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Coarse-grained dynamics of the freely cooling granular gas in one dimension
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We study the dynamics and structure of clusters in the inhomogeneous clustered regime of a freely cooling
granular gas of point particles in one dimension. The coefficient of restitution is modeled as r0 < 1 or 1, depending
on whether the relative speed is greater or smaller than a velocity scale δ. The effective fragmentation rate of a
cluster is shown to rise sharply beyond a δ-dependent time scale. This crossover is coincident with the velocity
fluctuations within a cluster becoming order δ. Beyond this crossover time, the cluster-size distribution develops
a nontrivial power-law distribution, whose scaling properties are related to those of the velocity fluctuations. We
argue that these underlying features are responsible for the recently observed nontrivial coarsening behavior in
the one-dimensional freely cooling granular gas.
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I. INTRODUCTION

Consider a collection of particles, initially distributed ran-
domly in space, evolving in time through ballistic transport and
inelastic collisions. Such a system has been studied extensively
as a simple model of granular systems as well as a tractable
model in nonequilibrium statistical mechanics [1–13]. At
initial times, the system undergoes homogeneous cooling,
the energy decreasing with time t as t−2, in accordance with
Haff’s law [14]. This law has been confirmed in experiments
on particles under levitation [15] or in microgravity [16]. In
this regime, the particles remain homogeneously distributed
with interparticle spacing being the only relevant length scale.

Beyond a time scale tc, this homogeneous cooling regime
destabilizes [17] and the particles start clustering together, as
has been confirmed through extensive simulations [3,6–13].
This regime is referred to as the inhomogeneous clustering
regime. The energy decays as t−θ , where θ varies with
dimension and is different from 2 [1,6–10] in dimensions
lower than the upper critical dimension, which is expected
to be either infinity [1] or 4 [8]. In this regime, there is a
growing length scale Lt , determined by the size of the largest
cluster.

Although direct experiments [15,16] do not probe the
clustered regime as of now, there is the possibility of them
doing so in the future. Furthermore, the effects of clustering
are seen indirectly in experiments, for example, in the motion
of granular gases following an impact [18], and can possibly be
explained by studying simple models in lower dimensions [19].
The freely cooling granular gas problem is also important
theoretically in its own right, as correlations are much more
stronger than in driven systems: Conventional kinetic theory
[17], which ignores strong correlations, describes driven
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systems well, but is known to fail when compared to actual
numerical simulations of the freely cooling system.

Much more is known in one dimension than in higher
dimensions. Through an exact solution [4,5] of the problem
with the coefficient of restitution set to zero (sticky gas) and
extensive simulations [7] of the inelastic gas, it is known that
θ = 2/3. The sticky limit may also be mapped to the dynamics
of shocks in the inviscid Burgers equation [20]. Recently, it
was shown that when the coefficient of restitution depends on
the impact velocity, a different time scale t1 further subdivides
the inhomogeneous clustering regime into two subregimes
[12,13]. This was based on a study of the density-density and
velocity-velocity correlation functions. For times tc < t < t1,
these structure functions scale exactly as in the sticky gas,
obeying what is known as Porod’s law [21]. However, for
times t > t1, the inelastic gas deviates from the sticky gas
limit and the correlation functions violate Porod’s law. In
addition, the density distribution and interparticle distance
distribution develop into power laws that are qualitatively
different from that seen at earlier times. We will refer to the two
subregimes as the Porod and fluctuation-dominated ordering
regimes, respectively.

Although the macroscopic statistical quantities studied
in Refs. [12,13] establish that the Porod and fluctuation-
dominated ordering regimes are distinct, they do not reveal
how fluctuations start dominating beyond the time scale t1. It
was speculated that the fluctuation-dominated ordering regime
should have an effective process of fragmentation that will
compete with the otherwise strong effective aggregation of
clusters due to inelastic collisions. Whether coarse-grained
density clusters break up or remain coherently moving objects
can be checked directly by studying their dynamics. In
this paper we study cluster dynamics, in particular effective
fragmentation rates, and show that the ordering process gets
disturbed beyond a certain time scale.

The second question is regarding the origin of the crossover
time scale t1. Earlier this was shown to depend on a velocity
scale δ associated with the coefficient of restitution [12,13].
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The coefficient of restitution is often modeled as a function
of the relative velocity, rather than being a constant, such that
collisions become nearly elastic for relative velocities smaller
than δ. This property is consistent with experiments [22–24],
required by theory [17], as well as essential in simulations to
prevent inelastic collapse [2]. In this paper we demonstrate that
the time t1 is marked by the particle velocity fluctuations within
density clusters becoming of the order δ. Thus it is not the
typical velocities but rather the velocity fluctuations that matter
for correlation functions. We also present a consistent scaling
theory to explain the dependence of velocity fluctuations,
fragmentation rates, and the cluster-size distribution on the
parameters δ, time t , and cluster size m.

In Sec. II we define the model and the quantities of interest
and give details of the simulation. In Sec. III we present
results from numerical simulations for velocity fluctuations,
fragmentation rates, and the cluster-size distribution. We
develop a scaling theory that enables us to understand the
scaling of the above quantities in terms of two exponents.
Section IV contains a summary and a discussion of results.

II. MODEL AND DEFINITIONS

In this section we define the microscopic model and the
quantities of interest. The model consists of a collection of N

point particles of equal mass on a ring of length L. Each particle
moves ballistically until it collides with another particle. The
collisions conserve momentum but are inelastic such that when
two particles with initial velocities ui and uj collide, the final
velocities u′

i and u′
j are determined by

u′
i,j = ui,j

(
1 − r

2

)
+ uj,i

(
1 + r

2

)
, (1)

where r is the coefficient of restitution. The particles are
initially distributed randomly in space with their velocities
drawn from a Gaussian distribution.

Experimentally, the coefficient of restitution depends on
the relative velocity of the collision and is observed to tend
to one (elastic) when the relative velocity tends to zero
[22–24]. This is also true within viscoelastic theory [17] with
r approaching 1 as (v/δ)χ , with χ = 1/5 and δ a velocity
scale. However, experimentally, χ is seen to take a range
of values [22–24]. Theoretically, δ has often been used as
a tool merely to circumvent inelastic collapse in simulations.
A simple model for r is often chosen, where χ is chosen to be
infinite [7,8]:

r(vrel) =
{

r0 if vrel > δ,

1 if vrel � δ.
(2)

The collisions are elastic for relative velocities smaller
than δ. We adopt the same model for the coefficient of
restitution. We stress that the existence of δ is real and the
phenomena arising due to a nonzero δ should, in principle,
be experimentally measurable provided one can go to large
enough times. We have also simulated the system with r(v) =
(1 − r0) exp[−(v/δ)χ ] + r0, with χ = 3.0. This choice of the
coefficient of restitution smoothens the discontinuity present
in Eq. (2). The results obtained for χ = 3.0 are consistent
with the results obtained for r(v) with χ = ∞ as in Eq. (2).
We thus expect that the results will not depend on the detailed

dependence of the coefficient of restitution on relative velocity
as long as χ > 1. When χ < 1, it is no longer possible to
avoid inelastic collapse in the event-driven simulations that
we have done. However, conventional molecular-dynamics
simulation with soft potentials suggest that the results also
hold for χ < 1 [25].

Starting from the above microscopic model, we desire
to study emergent processes such as fragmentation and
aggregation of a collection of particles. To this end, a coarse-
grained description has to be introduced, which we do as
follows. Divide the ring into N equally sized boxes. Let
the number of particles in the ith (i = 1,2, . . . ,N ) box be
called the box density. We define a cluster as a collection of
contiguous boxes with nonzero box density surrounded by
two empty boxes. The total number of particles in this cluster
will be called the size of the cluster. A similar definition
has been used elsewhere; see, for example, Ref. [26]. In
earlier papers [12,13] we studied velocity-velocity and density-
density correlations using the coarse-grained box density.
However, a single particle moving across the boundary of a
box results in a change of density. To study clusters, any coarse
graining should make sure that particles move significantly,
i.e., by at least a box spacing L/N , to cause a change
in configuration. The above definition of a cluster has this
property.

The motion of particles within a cluster may be captured
by studying the velocity fluctuations σ 2. Let uc be the center-
of-mass velocity of a cluster, i.e., uc = m−1 ∑m

i=1 ui , where
ui are the velocities of the particles constituting the cluster-
and m is the size of the cluster. Then the velocity fluctuation
of that cluster is σ 2(m,t) = m−1 ∑m

i=1(ui − uc)2, where the
summation is again over all the particles constituting the clus-
ter. When σ 2 is much smaller than u2

c , the cluster is compact
and stable with respect to the velocity fluctuations. However,
if they are of same order or if σ 2 ∼ δ2, then the cluster may
start breaking apart. This effect can be captured by defining
an effective fragmentation rate of a cluster, as described
below.

In the space of cluster sizes, a stochastic dynamics may be
defined, with rates for the different processes being determined
from simulations. As the clusters evolve in time due to the
entry and exit of particles into and out of a cluster, we ask
what the rates of transition from a cluster size m to m′ are. Let
W (m → m′; t) be the rate at which a size m changes into a size
m′ at time t . If N (m,t) is the number of clusters per unit lattice
site of size m at time t , then its time evolution is described by
an effective master equation [27]

dN(m,t)

dt
=

∑
m′

W (m′ → m; t)N (m′,t)

−
∑
m′

W (m → m′; t)N (m,t). (3)

If in a time interval �t , the cluster size decreases, then
the cluster is said to have undergone fragmentation. Thus an
effective fragmentation rate Wf (m,t) of a cluster of size m at
time t can be defined as

Wf (m,t) =
∑
m′<m

W (m → m′; t). (4)

031310-2



COARSE-GRAINED DYNAMICS OF THE FREELY COOLING . . . PHYSICAL REVIEW E 84, 031310 (2011)

We note that, in Eq. (4), fragmentation is an emergent process,
not defined a priori in the microscopic dynamics, unlike some
other models of granular gas where fragmentation occurs on
collision [28,29].

We study the model by means of event-driven molecular-
dynamics simulations [30]. In the simulations the number
density N/L is fixed to one and the number of particles
N = 20 000. The results in this paper do not depend on the
precise values of the parameters r0 and δ, as long as δ is
much smaller than the initial velocity differences of adjacent
particles. We use generic values δ = 0.001, 0.002, 0.004, and
0.008 and r0 = 0.1 in the simulations. The initial velocities
are chosen from a Gaussian distribution with width 1. The
data are typically averaged over 20 000–30 000 different initial
conditions. All averages are over space and different histories
and are denoted by 〈· · ·〉. Furthermore, we use reduced units
in which all lengths are measured in terms of the initial mean
interparticle spacing and times in terms of the initial mean
collision time.

III. RESULTS

In this section we study numerically three quantities: ve-
locity fluctuations within a cluster, the effective fragmentation
rate of a cluster, and the cluster-size distribution. We argue
that their variation with time and cluster size can be captured
by just two exponents. In addition, we also show the existence
of a crossover time beyond which all three quantities show
qualitatively different behavior and large compact clusters start
breaking apart.

There are four velocity scales in the problem. First is the
typical speed of a cluster that decreases in time as t−1/3 [4,7].
Second is the root-mean-square velocity fluctuations σ within
a cluster (discussed in detail below). Third is δ, characterizing
the coefficient of restitution [see Eq. (2)], and the fourth
corresponds to the initial velocity distribution. At large times,
once the inhomogeneous cooling regime is reached, there is
no memory of the initial velocity distribution, and it will play
no role in the subsequent discussion. When the typical speeds
become of order δ, almost all collisions are elastic and energy
no longer decreases. We will denote the latter crossover time by
t2. Clearly, t2 ∼ δ−3. It is possible that the velocity fluctuations
scale with time differently from the typical velocity. If so,
there is the possibility of a different crossover time, which is
marked by the velocity fluctuations becoming order δ. Beyond
this crossover time, if it exists, intracluster collisions will be
elastic while intercluster collisions continue to be inelastic and
one might see a different structure at small scales.

We first characterize the velocity fluctuations σ 2. In Fig. 1
we show the variation of σ 2 with time t for different values
of δ and two values of cluster size m. For short times, σ 2 is
independent of δ and after initial transients it decays in time
as a power law, with the exponent independent of m and the
prefactor dependent on m. At large times, σ 2 deviates from the
power-law behavior and is constant before decreasing further.
We argue that the flattening of the curve occurs when σ 2 is of
order δ2: Velocity fluctuations and hence relative velocities are
such that most collisions within a cluster are elastic. Elastic
collisions preserve the relative velocities before and after the
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FIG. 1. Velocity fluctuations σ 2 within a cluster of size m as a
function of time t for different δ. The data are for sizes m = 19 and
76. For short times the curves, for a given size, decay as a power
law and are independent of δ. Deviation from the power law is seen
earlier for larger δ.

collision and hence we expect σ 2 to flatten out to a constant.
These observations are mathematically summarized as

σ 2(t,δ) � δ2f1(tδ2/x1 ) for fixed m, (5)

σ 2(t,m) � f2

(
t

mx2/x1

)
for fixed δ, (6)

where x1 and x2 are scaling exponents and f1 and f2 are scaling
functions. Since the early time behavior of σ 2 is independent
of δ (see Fig. 1), f1(z) ∼ z−x1 , z 	 1. Similarly, consistency in
the small-t behavior between Eqs. (5) and (6) implies f2(z) ∼
z−x1 , z 	 1. Thus, for fixed δ, σ 2 ∼ mx2 t−x1 in the initial
power-law phase.

The exponents x1 and x2 may be obtained from the data
collapse in Fig. 1 when scaled as in Eqs. (5) and (6). The
scaled data are shown in Figs. 2(a) [Eq. (5)] and 2(b) [Eq. (6)].
From these we obtain

x1 = 3.00 ± 0.06, (7a)

x2 = 2.66 ± 0.08. (7b)

Note that these values of x1 and x2 imply that the crossover time
t1 relevant for σ 2, obtained by t1δ

2/x1 ∼ 1, implies that t1 ∼
δ−2/x1 ∼ δ−0.66. This time scale is much smaller than t2 ∼ δ−3,
which is the crossover time associated with the typical speed
of particles becoming of order δ, i.e., all collisions becoming
nearly elastic. Therefore, we expect that the crossover time t1
should have no effect on the total energy of the system as long
as t 	 t2.

To confirm the independence of the total energy on t1 as
well as to contrast the intracluster velocity fluctuations σ 2

with typical cluster velocities, we study the center-of-mass
velocity uc of a cluster. It is well known that the average
energy per particle in the cooling gas decreases as t−2/3 [7].
Not surprisingly, we find that 〈u2

c〉 for a cluster decays with the
same law. In Fig. 3 we show the variation of 〈u2

c〉 with time for
different δ and two different cluster sizes; 〈u2

c〉 decreases as
t−2/3 at large t . There is no signature of any crossover across
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FIG. 2. Data collapse when scaled velocity fluctuations σ 2δ−2

are plotted against (a) scaled time variable tδ0.66 and (b) scaled time
variable tm−0.88. The data are for (a) m = 19 and (b) δ = 0.004. The
solid straight lines have a slope of −3.0.

any intermediate time scale t1 nor any dependence on δ. The
intracluster collisions that are nearly elastic affect velocity
fluctuations but not the typical speeds, which are affected only
by cluster-cluster collisions.

We provide a further independent check for the numerical
values of the exponents x1 and x2 in Eq. (7) by quantifying the
velocity fluctuations σ 2

max of the largest cluster in the system.
From Eqs. (5) and (6) we obtain that σ 2

max ∼ Mx2
maxt

−x1 , where
Mmax(t) is the size of the largest cluster at time t . Noting
that Mmax(t) ∼ t2/3 [4,7], we obtain σ 2

max ∼ t2x2/3−x1 ∼ t−1.22,
where we substituted the values of x2 and x1 from Eqs. (5) and
(6). In Fig. 4 we show the variation of σ 2

max with time t for
different values of δ. The temporal regime that is independent
of δ is consistent with the calculated value 1.22 of the
exponent.

We now ask what the relevance of the crossover time t1 is.
We show that though the typical speeds do not detect t1, the
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FIG. 3. Square of the center-of-mass velocity 〈u2
c〉 of a cluster of

size m as a function of time t for different δ. The data are for sizes
m = 19 and 76. For the times shown, there is no dependence on δ,
while for similar times the velocity fluctuations σ 2 start depending
on δ. The solid line has a slope of −2/3.
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FIG. 4. Velocity fluctuations σ 2
max of the largest cluster as a

function of time t for different δ. For short times the curves are
independent of δ. Deviation from the power law is seen earlier for
larger δ. The solid straight line has a slope of −1.22, as calculated
from Eq. (7).

structure of the clusters changes drastically beyond t1. Beyond
t1, intracluster collisions tend to be mostly elastic. Elastic
collisions tend to smoothen out density inhomogeneities;
therefore, clusters become less compact and we expect them
to start fragmenting.

We show that the above crossover of σ 2 from a power
law is linked very closely to the initiation of fragmentation
in clusters. The fragmentation rate Wf (m,t) as defined in
Eq. (4) is measured numerically as follows. At time t , all the
clusters of a particular size m are identified. At time t + �t ,
the fraction of the identified clusters whose size has reduced
is calculated. That fraction is equal to Wf (m,t)�t . In the
simulations, we choose �t to be one so that sufficient statistics
may be obtained.

In Fig. 5 we show the fragmentation rate Wf for cluster
size 19 for different values of δ. There is a sharp increase
in the fragmentation rate beyond a certain time scale that is
smaller for larger δ. Thus the rise in the cluster fragmentation
phenomenon understandably can be delayed by making the
magnitude of the velocity scale δ smaller, at which point elastic
collisions dominate. In the inset of Fig. 5 we superimpose the
fragmentation rate on the plot of σ 2 with time for the same
value of δ and cluster size. Clearly, the time scale at which
the fragmentation rate rises sharply coincides with t1, the
time scale beyond which the velocity fluctuations σ 2 deviate
from a power-law behavior. This increased fragmentation rate
results in fluctuation-dominated coarsening and ultimately to
the breakdown of Porod’s law [12].

Another curious question is whether the larger masses are
more stable to fragmentation than the smaller ones. To explore
this, we studied the dependence of the fragmentation rate
Wf on the cluster size. In Fig. 6 we show the variation of
Wf with t for different m and fixed δ. The crossover time
beyond which increased fragmentation is seen increases with
m. Having identified this crossover time with t1 (see the inset
of Fig. 5), using Eq. (6) we write

Wf (t,m) � mηfw

(
t

mx2/x1

)
for fixed δ, (8)
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FIG. 5. Fragmentation rate Wf as a function of time t for different
δ. Wf shows a sharp increase beyond a time scale that is smaller for
larger δ. The data are for cluster size 19. Inset: Velocity fluctuations
σ 2 and Wf as a function of time. The increase in fragmentation rate
coincides with saturation of the velocity fluctuations. The data are for
δ = 0.004 and cluster size 19.

where η is an unknown exponent. We obtain excellent data
collapse for η = 0.5 [see the inset of Fig. 6].

From the dependence of fragmentation rate on mass size
[Eq. (8)], we conclude that at a given time t (and given δ),
masses up to a certain mass m∗(t,δ) undergo fragmentation.
We believe that this is the origin of the breakdown of Porod’s
law, as fragmentation results in new structures at small scales.
One way to capture this is to study the average cluster-size
distribution 〈N (m,t)〉, where N (m,t) is the number of clusters
of size m at time t and the average is over space and histories.
We would like to investigate whether, in the presence of
fragmentation, the cluster-size distribution can be explained
by knowing the cluster-size distribution of the sticky gas (zero
coefficient of restitution). We argue below that while some
regimes of 〈N (m,t)〉 resemble the sticky gas, other regimes
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FIG. 6. Fragmentation rate Wf as a function of time t for different
cluster sizes m. Larger clusters are more stable and start fragmenting
at a later time. The data are for δ = 0.008. Inset: Data collapse when
Wf and time are scaled as in Eq. (8) with η = 0.5.
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FIG. 7. Average cluster distribution 〈N (m,t)〉 as a function of
cluster size m for (a) fixed δ = 0.004 and different times and
(b) different δ and fixed time t = 16 384. While the small mass
behavior of 〈N (m,t)〉 depends on δ, the large mass behavior of
〈N (m,t)〉 is independent of δ.

differ, but their scaling may be obtained from that of σ 2(m,t),
following Eqs. (5)–(7).

The mean cluster-size distributions are shown for different
times in Fig. 7(a) and for different δ in Fig. 7(b). We note that
for fixed time, 〈N (m,t)〉 for large masses has no dependence on
δ [see Fig. 7(b)]. Thus we expect that for masses greater than a
mass cutoff m∗(t,δ), fragmentation is not relevant. Therefore,
for masses larger than m∗(t,δ), 〈N (m,t)〉 should have the same
scaling behavior as in the sticky gas. For the sticky gas, it is
known [4] that

〈N (m,t)〉 � 1

t4/3
f3

(
m

t2/3

)
, (9)

where the scaling function f3(z) ∼ z−1/2 for z 	 1 and
f3(z) → 0 for z � 1. For masses m > m∗(t,δ) for which
fragmentation is not important, we confirm numerically that
the same scaling holds. In Fig. 8 we scale the data of Fig. 7(a)
as in Eq. (9) and we see excellent data collapse for large
cluster sizes, confirming that fragmentation can be neglected
for cluster sizes larger than m∗(t,δ).

We note that in Fig. 8 there is no data collapse for small
cluster sizes when the data is scaled as in Eq. (9), showing that
when fragmentation is relevant, the cluster-size distribution
gets modified. We argue that the small mass scaling can
be obtained by knowing the scaling of σ 2. For a fixed δ

and varying t , 〈N (m,t)〉 should have the scaling form [using
Eq. (6)]

〈N (m,t)〉 � 1

tα
f4

(
m

tx1/x2

)
, m 	 m∗ for fixed δ, (10)

where α is an exponent that we determine by examining the
large-z behavior of the scaling function f4(z) and x1 and x2 are
as in Eq. (7). For large z, f4(z) should be such that it crosses
over to the small-z behavior of f3(z). Thus f4(z) ∼ z−1/2 for
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distribution 〈N (m,t)〉 and m are scaled as in Eq. (9), a scaling form
identical to that obeyed by 〈N (m,t)〉 in the sticky gas. The data
collapse shows that fragmentation is irrelevant for masses beyond
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showing that when fragmentation is relevant, the scaling is modified.
The data are for δ = 0.004.

z � 1. Comparing the time dependence of Eqs. (9) and (10)
in the latter limit, we obtain

α = 1 + x1

2x2
≈ 1.56. (11)

The data, when scaled as in Eqs. (10) and (11) with x1 and x2 as
in Eq. (7), are shown in Fig. 9(a). We obtain good data collapse
for the small cluster sizes (while the large masses no longer
collapse), showing that knowledge of the scaling behavior of
σ 2 is sufficient to obtain the scaling behavior of 〈N (m,t)〉. The
small-z behavior of f4(z) can be determined numerically. We
find that f4(z) ∼ z−τ with τ = 1.75 ± 0.08 [see the solid line
in Fig. 8(a)].
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FIG. 9. Data collapse for small cluster sizes m when the cluster
distribution 〈N (m,t)〉 and m are scaled as in (a) Eq. (10) for fixed
δ = 0.004 and (b) Eq. (12) for fixed t = 16 384. The solid line
has a slope of 1.75. Note that the data for large masses no longer
collapse.

The scaling of the small cluster sizes with δ can also be
obtained from the scaling of σ 2. Knowing that m∗ scales as
δ2/x2 and using Eqs. (5) and (6), we write

〈N (m,δ)〉 � 1

δβ
f5

(
m

δ2/x2

)
, m 	 m∗ for fixed t, (12)

where the exponent β can be determined by constraining the
large-z behavior of the scaling function f5(z) to be the same as
the small-z behavior of f3(z). This immediately implies that
f5(z) ∼ z−1/2 for z � 1 and

β = 1

x2
≈ 0.37. (13)

The data for the cluster-size distribution, when scaled as in
Eqs. (12) and (13) with x1 and x2 as in Eq. (7), are shown
in Fig. 9(b). We obtain reasonable data collapse for the small
cluster sizes. However, given the range and quality of data, it
is possible to obtain data collapse for a range of x2.

We thus demonstrated that the scaling of the cluster-size
distribution 〈N (m,t)〉 with time and δ can be obtained by
knowing the scaling of σ 2. We also showed that beyond
the crossover time t1, the cluster distribution has a richer
structure than that of the sticky gas. In Refs. [12,13] we
showed that modification of 〈N (m,t)〉 results in the two-point
density-density and velocity-velocity correlation functions
violating Porod’s law. Thus we conclude that the increased
fragmentation rate brought about by velocity fluctuations
becoming of order δ is most probably the reason behind the
violation of Porod’s law.

IV. DISCUSSION

To summarize, we studied velocity fluctuations, effective
fragmentation rates, and the size distribution of clusters in
a freely cooling granular gas on a one-dimensional ring,
evolving via ballistic motion and inelastic collisions. The
coefficient of restitution was r0 < 1 for relative velocity greater
than δ and 1 otherwise. The aim of the paper was to understand
the consequences of a nonzero δ on the structure of clusters at
large times.

This study was motivated by the recent finding that for
granular gases with a realistic velocity-dependent coefficient
of restitution, the nature of coarsening in the inhomogeneous
cooling regime is not the same at all times [12,13]. Beyond
a crossover time scale t1, the coarsening behavior changes
at the macroscopic level from one that obeys Porod’s law
to one that violates Porod’s law. These interesting numerical
findings lacked an explanation on a mesoscopic scale of how
and why the crossover occurs. The present paper provides an
explanation. We demonstrate in this paper that the transition
from the sticky gas regime, where Porod’s law is obeyed, to a
fluctuation-dominated ordering regime, where Porod’s law is
violated, all within the inhomogeneous cooling regime, may be
viewed as a growing dominance of an underlying fragmenta-
tion process competing against the clustering process. The fact
that clusters break up is shown by the quantitative change in
the behavior of the velocity fluctuations within a cluster. This
crossover in velocity fluctuations coincides with an increase
in the fragmentation rate of clusters leading to a richer fine
structure reflected in the density-density correlations.
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More specifically, the velocity fluctuations within a cluster
were found to decrease in time as a power law with time,
with the velocity fluctuations being much smaller than the
center of mass velocities. However, when these fluctuations
became of order δ, nearly all intracluster collisions were
elastic and the clusters started to fragment. The crossover
was captured in terms of two exponents x1 and x2. This
emergent phenomenon was further quantified by defining an
effective fragmentation rate for a cluster. The fragmentation
rate was seen to rise sharply at a cluster-size-dependent
time with the crossover time increasing with decreasing δ.
The crossover time was shown to be the same as that seen
in the velocity fluctuations. Once fragmentation set in, the
cluster-size distribution 〈N (m,t)〉 changed drastically from
that of the sticky gas (r0 = 0, δ = 0). However, the scaling
of 〈N (m,t)〉 could be captured by the same exponents x1

and x2 used to describe the velocity fluctuations σ 2(m,t). It
was also observed that the total energy of the system and
clusters continue to decay as t−2/3, showing no signature of
the structural changes in the clusters.

We believe that many of these (qualitative) results will be
carried over to higher dimensions. In two dimensions, for
coarse-grained velocities it was shown [8] that the velocity
fluctuations scale differently from the typical velocity. Hence
we expect a crossover when these fluctuations become compa-
rable to δ and thus fragmentation to be relevant for two dimen-
sions too and, consequently, a regime where coarsening is fluc-
tuation dominated. Earlier studies show that density-density
and velocity-velocity correlations obey Porod’s law in two
dimensions [11]. However, these studies were done at interme-

diate densities and short times. It would be interesting to verify
whether a fluctuation-dominated regime exists at large times.

The velocity scale δ is relevant experimentally and not just
a computational tool. Experimentally, r(v) approaches 1 when
the relative velocity v tends to zero, i.e., 1 − r(v) = g(v/δ),
where g(x) ∼ xχ + O(x2χ ) for x 	 1 and g(x) ∼ O(1) for
x → ∞. Experimentally, the exponent χ takes a variety of
values. Within the framework of viscoelastic theory, χ = 1/5.
Systems with χ < 1 cannot be studied using event-driven
molecular-dynamics simulations (as in the present paper) as
inelastic collapse prevents the simulation from proceeding
forward. Results from preliminary molecular-dynamics simu-
lations with soft potentials suggest that the results in this paper
continue to hold for χ < 1.

Another question of interest is the construction of lattice
models that reproduce the coarse-grained behavior of the
granular gas. Such models not only are computationally much
faster, but also may be the first steps toward building effective
field theories for the system. In a recent paper [31] a stochastic
lattice model was studied that reproduced all features of the
sticky gas. It would be interesting to see whether fragmentation
can be incorporated into this lattice model such that the coarse-
grained behavior seen in the present paper is reproduced.
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