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The kinetic energy of a freely cooling granular gas decreases as a power law t−θ at large times t. Two
theoretical conjectures exist for the exponent θ. One based on ballistic aggregation of compact spherical
aggregates predicts θ ¼ 2d=ðdþ 2Þ in d dimensions. The other based on Burgers equation describing
anisotropic, extended clusters predicts θ ¼ d=2 when 2 ≤ d ≤ 4. We do extensive simulations in three
dimensions to find that while θ is as predicted by ballistic aggregation, the cluster statistics and velocity
distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a
Burgers equation description.
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The freely cooling granular gas, a collection of ballis-
tically moving inelastic particles with no external source of
energy, has been used to describe dynamics of granular
materials [1–3], large scale structure formation in the
universe [4], and geophysical flows [5]. It is also of interest
as a system far from equilibrium, limiting cases being
amenable to exact analysis [6,7], has close connection to
the well studied Burgers equation [6,8–11], and is an
example of an ordering system showing nontrivial coars-
ening behavior [12–15]. Of primary interest is clustering of
particles due to inelastic collisions and the temporal
evolution of the kinetic energy EðtÞ at large times.
At initial times, particles remain homogeneously dis-

tributed and kinetic theory predicts that EðtÞ decreases
as ð1þ t=t0Þ−2 (Haff’s law), where the time scale t0 ∝
ð1 − r2Þ−1 for constant coefficient of restitution r [16]. At
later times, this regime is destabilized by long wavelength
fluctuations into an inhomogeneous cooling regime domi-
nated by clustering of particles [17–19]. In this latter
regime, EðtÞ no longer obeys Haff’s law but decreases
as a power law t−θ, where θ depends only on dimension d
[20,21]. Direct experiments on inelastic particles under
levitation [22] or in microgravity [23,24] confirm Haff’s
law. However, being limited by a small number of particles
and short times, they do not probe the inhomogeneous
regime, giving no information about θ.
Different theories predict different values of θ. The

extension of kinetic theory into the inhomogeneous
cooling regime using mode coupling methods leads to
EðτÞ ∼ τ−d=2, where the relation between the average
number of collisions per particle τ and time t is unclear
[25]. This result agrees with simulations for near-elastic
(r ≈ 1) gases, but fails for large times and strongly inelastic
(r ≪ 1) gases [25]. Any theory involving perturbing about
the elastic limit r ¼ 1 is unlikely to succeed since extensive
simulations in one [20] and two [21] dimensions show that

for any r < 1, the system is akin to a sticky gas (r → 0),
such that colliding particles stick and form aggregates.
If it is assumed that the aggregates are compact spherical

objects, then the sticky limit corresponds to the well studied
ballistic aggregation model (BA) (see Ref. [26] for a
review). For BA in the dilute limit and the mean field
assumption of uncorrelated aggregate velocities, scaling
arguments lead to θmf

BA ¼ 2d=ðdþ 2Þ and the presence of a

growing length scale Lt ∼ t1=z
mf
BA with zmf

BA ¼ ðdþ 2Þ=2
[27]. In one dimension, BA is exactly solvable and θBA ¼
θmf
BA [6,8]. However, in two dimensions and for dilute
systems, it has been shown that θmf

BA is smaller than the
numerically obtained θBA by 17% because of strong
velocity correlations between colliding aggregates [28,29].
The sticky limit has also been conjectured [20,21] to be

describable by a Burgers-like equation (BE) [30]. This
mapping is exact in one dimension [10] and heuristic in two
and higher dimensions [21], and leads to θBE ¼ 2=3
in d ¼ 1, θBE ¼ d=2 for 2 ≤ d ≤ 4, and θBE ¼ 2 for
d > 4 [4,31,32].
The exponents θmf

BA and θBE coincide with each other in
one and twodimensions and alsowith numerical estimates of
θ for the freely cooling granular gas in these dimensions
[20,21]. In three dimensions, they differ with θmf

BA ¼ 6=5 and
θBE ¼ 3=2. However, simulations that measure θ in three
dimensions have been inconclusive, being limited by small
system sizes and times, and the measured value of θ ranges
fromθ ¼ 1.35 − 1.6 [33] toθ ∼ 1 [34,35].Thus, it remainsan
open question as towhich of the theories, if either, is correct.
In this Letter, we study the freely cooling granular gas in

three dimensions using event-driven molecular dynamics
simulations and conclude that θ ≈ θmf

BA, conclusively ruling
out θBE as a possible solution. Comparing with the results of
three dimensional BA, we find that θmf

BA describes the energy
decay in BA only when densities are high and multiparticle
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collisions are dominant. We also find that the cluster size
and the velocity distributions of the particles in the granular
gas and BA are strikingly different from each other.
Consider N identical hard-sphere particles distributed

uniformly within a periodic three-dimensional box of linear
length L and with initial velocities chosen from a normal
distribution. The mass and diameter of the particles are set
equal to one. All lengths, masses, and times are measured in
units of particle diameter, particle mass, and initial mean
collision time. The system evolves in time without any
external input of energy. All particles move ballistically
until they undergo momentum conserving, deterministic
collisions with other particles: if the velocities before and
after collision are u1, u2, and v1, v2, respectively, then

v1;2 ¼ u1;2 − 1þ r
2

½n • ðu1;2 − u2;1Þ�n; (1)

where 0 < r < 1 is the coefficient of restitution and n is the
unit vector directed from the center of particle 1 to
the center of particle 2. The tangential component of the
relative velocity is unchanged and the longitudinal com-
ponent is reduced by a factor r.
The above system is studied using large scale event-

driven molecular dynamics simulations [36,37] for system
sizes up to N ¼ 8 × 106. For constant coefficient of
restitution, infinite collisions occur in finite time [38].
An efficient scheme of avoiding this computational diffi-
culty is to make the collisions elastic (r ¼ 1) when the
relative velocity is less than a cutoff velocity δ, and r ¼
r0 < 1 otherwise [20].
We first present results for the decrease of kinetic energy

with time. We find that for r0 ¼ 0.10 and volume fraction
ϕ ¼ 0.208, the homogeneous regime is very short-lived
and the inhomogeneous regime is reached at early times.
However, the energy decay deviates from the universal
power law t−θ for times larger than a crossover time that
increases with system size L. We assume that EðtÞ obeys
the finite size scaling form

EðtÞ≃ L−zθf
�

t
Lz

�
; t; L → ∞; (2)

where z is the dynamical exponent, and the scaling function
fðxÞ ∼ x−θ for x ¼ tL−z ≪ 1. The simulation data for differ-
entL collapse onto a single curve (see Fig. 1) whenEðtÞ and t
are scaled as in Eq. (2) with θ ¼ θmf

BA ¼ 6=5 and
z ¼ zmf

BA ¼ 5=2. The power law x−6=5 extends over nearly
five decades, confirming that the energy decay in the freely
coolinggranulargas in threedimensionshas theexponents that
are numerically indistinguishable from the mean-field BA.
The data conclusively rule out θBE ¼ 3=2 as being the correct
exponent. FromFig. 1, we see that fðxÞ ∼ x−η for x ≫ 1with
η ≈ 1.83, such that at large times t ≫ Lz, EðtÞ ∼ L1.58t−1.83.
We now show that θ measured from the data in Fig. 1 is

independent of the volume fraction ϕ, r0, and δ. With
increasing ϕ, we find that the crossover from homogeneous

[EðtÞ ∼ t−2] to inhomogeneous regime [EðtÞ ∼ t−6=5]
occurs at earlier times [see Fig. 2(a)]. In the inhomogeneous
regime, the curves are indistinguishable from each other.
Thus, we see that the exponent θ ¼ 6=5 holds even in the
limit ϕ → 0. Similarly, with increasing r0, though the
inhomogeneous regime sets in at later times, it nevertheless
exists with the same power law t−θ [see Fig. 2(b)]. Similar
behavior has been observed in one and two dimensions
[20,21]. We also find no discernible dependence of the data
on the parameter δ [see Fig. 2(c)]. However, we note that at
much larger times (∼δ−2=θ), collisions become mostly
elastic and EðtÞ stops decreasing with time [20,39]. A
nonzero δ also results in nontrivial coarsening [13]. Finally,
we check that using a more realistic velocity dependent
coefficient of restitution does not change the value of the
exponent θ (see the Supplemental Material [40]).
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FIG. 1 (color online). The data for kinetic energy EðtÞ for
different system sizes L collapse onto a single curve when t and
EðtÞ are scaled as in Eq. (2) with θ ¼ θmf

BA ¼ 6=5 and
z ¼ zmf

BA ¼ 5=2. The power law fits are shown by straight lines.
The data are for ϕ ¼ 0.208, r0 ¼ 0.1, and δ ¼ 10−4.
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We note that θmf
BA need not be equal to the actual BA

exponent θBA [28,29]. We study this discrepancy in three
dimensions by simulating BA directly. Two colliding
particles are replaced with a single particle whose volume
is the sum of the volumes of the colliding particles. The
newly formed aggregate may overlap with other particles
leading to a chain of aggregation events. These multi-
particle collisions result in the exponent θBA being depen-
dent on the volume fraction ϕ. We find that as ϕ increases
from 0.005 to 0.208, θBA decreases from 1.283� 0.005 to
1.206� 0.005 and appears to converge to the θmf

BA ¼ 1.2
with increasing ϕ. Thus, it is remarkable that the mean field
result describes well only the systems with ϕ≳ 0.2, while
its derivation [27] assumes the limit ϕ → 0.
The energy decay in granular gas and BA at higher

densities being similar, how do other statistical properties
compare? We first study clusters of particles in the inhomo-
geneous regime. Snapshots of granular gas and BA (see
Fig. 3) show that clusters in granular gas are extended as
opposed to compact spherical clusters (by construction) in
BA.Thespatial distributionofparticles ispartiallyquantified
by measuring the cluster size distribution Nðm; tÞ. For the
granulargas, the simulationboxisdivided intoboxesofaside

equal to thediameterof aparticle.Abox is said tobeoccupied
if it contains the center of a particle. Two occupied boxes
belong to the same cluster if connected by nearest neighbor
occupiedboxes.Theclustersizedistributionis thenmeasured
using the Hoshen-Kopelman algorithm [41].Nðm; tÞ for the
granular gas and BA, shown in the lower panel of Fig. 3, are
significantly different fromone another. For thegranular gas,
Nðm; tÞconsistsof twoparts:apowerlaw(∼m−2.7)andapeak
at large cluster sizes. The power law describes all clusters
other than the largest cluster that accounts for the peak. The
largest cluster contains about 75% of the particles. For BA,
Nðm; tÞ is a power law for small cluster sizes (∼m−0.2) and
exponential for cluster sizes larger than themean cluster size.
Both of these distributions are different from the mean field
result forNðm; tÞ obtained from the Smoluchowski equation
describing the temporal evolution of Nðm; tÞ:
N
: ðm; tÞ ¼

Xm−1

m1¼1

Nðm1; tÞNðm −m1; tÞKðm1; m −m1Þ

− 2
X∞
m1¼1

Nðm1; tÞNðm; tÞKðm1; mÞ m ¼ 1; 2;…;

(3)
where
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Kðm1; m2Þ ∝ ðm−1=2
1 þm−1=2

2 Þðm1=3
1 þm1=3

2 Þ2 (4)

is the collisionkernel [26,42]. For this kernel, it is known that
that Nðm; tÞ ∼ expð−const ×m−1=2Þ for small m and
Nðm; tÞ ∼ expð−const ×mÞ for large m [26]. While the
simulation results for BA matches for largem, it is different
(being a power law) for small m.
Also, for the kernel in Eq. (4), it is expected that the

largest cluster size Mmax increases with time t as a power
law t6=5 [26,42], the mean field answer. We compare this
prediction with the simulations for the granular gas and BA.
For the granular gas, rather than a power law growth as in
one and two dimensions and in mean field, there is a rapid
increase in Mmax (see upper two curves of Fig. 4) at a time
that coincides with the onset of the inhomogeneous cooling
regime. This rapid growth is similar to the gelation
transition where a gel containing a fraction of the total
number of particles is formed in finite time. However, the
kernel for BA is nongelling with mass dimension 1=6,
whereas the gelation transition requires mass dimension to
be larger than one [26,42]. For BA, Mmax increases as a
power law (see bottom three curves of Fig. 4), with an
exponent that increases with ϕ, and possibly converges to
the mean field value 6=5. Similar behavior is seen for the
growth of the average cluster size of BA which grows as a
power law with an exponent ranging from 1.06 for ϕ ¼
0.005 to 1.19 for ϕ ¼ 0.313.
We further compare the velocity distributions Pðv; tÞ,

where v is any velocity component, of the granular gas
with that of BA. Pðv; tÞ has the scaling form
Pðv; tÞ ¼ v−1rmsΦðv=vrmsÞ, where vrms is the time dependent
root mean square velocity. The scaling function ΦðyÞ is
shown in Fig. 5 for different times. We note that ΦðyÞ does
not depend on r0 or the initial velocity distribution, having
checked for Gaussian, uniform, and exponential distribu-
tions. For the granular gas, at short times when the system
is homogeneous (t ¼ 5, 10 in Fig. 5), ΦðyÞ is an expo-
nential e−αy as predicted by kinetic theory. We find

α ¼ 2.65, in good agreement with the kinetic theory value
2.60 [43]. For larger times (t ¼ 2000–8000 in Fig. 5), ΦðyÞ
is clearly non-Gaussian (see comparison with Gaussian in
Fig. 5). A quantitative measure of the deviation from the
Gaussian is the kurtosis, κ ¼ hv4i=hv2i2 − 5=3, shown in
the upper inset of Fig. 5. The kurtosis after an initial
increase, decreases, and saturates to a nonzero value. The
large y behavior of ΦðyÞ is shown in the bottom inset of
Fig. 5. It has been argued that the probability that a particle
never undergoes a collision up to time t is an exponential in
t, resulting in − ln½ΦðyÞ� ∼ y2=θ, y ≫ 1 [21]. For the
granular gas, we find that − ln½ΦðyÞ� ∼ y5=3, consistent
with θ ¼ 6=5. However, for BA, we find− ln½ΦðyÞ� ∼ y0.70.
The deviation of BA is surprising, but may be rationalized.
The argument for the exponential form of survival prob-
ability implicitly assumes that the number of clusters reach
a time independent distribution resulting in a constant rate
of collision. That this is true for the granular gas and not for
BA can be seen from the lower panels of Fig. 3, where
Mmax and hence, Mavg (mean cluster size) is nearly a
constant for the granular gas and time dependent for BA
(see Fig. 4) at large times.
Thus, in spite of having the same form of energy decay,

the local environment that a particle in a granular gas sees
around itself, is distinct from those in BA. In BA, two
colliding clusters rearrange their masses to form a new
spherical cluster at every step. Due to the lack of such
dynamic cluster rearrangements, the granular gas remains
locally structurally anisotropic and disordered.
To summarize, we showed that the energy EðtÞ of a three

dimensional freely cooling granular gas decreases as t−θ, with
θ ≈ 6=5, indistinguishable fromthemeanfield result fordilute
ballisticaggregation.This rulesoutBurgers-likeequationsasa
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description of the granular gas at large times.We also showed
that the relation to ballistic aggregation appears coincidental
with the energy of the dilute ballistic gas decaying with a
different exponent. In addition, the cluster size distribution as
well as the velocity distribution of ballistic aggregation are
strikingly different from that of the granular gas.We hope that
this Letter will prompt research into finding the correct
continuum equations for the granular gas as well as in the
design of experiments to probe the inhomogeneous cooling
regime, microgravity [23,24,44,45] being a promising candi-
date.While frictionless freely cooling experiments have been
limited to the homogeneous regime, inhomogeneous cluster-
ing has been observed in experiments where only one particle
or location is excited [46–48]. For these systems, scaling
arguments based on the sticky gas explain the experimental
results [49–51]. Multiple localized excitations may result in a
crossover to the freely cooling system, making such experi-
ments suitable to probing the inhomogeneous regime.

The simulations were carried out on the supercomputing
machine Annapurna at The Institute of Mathematical
Sciences.Z. J.wassupportedbyNSFGrantNo.IOS-0952873.
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