Substituting these estimates into (26) completes the proof.

4.3 Proof of the duality (20).

The Brownian web and the dual Brownian web (see [8]) is a useful construction for the study
of the model in d = 1, at least with zero evaporation. Informally, a realization of the web
on [0, t] ×R has coalescing Brownian paths starting from every space-time point (t, x). If one
superimposes an independent Poisson α process on [0, t] × R, yielding the space-time points
(ti, xi)i∈N of the deposed monomers, then almost surely the web has a unique set of coalescing
paths starting at each (ti, xi). These can be used to construct the process over [0, t] under
the distribution QR,N0,α . The dual web contains an additional set of coalescing paths running
backwards over the interval [0, t], starting at every point in {t} ×Q. Moreover, almost surely,
a forwards path, started from (ti, xi), never crosses any of the backwards dual paths. This
property implies the following identity for the probability, under QR,N0,α , of an empty interval
[x, y] at time t, where x < y, is given by

P [[x, y] is empty at time t] = E [[Bx
s , B

y
s ] ∩ (ti, xi)i∈N = ∅ for all s ∈ [0, t]]

where Bx
s , B

y
s are the positions at time s of the coalescing backwards dual paths started at

Bx
t = x and By

t = y. The point is that if any particle is deposited in the interval (Bx
s , B

y
s ) then

its forwards path would have to end up in the interval [x, y] at time t. Taking expectations over
the Poisson deposition yields

P [[x, y] is empty at time t] = E exp

(
−α

∫ t

0
(Bx

s −By
s )ds

)
.

Letting t → ∞ one finds the empty interval probability for the stationary distribution under
QR,N0,α is given by

P [[x, y] is empty at time ∞] = E exp

(
−α

∫ τ

0
Xy−x
s ds

)
.

where Xy−x is a rate 2 Brownian motion started at y−x and τ = inf{s : Xy−x
s = 0}. The right

hand side is given by the Airy function A0(α1/3(y − x)). Differentiating in x and then letting
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y ↓ x gives the stationary occupation density as −α1/2A
′
0(0). This identifies the constant c2

in section 3.1 as c2 = −A′0(0). One can see many related arguments in [21]. A more detailed

description of the evolution and stationary distribution under QR,N0,α is in preparation in a current
thesis. A continuous time random walk analogue of some of the above construction is possible,
quite close to the graphical construction of the voter model and its dual. Start with a graphical
construction of coalescing rate one simple random walks on the lattice [0, t]×Z as follows. Let
(ti, yi,±)i∈N be the points of a rate one marked Poisson process on the dual lattice [0, t]×(Z+ 1

2).
The marks ± are chosen independently for each point, with equal probability. Passing a point
(t, n+ 1

2 ,+) a forwards path at n will jump to n+1. Passing a point (t, n+ 1
2 ,−) a forwards path

at n+ 1 will jump to n. These rules define a unique right continuous forwards paths started at
any point in [0, t]× Z. Moreover paths started at different points will coalesce instantaneously
should they meet. The same marked points can be used to define backwards paths living on the
dual lattice. When such a path approaches a point (t, n+ 1

2 ,+) it will jump to n− 1
2 , and when

it approaches a point (t, n + 1
2 ,−) it will jump to n + 1

2 . These rules define right continuous

paths (Y
x+ 1

2
s : x ∈ Z, s ∈ [0, t]) so that their backwards versions s → Y x

t−s are coalescing rate

one random walks started at X
x+ 1

2
t = x + 1

2 . One can then check that forwards paths never
jump over backwards paths in the following sense: if a forwards path X and a backwards path
Y are both defined at s and t, then

Xs < Ys if and only if Xt < Yt.

Now the argument is as for the Brownian web. Lay down an independent set of deposition
points (ti, xi)i∈N as a rate q Poisson process on [0, t]×Z, and use the forwards paths constructed
above to build the process on [0, t] that has distribution QZ,N0,q . A site x ∈ Z is empty at time t

precisely if the interval [Y
x+ 1

2
s , Y

x− 1
2

s ] contains none of the deposition points (ti, xi)i∈N at any
time s ∈ [0, t]. Now mimic the Brownian argument to reach (20).

4.4 Proof of convergence to the Airy function and (21).

Note that Aq and A0 are convex, non-increasing and take values in [0, 1]. Let DAq(x) =
q−1/3(Aq(x+q1/3)−Aq(x)) be the discrete derivative, so that the discrete Laplacian is ∆Aq(x) =
q−1/3(DAq(x)−DAq(x−q1/3)) on q1/3N+. Using Aq(y)−Aq(x) = q1/3

∑
x≤z<yDAq(z), and the

fact that x→ DAq(x) is non-increasing, one finds that |DAq(x)| ≤ x−1 for all x and q. Together
with the identity ∆Aq(x) = xAq(x), this shows that both DAq(x) and ∆Aq are bounded over
intervals [0,K] uniformly in q. This gives the required equicontinuity to deduce that there is a
continuously differentiable A : [0,∞)→ [0, 1] so that, at least subsequentially,

max
x≤K
|Aq(x)−A(x)| → 0 and max

x≤K
|DAq(x)−A′(x)| → 0.

We aim to check the limit points A are unique and solve the Airy equation. Passing to the limit
in ∣∣∣∣∣∣q1/3

∑
x<z≤y

zAq(z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣q1/3
∑
x<z≤y

∆Aq(z)

∣∣∣∣∣∣ ≤ −DAq(x) ≤ x−1

leads to
∫∞
x zA(z) dz ≤ x−1 and hence that A(z)→ 0 as z →∞. The other boundary condition

A(0) = 1 is immediate. Another passage to the limit in

Aq(x) = 1 + q1/3
∑

0≤y<x
(Dq(y) + q1/2

∑
0≤z<y

zAq(z))
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gives A(x) = 1+
∫ x

0 (A′(0)+
∫ y

0 xA(z)dz)dy, completing the proof that A ∈ C2([0,∞)), a solution
to the Airy equation. Uniqueness of solutions is straightforward via a maximum principle
argument.
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