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Shock propagation in granular flow subjected to an external impact
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We analyze a recent experiment [Boudet, Cassagne, and Kellay, Phys. Rev. Lett. 103, 224501 (2009)] in which
the shock created by the impact of a steel ball on a flowing monolayer of glass beads is studied quantitatively.
We argue that radial momentum is conserved in the process and hence show that in two dimensions the shock
radius increases in time t as a power law t1/3. This is confirmed in event driven simulations of an inelastic hard
sphere system. The experimental data are compared with the theoretical prediction and are shown to compare
well at intermediate times. At long times the experimental data exhibit a crossover to a different scaling behavior.
We attribute this to the problem becoming effectively three dimensional due to the accumulation of particles at
the shock front and propose a simple hard sphere model that incorporates this effect. Simulations of this model
capture the crossover seen in the experimental data.
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I. INTRODUCTION

Driven granular gases can produce complex and intri-
cate spatial patterns [1–4]. Of particular interest is pattern
formation following a localized perturbation, the subject
matter of many recent experiments. Examples include crater
formation by wind jets in the context of lunar cratering [5],
viscous fingering in grains confined in a Hele-Shaw cell when
displaced by gas or liquid [6–8], shock propagation in flowing
glass beads following a sudden impact [9], signal propagation
in dilute granular gas [10] as well as in dense static granular
material (see Ref. [11] and references therein), and avalanches
in sand piles [12].

In this paper we focus on an experiment by Boudet,
Cassagne, and Kellay [9] on a dilute monolayer of glass beads
flowing on an inclined glass plane. In the experiment a steel
ball, much larger in size than an individual glass bead, is
dropped from a height onto the flowing beads. The impact
generates a circular region, devoid of glass beads, whose
radius increases with time. This radius was measured using
high speed cameras. A theoretical model was proposed and
analyzed to derive an equation obeyed by the radius, whose
solution predicts a logarithmic growth at long times. The
numerical solution of the equation was shown to match with
the experimental data [9].

In an independent study we had studied the effect of
exciting a single particle in a system of stationary hard inelastic
particles using event driven molecular dynamics simulations
and scaling arguments [13]. By identifying radial momentum
as a conserved quantity and using scaling arguments, the radius
of disturbance was predicted to increase with time as a power
law t1/3 in two dimensions. This result was shown to be in
very good agreement with data from numerical simulations of
the model.

The inelastic hard sphere model closely resembles the
experimental system in the Boudet-Cassagne-Kellay (BCK)
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experiment in the limit when the impact is very intense. In
this paper we propose the power law t1/3 as an alternative
description of the radius of disturbance in the BCK experiment.
By reexamining the data in the BCK experiment we show that
there are temporal regimes in which the power law growth
is a good description. At long times the experimental data
deviate from the t1/3 behavior. We argue that this is due to the
experimental system becoming effectively three dimensional
and propose a simple model incorporating this effect. Our
numerical data, obtained from simulations of this model, show
clearly the crossover and capture the long time behavior. Since
these results are in contradiction to those presented in the BCK
experiment, we further analyze the model proposed in the BCK
experiment and point out some shortcomings. In particular
we show numerically that the main assumption of the BCK
experiment is not correct. Though the experimental data are
not able to distinguish between the two theories because the
time scales are not long enough, the simulation data clearly
bring out the deficiencies of the BCK theory at long times.

The BCK experiment is the inelastic version of the classic
Taylor–von Neumann–Sedov problem of shock propagation
following a localized intense explosion [14]. In the latter case
the exponents characterizing the power law growth of the
radius of the disturbance follows from energy conservation and
simple dimensional analysis [15], while the scaling functions
can be calculated exactly following a more detailed analysis
[14,16]. Theoretical, numerical, and experimental studies of
this problem are summarized in Refs. [17,18]. Simulations
in a hard sphere model with elastic collisions reproduce the
results based on scaling arguments [19].

The BCK experiment is also a special case of a freely cool-
ing gas (in a reference frame moving with a mean velocity of
particles) wherein, after the initial input of energy, the system
is isolated and allowed to freely evolve without any external
driving. A key feature of the freely cooling granular gas is
the clustering due to inelastic collisions. The freely cooling
gas is well understood in one dimension and progressively
less understood as the dimension increases [20–35]. Such
systems are challenging experimentally because inelasticity
is overwhelmed by friction and boundary effects. Friction can
be eliminated in experiments on particles under levitation [36]
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or in microgravity [37,38], but these are expensive to perform
and are limited by a small number of particles and short times.
In the BCK experiment friction is balanced by gravity and
at high enough impact energies, in the center of mass frame,
mimics a stationary collection of inelastic particles without
friction. The boundary effects are eliminated as long as the
shock does not reach the edges of the container. Thus it is an
experiment where clustering due to inelastic collisions can be
studied easily.

The rest of the paper is organized as follows. In Sec. II
we describe the theoretical model in the BCK experiment and
review the arguments that lead to the equation obeyed by the
radius of the disturbance. This equation is further analyzed to
derive the asymptotic long time behavior. The shortcomings
of this model are pointed out. In Sec. III we define a hard
core inelastic gas model on which our computer simulations
are performed. In Sec. IV we demonstrate that our model
reproduces the basic features of the BCK experiment. The
assumptions of the analysis in the BCK experiment are tested
within this model and counterevidence is presented. In Sec. V
we compare the experimental results in Ref. [9] with the power
law growth rules obtained in Ref. [13]. The data at intermediate
times are well described by these power laws. However, there
is a crossover to a different behavior at long times. In Sec. VI
we examine whether this long time behavior can be explained
in terms of velocity fluctuations of the particles or by making
the rim three dimensional. We argue that it is plausible that
the three-dimensional rim is responsible for deviation from
power law growth and verify this by simulation. The results
are summarized in Sec. VII.

II. BCK MODEL AND ANALYSIS

We first review the model studied in the BCK experiment
to explain the experimental data. The model is based on the
experimental observation that after the impact with the steel
ball the displaced glass beads form a growing circular ring,
devoid of beads. Boudet, Cassagne, and Kellay considered an
idealized model where all the particles contained in a disk of
radius R(t) at time t accumulate at the rim (boundary of ring).
The remaining particles that are outside the disk are assumed to
be stationary. This mimics the experimental system when one
transforms to the center of mass coordinates and in the limit
of large impact energy, when the fluctuations of the particle
velocities about the mean flow may be ignored. Each particle at
the rim is assumed to move radially outward with a speed V (t).
As the ring moves outward more particles are absorbed into
the ring. We reproduce the calculation in the BCK experiment,
but generalized to d dimensions. The total kinetic energy
E(t) is

E(t) = 1
2ρ0�dR(t)dV (t)2, (1)

where ρ0 is the initial mass density and �d is the volume of a
unit sphere in d dimensions such that ρ0�dR(t)d is the total
mass of displaced particles. The speed V (t) is

V (t) = dR(t)

dt
. (2)

One more relation between E(t) and R(t) is required for
the solution. If the particles were elastic, then total energy

is conserved E(t) ∼ t0 and one obtains R(t) ∝ t2/(d+2); in
particular, R(t) ∝ √

t in d = 2 [15]. However, when particles
are inelastic, there is no such conservation law and energy
decreases with time. Boudet, Cassagne, and Kellay proceed
by the following argument. If r is the coefficient of restitution,
then the loss of energy when a particle in the rim collides with
a stationary particle outside is 1

2 (1 − r2)V (t)2. Thus, when the
ring moves out by a distance dR the change in energy dE is
given by

dE = − 1
2�R(t)dρ0V (t)2(1 − r2)N (t)dR, (3)

where N (t) is the number of collisions per particle per unit
length or, equivalently, N (t)dR is the number of collisions
for each particle in the rim as it travels a distance dR. The
BCK experiment makes the strong assumption that N (t) is
independent of the radius and hence time t , that is,

N (t) = const. (4)

Eliminating R(t) and V (t) in Eq. (3) using Eq. (1), one obtains

E(t) = E0exp[−N (1 − r2)R(t)], (5)

where E0 is the energy of impact at t = 0. It is now
straightforward to obtain the equation satisfied by the radius
R(t):

t

t0
=

∫ R/R0

0
dx xd/2ex, (6)

where t−1
0 =

√
E0[N (1 − r2)]d+2/ρ0�d2d+1 and R−1

0 =
N (1 − r2)/2.

For later reference it will be useful to derive the asymptotic
solutions to Eq. (6). Let α = ln(t/t0). Then for long times it is
straightforward to derive

R

R0
= α

[
1 − d

2

ln α

α
+ d

2

ln α

α2
+ O

(
1

α2

)]
, α � 1. (7)

The growth is logarithmic at long times in all dimensions. For
short times, by writing the exponential in Eq. (6) as a series, it
is easy to obtain

R

R0
=

[
(d + 2)t

2t0

]2/(d+2){
1 + O

[(
t

t0

)2/(d+2)]}
, t � t0.

(8)

For small times the power law growth of radius is identical to
the elastic case [15].

The experimental data in the BCK experiment was fitted
to the numerical solution of Eq. (6) with d = 2. Although the
equation describes the data well (see Fig. 4 of Ref. [9]), we
now argue that the analysis has certain shortcomings, making
the results questionable.

First, we show by a simple calculation that the solutions (5)
and (6) do not give the correct results when d = 1. The solution
(5) and (6) are valid for all values of r < 1, including r = 0.
In one dimension the special case r = 0, when particles stick
on collision, is easily solvable [13]. Let particles of mass m be
initially placed equidistant from each other with interparticle
spacing a. Pick a particle at random and give it a velocity v0

to the right. When this particle collides with its neighbor, it
coalesces with it. After k collisions the mass of the composite
particle is (k + 1)m, its distance from the impulse is R = ka,
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and its velocity, given by momentum conservation, is vk =
v0/(k + 1) toward the right. The time taken for k collisions is
given by

tk =
k−1∑
i=0

a

vi

= ak(k + 1)

2v0
. (9)

Solving for k, we obtain k = (−1 + √
1 + 8tv0/a)/2. At long

times t � a/v0 the radius and energy are R = ka ≈ √
2v0at

and E(t) = mv2
0a/2R, respectively. The analysis in the BCK

experiment for energy [Eq. (5)] and radius R(t) [Eq. (7)] is not
consistent with the exact solution in one dimension.

Second, we show that the long time logarithmic growth of
the radius of the disturbance, as in Eq. (7), is not possible.
We note that the radial momentum in a fixed direction
cannot decrease. It can decrease only if the pressure outside
the growing circular ring is larger than the pressure inside.
However, the outside pressure is zero since all the particles
are stationary and the inside pressure is non-negative since
it is a collection of hard core repulsive particles. Thus the
radial momentum of the system cannot decrease with time.
Suppose we assume that Eq. (7) is right, i.e., R(t) ∼ ln t . In
two dimensions the radial momentum is R(t)2V (t), where
V (t) = dR/dt ∼ 1/t . Thus the radial momentum scales as
(ln t)2/t , implying that the radial momentum decreases with
time, which is impossible. Therefore, within the model, the
logarithmic time dependence of the radius is not possible. The
above argument that the radial momentum cannot decrease
with time puts bounds on the growth exponent of the radius
of disturbance. Assume that R(t) ∼ tα, t � 1. Then radial
momentum scales as t3α−1. We immediately obtain that the
radius cannot grow more slowly than R ∼ t1/3 within the
framework of the model.

We now argue that radial momentum is not just nondecreas-
ing,but a constant of motion. Every collision is momentum
conserving. In addition, the clustering of all the displaced
particles at the rim of the ring prevents momentum from being
transferred in the negative radial direction. If we further assume
that once the dense rim is formed the angular coordinates
of particles do not change much, then radial momentum is
a constant of motion (see also the discussion of Fig. 2 in
Sec. IV). Therefore,

�dR(t)dV (t)�θ = const, (10)

where �θ is the angular spread in direction θ . The solution to
Eq. (10) is

R(t) ∝ tα, t � t ′, (11)

where α = 1/(d + 1) and t ′ is the initial mean collision
time. Equivalently R(t)d/2√E(t) is a constant of motion.
Equation (5) is clearly not consistent with this constraint, nor
is Eq. (7) for the growth of the radius consistent with Eq. (11).

We therefore conclude that the analysis of the BCK
experiment is not completely satisfactory. Since the solution
of the BCK experiment [Eqs. (5) and (6)] was based on the
assumption that N (t), the rate of collisions per particle per unit
distance, is a constant, we test the validity of this assumption
as well as the prediction of Eq. (6) in molecular dynamics
simulations of a hard sphere gas. As we will argue below, the

theory presented in the BCK experiment is also applicable to
the hard sphere model.

III. MODEL FOR SIMULATION

The system that is simulated is defined as follows. Consider
a collection of identical particles, modeled as hard spheres, in
two dimensions. The mass and diameter of the particles are set
to unity. All the particles are initially at rest and have a packing
density 0.20, which is much smaller than the known random
closed packed density of 0.84 in two dimensions [39,40]. We
model an isotropic impulse by introducing four particles at the
center with speed v0 in the directions 0, π/2, π , and 3π/2.
Particles interact only on collision, during which momentum
is conserved and velocities change deterministically. If the
velocities of two particles 1 and 2 before and after collision
are u1,u2, and v1,v2 respectively, then

v1,2 = u1,2 − ε[n · (u1,2 − u2,1)]n, (12)

where r = 2ε − 1 (0 < r < 1) is the coefficient of restitution
and n is the unit vector directed from the center of particle
1 to the center of particle 2. In other words, the tangential
component of the relative velocity remains unchanged, while
the magnitude of the longitudinal component is reduced by a
factor r . When r = 1, the collisions are elastic. To simulate the
inelastic system the coefficient of restitution r is chosen to be
less than unity if the magnitude of the longitudinal component
of the relative velocity is greater than a velocity scale δ;
otherwise r = 1 mimics elastic collisions for small relative
velocities [26]. This qualitatively captures the experimental
situation where r is seen to be a function of the relative
velocity [41,42]. In addition it prevents inelastic collapse that
is a hindrance to simulations [43,44]. The cutoff δ introduces
a time scale in the problem at long times, after which most of
the collisions are elastic. For sufficiently small δ, the elastic
crossover time scale does not show up in our simulations.

We simulate the system in two dimensions using event
driven molecular dynamics [45]. The data presented are
typically averaged over eight different initial realizations of
the particle configurations. All lengths are measured in units
of the particle diameter and time is in units of the initial mean
collision time t0 = v−1

0 n−1/d , where v0 is the initial speed and n

is the number density. The value of δ is 10−4 unless specified
otherwise. For these values of δ, all the quantities that we
measure except for the rate of collisions are independent of
δ [13]. The initial speed is v0 = 1 unless specified otherwise.

IV. NUMERICAL STUDY OF THE BCK
EXPERIMENT RESULTS

In this section the results and assumption of the BCK
experiment are checked in a numerical simulation of the hard
sphere model. In Fig. 1 we show the time evolution of the
system following an impulse. As time increases all the particles
that were originally in a roughly circular ring cluster together
at its rim. We observe clustering for all the values of r < 1 that
we have simulated, with clustering setting in at later times for
larger coefficients of restitution.

The formation of an empty region bounded by the moving
particles (as in Fig. 1) is the only requirement for the BCK
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FIG. 1. (Color online) Moving (red) and stationary (green)
particles at times (a) t = 103, (b) t = 104, (c) t = 105, and (d) t = 106

following an isotropic impulse at (500,500) at t = 0. The moving
particles cluster together at the disturbance front. The data are for
r = 0.10.

theory to be applicable. Therefore, if the analysis in Ref. [9] is
correct, then the results for the radius in Eq. (6) should describe
the disturbance in the hard sphere model too. In numerical
simulations data can be obtained for much longer times than
that in the experimental data in Ref. [9] and therefore can be
used to make a more rigorous test of the assumptions and the
conclusions of the BCK theory.

We first present numerical evidence for radial momentum
being a constant of motion, as argued in Sec. II. In Fig. 2
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FIG. 2. (Color online) Radial momentum as a function of time
t . For elastic collisions it increases as

√
t (the solid straight line is

a power law
√

t). For inelastic collisions with r = 0.10 the radial
momentum appears to increase very slowly with time to a constant
when δ → 0. The slow increase of the radial momentum can be seen
more clearly in the inset. The data for the elastic system have been
scaled down by a factor of 1/2.
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FIG. 3. (Color online) Data for radius R(t) from simulations in
two dimensions compared with Eq. (6) and t1/3. The constants R0 and
t0 in Eq. (6) are obtained by fitting the initial time simulation data to
Eq. (6) and are R0 = 10.30 ± 0.21 and t0 = 35.79 ± 2.35. The data
are for r = 0.10.

the temporal variation of the radial momentum is shown for
different δ with fixed r = 0.10 and compared with the data
for the elastic problem. When all collisions are elastic, radial
momentum increases as

√
t . When collisions are inelastic,

radial momentum increases very slowly with time from an
initial value of 4.0–8.6, in nearly six decades of time (see
inset of Fig. 2). With the current data it is not possible to
conclude with certainty that radial momentum will become a
constant at a long time when δ → 0. However, one can rule
out a power law growth. The radial momentum conservation
is strictly valid only when collisions are completely inelastic,
i.e., r = 0 and δ = 0. However, for other value of r and δ,
even after formation of the circular band, colliding particles
may change their angular coordinates. Such changes in
the angular coordinates of the particles will result in an
increase of radial momentum. We checked that the average
change in angle following a collision decreases to zero with
time.

In Fig. 3 we compare the BCK result (6) for the radius
with hard sphere simulation data. The constants R0 and t0 in
Eq. (6) are determined by fitting it to the numerical data at
early times. It is clear that Eq. (6) captures only the short time
behavior. In contrast, the data at long times are consistent with
the power law t1/3. We believe that the discrepancies between
the short and long time behaviors are not brought out by the
experimental data as the time scales are not large enough.

We now make a direct test of the BCK assumption that
N (t), the number of collisions per particle per unit distance,
is a constant in time, as assumed in the BCK experiment.
The data for N (t) are shown in Fig. 4 for three different
coefficients of restitution, one of them being r = 1. While
N (t) is a constant when collisions are elastic, it is clearly not
so for r < 1, thus invalidating the BCK assumption. At long
times the rate of collisions becomes independent of r as long
as r < 1. This is consistent with the observations in the freely
cooling granular gas [26,27], where the long time behavior
of E(t) and N (t) is independent of r and hence identical to
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FIG. 4. (Color online) Temporal variation of N (t), the number
of collisions per particle per unit distance for various r . For r < 1,
N (t) is not constant as assumed by the BCK experiment. The inset
shows NR, which is a constant at large times for r < 1, where R is
the radius of disturbance.

r = 0, the sticky limit. Thus we could think of the rim as a
solid annulus made up of all the particles that have undergone
at least one collision. Therefore, once the rim forms, we expect
that only the collisions of the particles that are at the outer edge
of the rim with the stationary particles are relevant. Then the
collisions per particle on surface per unit time NR should be
constant. This is confirmed in the inset of Fig. 4, where NR

tends to a constant independent of r , at long times. Since the
relevant collisions are taking place at the outer boundary of the
rim, Eqs. (5) and (6) underestimate the radius or, equivalently,
overestimate the energy loss.

V. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare the power law solution R(t) ∼
t1/3, obtained from the conservation of radial momentum, with
the experimental data of Ref. [9]. Figure 5 shows the data
(Fig. 4 of Ref. [9]) for the temporal variation of the radius of
disturbance R(t) following impacts with spheres of different
diameter. The black solid lines are power laws t1/3. There are
temporal regimes where it matches well with the experimental
data. However, there are deviations from t1/3 at long times.
There is sufficient statistics for this long time regime only for
the impact with the largest sphere. For these data we find that
the data are best fitted by a power law t0.18 (see the dashed line
in Fig. 5).

The experimental situation is more complicated than the
simple hard sphere model for which the power law growth
is presumably the correct result. To equate the two, we had
to make approximations. First, we ignored the fluctuations
of the velocities of the particles about the mean velocity.
While this is reasonable for large impact velocities when
typical speeds of displaced particles are much faster than
typical velocity fluctuations, the fluctuations become relevant
at longer times. Second, we ignored the experimentally ob-
served three-dimensional nature of the rim (see the discussion
in penultimate paragraph of Ref. [9]). Such a possibility
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FIG. 5. (Color online) Experimental data from Ref. [9] for radius
R as a function of time t following an impact by steel balls of diameter
4, 8, and 16 mm. The solid and dashed lines have slopes 1/3 and 0.18,
respectively. The diameter of a glass bead is denoted Rs and ts is the
mean time taken by a glass bead to traverse a distance equal to its
diameter. The data have been obtained from Ref. [9].

will result in radial momentum not being conserved, thus
invalidating the scaling arguments in Ref. [13].

It is possible that either or both of these approximations
could be responsible for the crossover seen at long times.
In Sec. VI we study modified versions of the hard sphere
model, which incorporates the above features. We argue that
the crossover from a t1/3 law can be explained by these
models.

VI. EFFECT OF NONZERO AMBIENT TEMPERATURE
AND THREE-DIMENSIONAL RIM

In the center of mass coordinates all particles are not
stationary but fluctuating about their mean position. When
these velocity fluctuations become comparable to the velocity
of the rim we expect the rim to destabilize and power laws to
show crossovers.

We model this situation as follows. Initially all the particles
(type E) are assumed to be elastic and equilibrated at a certain
fixed temperature, parametrized by 
2 = 〈v2〉/v2

0 , where 〈v2〉
is the mean velocity fluctuations and v0, as earlier, is the speed
of the perturbed particles. The case 
 = 0 corresponds to the
case when all particles are initially stationary. An isotropic
impulse is imparted by introducing four particles (type I ) at
the center with speed v0 in directions 0, π/2, π , and 3π/2.
Collisions between E particles are elastic. Collisions involving
at least one I particle are inelastic. If an E particle collides
with an I particle, then it becomes type I . This model captures
shock propagation in a system where all particles have some
nonzero kinetic energy.

In Fig. 6 we show snapshots of the system at various times
when 
 = 1/800. The sharp rim starts becoming more diffuse
as the velocity of the rim decreases, until the enclosed empty
region vanishes completely. These snapshots are qualitatively
very similar to that seen in the experiment for low speed
impacts and at long times (see Fig. 1 of Ref. [9]).
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FIG. 6. (Color online) Snapshots of inelastic particles (red) and
elastic particles (green), when 
 = 1/800, following an isotropic
impulse at (500,500) at t = 0. The time increases from (a) to (d)
and corresponds to the times shown by labels (a)–(d) in Fig. 7.
Initially, the disturbance grows as in Fig. 1, but at late times, due
to velocity fluctuations, the rim gets destabilized. The data are
for r = 0.10.

When the rim destabilizes, R(t) shows deviation from the
t1/3 power law growth (see Fig. 7). It is straightforward to
estimate this crossover time tc. The instability sets in when
the speed of the rim is of the same magnitude as the velocity
fluctuations, i.e., vtc ∼ 
v0. Since vt ∼ dR/dt ∼ t−2/3, we
immediately obtain tc ∼ 
−3/2. Thus R(t) should have the
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FIG. 7. (Color online) Radius of disturbance R(t) as a function of
time t for different values of 
. The effect of velocity fluctuations are
experienced later for smaller 
. At long times the finite external
pressure is able to compress the bubble, with R(t) reaching a
minimum when the density of the bubble approaches the close
packing density. The inset shows data collapse when scaled according
to Eq. (13). A solid line of slope 1/3 is drawn for reference. The data
are for r = 0.10.

scaling form

R(t) ∼ t1/3f (t
3/2), (13)

where f (x) is a scaling function with f (x) ∼ O(1) when
x → 0. The curves for different 
 collapse when scaled as
in Eq. (13) [see the inset of Fig. 7].

The introduction of a finite ambient temperature, while
leading to the disintegration of the rim, does not produce
the long time behavior of the data for the radius. We now
ask whether the rim becoming three dimensional could be
responsible for that. The rim presumably becomes three
dimensional because a fast particle when hemmed in by many
surrounding particles may jump out of the plane due to a
collision with the floor and friction. The net effect is a reduction
in radial momentum, which could change the growth law.

To mimic radial momentum leakage occurring at high
densities we consider the following model. We divide the
system into squares of length equal to the diameter of the
particles. Given the grid position of a particle, any particle that
is in one of the eight neighboring squares will be called its
neighbor. At any instant of time, if a particle has eight or more
neighbors, then we remove the particle if its velocity v satisfies
the hopping criterion (v − vc.m.) · v̂c.m. > κvc.m., where vc.m. is
the center of mass velocity of the particle and its neighbors. In
other words, the longitudinal component of the velocity should
be larger than vc.m. by a factor κ .

The hopping criterion is tested for all moving particles
after every 100 collisions in the system and the results do
not depend on this number provided it is not too large. The
results are shown in Fig. 8. The results obtained are insensitive
to the value of κ provided κ < 0.20. We find that at long
times the system crosses over to a different power law growth
approximately equal to t0.18, which is very similar to the growth
law seen in the experiment. While the aim of the model was to
show that loss of radial momentum at high densities can result
in crossovers at long times, we obtain a quantitative match.
As of now, we have no explanation why the exponents have
approximately the same numerical value and it could be just a
coincidence.

101

102

101 102 103 104 105 106 107

R
(t

)

t

v0 = 1
v0 = 2
v0 = 4
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no hopping

FIG. 8. (Color online) Temporal variation of radius R(t) for κ =
0.20 with various initial velocities v0. The solid line is a power law
t0.18, while the dashed line is a power law t1/3. The data with no
hopping correspond to v0 = 1. All data are for r = 0.10.
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VII. CONCLUSION

In summary, we analyzed the recent experiment [9] of
dropping spheres onto a flowing monolayer of glass beads.
We modeled the experiment with a hard sphere system
undergoing inelastic collisions. With this hard sphere system
we showed that the assumption of a constant rate of collision
per particle per unit distance, made in the theory [9] to
describe the experimental data, is correct only for elastic
particles. For an inelastic system the relevant collisions are
the collisions of the particles at the outer edge of the rim
with the stationary particles outside. We also argued that
the formation of the circular ring in the perturbed system
conserves radial momentum. This conservation law leads to
a t1/3 power law growth for the radius of disturbance. The
t1/3 growth law describes the experimental data well except at
long times when the data show a crossover to a different power
law growth. We attributed this crossover to the rim becoming
three dimensional because of high densities and collisions
with the floor. By constructing a simple model incorporating
these effects, we were able to explain the crossovers at large
times.

The current experimental data cannot distinguish between
the theory in the BCK experiment and the power law growth
argued for in this paper. If the experimental time scale is
increased, then such a distinction may be possible. It will
be worthwhile to make the attempt.

In our simulations we modeled the coefficient of restitution
as r < 1 for relative velocities larger than a velocity scale δ

and r = 1 otherwise. The velocity scale δ is relevant exper-
imentally and not just a computational tool. Experimentally,
r(v) approaches 1 when the relative velocity v tends to zero,
i.e., 1 − r(v) = g(v/δ), where g(x) ∼ xχ + O(x2χ ) for x � 1
and g(x) ∼ O(1) for x → ∞, and the exponent χ takes a
variety of values. Within the framework of viscoelastic theory,

χ = 1/5 [46]. Systems with χ < 1 cannot be studied using
the event driven molecular dynamics simulations performed
in this paper as inelastic collapse prevents the simulation
from proceeding forward. However, we have checked, using
molecular dynamics simulations with soft potentials, that the
rim formation and radius increasing as a power law t1/3

continue to be true for χ < 1 [47].
It will be quite interesting to see if any connection can

be made between the shock problem in which most of the
particles are initially stationary and the well studied freely
cooling granular gas, in which all particles initially have a
nonzero kinetic energy. It may be possible to think of the freely
cooling gas as a collection of shocks initiated at different points
in space, which interact when the shock fronts meet. If such a
connection is possible, it will help in resolving the uncertainty
of the energy decay exponent [21,27] of the freely cooling
granular gas. Thus it will be useful to make a detailed study of
the case of two interacting shocks.

The data for radius show a crossover from an initial elastic
behavior t1/2 to an asymptotic t1/3 growth law. It would be of
interest to understand this crossover better. An exact solution
of the shock problem in one dimension with 0 < r < 1 would
throw light on it. An exact solution appears possible given that
the freely cooling granular gas in one dimension is one of the
exactly solvable model in granular physics.
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