Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

V. Arvind and Partha Mukhopadhyay The Institute of Mathematical Sciences India

27th August 2008

- 2 Formulation of an Isolation Lemma
- 3 Automata Theory
- 4 Noncommutative Polynomial Identity Testing
- 5 Black-box derandomization

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and F ⊆ 2^U be any family of subsets of U.
- Let $w: U \to \mathbb{Z}^+$ be a weight function.
- For $T \subseteq U$, define its weight w(T) as $w(T) = \sum_{u \in T} w(u)$.

< A > < > >

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and F ⊆ 2^U be any family of subsets of U.
- Let $w: U \to \mathbb{Z}^+$ be a weight function.
- For $T \subseteq U$, define its weight w(T) as $w(T) = \sum_{u \in T} w(u)$.

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and F ⊆ 2^U be any family of subsets of U.
- Let $w: U \to \mathbb{Z}^+$ be a weight function.
- For $T \subseteq U$, define its weight w(T) as $w(T) = \sum_{u \in T} w(u)$.

Outline Introduction Formulation of an Isolation Lemma Automata Theory Noncommutative Polynomial Identity Testing Black-box derandomization Summary	

Isolation Lemma

• Let w be any random weight assignment $w : U \rightarrow [2n]$.

 Isolation Lemma guarantees that with high probability (at least 1/2) there will be a unique minimum weight set in F.

Outline Introduction Formulation of an Isolation Lemma Automata Theory Noncommutative Polynomial Identity Testing Black-box derandomization Summary	

Isolation Lemma

- Let w be any random weight assignment $w : U \rightarrow [2n]$.
- Isolation Lemma guarantees that with high probability (at least 1/2) there will be a unique minimum weight set in F.

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- $NL \subset UL/poly$ (Klaus Reinhardt and Eric Allender 2000).
- SAT is many-one reducible via randomized reductions to USAT.

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- $NL \subset UL/poly$ (Klaus Reinhardt and Eric Allender 2000).
- SAT is many-one reducible via randomized reductions to USAT.

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- $NL \subset UL/poly$ (Klaus Reinhardt and Eric Allender 2000).
- SAT is many-one reducible via randomized reductions to USAT.

Two outstanding open problems in complexity theory

• Is the matching problem in in deterministic NC ?

• Is $NL \subseteq UL$?

Both the problems will be solved if Isolation Lemma can be derandomized.

A > 4

Two outstanding open problems in complexity theory

- Is the matching problem in in deterministic NC ?
- Is $NL \subseteq UL$?

Both the problems will be solved if Isolation Lemma can be derandomized.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is 2^{n^{O(1)}}.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some *special cases* of the Isolation Lemma.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is 2^{n^{O(1)}}.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some *special cases* of the Isolation Lemma.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is 2^{n^{O(1)}}.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some *special cases* of the Isolation Lemma.

Isolation Lemma - Our setting

• The universe U = [n].

- An *n*-input boolean circuit C and size(C) = m.
- Each subset S ⊆ U corresponds to its characteristic binary string χ_S ∈ {0,1}ⁿ.

• *n*-input boolean circuit *C* implicitly defines the set system

$$\mathcal{F}_{\mathcal{C}} = \{ S \subseteq [n] \mid \mathcal{C}(\chi_S) = 1 \}.$$

Isolation Lemma - Our setting

- The universe U = [n].
- An *n*-input boolean circuit C and size(C) = m.
- Each subset S ⊆ U corresponds to its characteristic binary string χ_S ∈ {0,1}ⁿ.
- *n*-input boolean circuit *C* implicitly defines the set system

$$\mathcal{F}_{\mathcal{C}} = \{ S \subseteq [n] \mid \mathcal{C}(\chi_S) = 1 \}.$$

Isolation Lemma - Our setting

- The universe U = [n].
- An *n*-input boolean circuit C and size(C) = m.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_S \in \{0, 1\}^n$.

• *n*-input boolean circuit *C* implicitly defines the set system

$$\mathcal{F}_{\mathcal{C}} = \{ S \subseteq [n] \mid \mathcal{C}(\chi_S) = 1 \}.$$

Isolation Lemma - Our setting

- The universe U = [n].
- An *n*-input boolean circuit C and size(C) = m.
- Each subset S ⊆ U corresponds to its characteristic binary string χ_S ∈ {0,1}ⁿ.
- *n*-input boolean circuit *C* implicitly defines the set system

$$\mathcal{F}_{\mathcal{C}} = \{ S \subseteq [n] \mid \mathcal{C}(\chi_{S}) = 1 \}.$$

Isolation Lemma - Our setting

- The universe U = [n].
- An *n*-input boolean circuit C and size(C) = m.
- Each subset S ⊆ U corresponds to its characteristic binary string χ_S ∈ {0,1}ⁿ.
- *n*-input boolean circuit *C* implicitly defines the set system

$$\mathcal{F}_{\mathcal{C}} = \{ S \subseteq [n] \mid \mathcal{C}(\chi_{S}) = 1 \}.$$

Outline	
Introduction	
Formulation of an Isolation Lemma	
Automata Theory Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	

Our Setting

• $w: U \rightarrow [2n]$: random weight assignment.

Isolation Lemma:

 $\operatorname{Prob}_{w}[$ There exists a unique minimum weight set in $\mathcal{F}_{C}] \geq \frac{1}{2}$.

• Can we derandomize?

Outline	
Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	

Our Setting

- $w: U \rightarrow [2n]$: random weight assignment.
- Isolation Lemma:

 $\operatorname{Prob}_{w}[$ There exists a unique minimum weight set in $\mathcal{F}_{C}] \geq \frac{1}{2}$.

• Can we derandomize?

Outline	
Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	

Our Setting

- $w: U \rightarrow [2n]$: random weight assignment.
- Isolation Lemma:

 $\operatorname{Prob}_{w}[$ There exists a unique minimum weight set in $\mathcal{F}_{C}] \geq \frac{1}{2}$.

• Can we derandomize?

A non black-box derandomization Hypothesis

• C is an *n*-input boolean circuit.

- A deterministic algorithm A_1 takes as input (C, n).
- \mathcal{A} outputs weight functions w_1, w_2, \dots, w_t $(w_i : [n] \to [2n]) : \exists i, s.t w_i assigns a unique minimum weight set in <math>\mathcal{F}_C$.
- \mathcal{A}_1 runs in time subexponential in size(*C*).

A non black-box derandomization Hypothesis

- C is an *n*-input boolean circuit.
- A deterministic algorithm A_1 takes as input (C, n).
- \mathcal{A} outputs weight functions w_1, w_2, \dots, w_t $(w_i : [n] \to [2n]) : \exists i, s.t w_i assigns a unique minimum weight set in <math>\mathcal{F}_C$.
- \mathcal{A}_1 runs in time subexponential in size(*C*).

A non black-box derandomization Hypothesis

- C is an *n*-input boolean circuit.
- A deterministic algorithm A_1 takes as input (C, n).
- \mathcal{A} outputs weight functions w_1, w_2, \dots, w_t $(w_i : [n] \to [2n]) : \exists i, s.t w_i assigns a unique minimum weight set in <math>\mathcal{F}_C$.
- \mathcal{A}_1 runs in time subexponential in size(*C*).

A non black-box derandomization Hypothesis

- C is an *n*-input boolean circuit.
- A deterministic algorithm A_1 takes as input (C, n).
- \mathcal{A} outputs weight functions w_1, w_2, \dots, w_t $(w_i : [n] \to [2n]) : \exists i, s.t w_i assigns a unique minimum weight set in <math>\mathcal{F}_C$.
- \mathcal{A}_1 runs in time subexponential in size(C).

Black-box derandomization Hypothesis

• \mathcal{A}_2 takes (m, n) in unary.

- \mathcal{A} outputs weight functions w_1, w_2, \cdots, w_t $(w_i : [n] \rightarrow [2n])$.
- For each size *m* boolean circuit *C* with *n* inputs: $\exists i$, s.t w_i assigns a unique minimum weight set in \mathcal{F}_C .
- \mathcal{A}_2 runs in time polynomial in m.

Black-box derandomization Hypothesis

- \mathcal{A}_2 takes (m, n) in unary.
- \mathcal{A} outputs weight functions w_1, w_2, \cdots, w_t $(w_i : [n] \rightarrow [2n])$.
- For each size *m* boolean circuit *C* with *n* inputs: $\exists i$, s.t w_i assigns a unique minimum weight set in \mathcal{F}_C .
- \mathcal{A}_2 runs in time polynomial in m.

Black-box derandomization Hypothesis

- \mathcal{A}_2 takes (m, n) in unary.
- \mathcal{A} outputs weight functions w_1, w_2, \cdots, w_t $(w_i : [n] \rightarrow [2n])$.
- For each size *m* boolean circuit *C* with *n* inputs: $\exists i$, s.t w_i assigns a unique minimum weight set in \mathcal{F}_C .
- A_2 runs in time polynomial in *m*.

Black-box derandomization Hypothesis

- \mathcal{A}_2 takes (m, n) in unary.
- \mathcal{A} outputs weight functions $w_1, w_2, \cdots, w_t \ (w_i : [n] \rightarrow [2n])$.
- For each size *m* boolean circuit *C* with *n* inputs: $\exists i$, s.t w_i assigns a unique minimum weight set in \mathcal{F}_C .
- \mathcal{A}_2 runs in time polynomial in m.

Derandomization Consequences (results)

- Non black-box derandomization ⇒ either NEXP ⊄ P/poly or *Perm* does not have polynomial size *noncommutative arithmetic circuits*.
- Black-box derandomization ⇒ an explicit multilinear polynomial f_n(x₁, x₂, ..., x_n) ∈ 𝔅[x₁, x₂, ..., x_n] (in commuting variables) does not have commutative arithmetic circuits of size 2^{o(n)}.

Derandomization Consequences (results)

- Non black-box derandomization ⇒ either NEXP ⊄ P/poly or *Perm* does not have polynomial size *noncommutative arithmetic circuits*.
- Black-box derandomization ⇒ an explicit multilinear polynomial f_n(x₁, x₂, ..., x_n) ∈ 𝔅[x₁, x₂, ..., x_n] (in commuting variables) does not have commutative arithmetic circuits of size 2^{o(n)}.

Non black-box derandomization : proof idea

- Using Isolation Lemma, design a randomized polynomial-time identity testing algorithm (PIT) for small degree noncommutative circuits.
- Derandomize the algorithm (subexponential time) using Hypothesis 1.

Non black-box derandomization : proof idea

- Using Isolation Lemma, design a randomized polynomial-time identity testing algorithm (PIT) for small degree noncommutative circuits.
- Derandomize the algorithm (subexponential time) using Hypothesis 1.

Idea behind the proof cont'd.

 Noncommutative version of Impagliazzo-Kabanets 2003: Derandomizing the PIT for small degree noncommutative circuit ⇒ either NEXP ⊄ P/poly or permanent has no poly-size noncommutative circuit (Arvind, Mukhopadhyay and Srinivasan 2008).

- A noncommutative arithmetic circuit C computes a polynomial in 𝔽{x₁, x₂, · · · , x_n} (x_ix_j ≠ x_jx_i) using + and × gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

- A noncommutative arithmetic circuit C computes a polynomial in 𝔽{x₁, x₂, · · · , x_n} (x_ix_j ≠ x_jx_i) using + and × gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

- A noncommutative arithmetic circuit C computes a polynomial in 𝔽{x₁, x₂, · · · , x_n} (x_ix_j ≠ x_jx_i) using + and × gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

- A noncommutative arithmetic circuit C computes a polynomial in 𝔽{x₁, x₂, · · · , x_n} (x_ix_j ≠ x_jx_i) using + and × gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

Some Automata Theory Background

- A finite automaton $A = (Q, \Sigma = \{x_1, \cdots, x_n\}, \delta, \{q_0\}, \{q_f\}).$
- $(Q, \Sigma, \delta, q_0, q_f) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_b \in \mathbb{F}^{|Q| \times |Q|}$:

$$M_b(q,q') = \left\{ egin{array}{cc} 1 & ext{if } \delta_b(q) = q', \\ 0 & ext{otherwise.} \end{array}
ight.$$

Some Automata Theory Background

- A finite automaton $A = (Q, \Sigma = \{x_1, \cdots, x_n\}, \delta, \{q_0\}, \{q_f\}).$
- $(Q, \Sigma, \delta, q_0, q_f) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_b \in \mathbb{F}^{|Q| \times |Q|}$:

$$M_b(q,q') = \begin{cases} 1 & \text{if } \delta_b(q) = q', \\ 0 & \text{otherwise.} \end{cases}$$

< (17) > < (2)

Some Automata Theory Background

- A finite automaton $A = (Q, \Sigma = \{x_1, \cdots, x_n\}, \delta, \{q_0\}, \{q_f\}).$
- $(Q, \Sigma, \delta, q_0, q_f) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_b \in \mathbb{F}^{|Q| \times |Q|}$:

$$M_b(q,q') = \left\{ egin{array}{cc} 1 & ext{if } \delta_b(q) = q', \ 0 & ext{otherwise.} \end{array}
ight.$$

Some Automata Theory Background

- For any $w = w_1 w_2 \cdots w_k \in \Sigma^*$, the matrix $M_w = M_{w_1} M_{w_2} \cdots M_{w_k}$.
- Easy fact: $M_w(q_0, q_f) = 1$ if and only if w is accepted by the automaton A.

< (17) > < (2) > <

Some Automata Theory Background

- For any $w = w_1 w_2 \cdots w_k \in \Sigma^*$, the matrix $M_w = M_{w_1} M_{w_2} \cdots M_{w_k}$.
- Easy fact: $M_w(q_0, q_f) = 1$ if and only if w is accepted by the automaton A.

< (17) > < (2) > <

Run of an automaton over a noncommutative circuit

• *C* be any given *noncommutative* arithmetic circuit computing *f*.

<(同) > (三) > (

• Output matrix $M_{out}^A = C(M_{x_1}, M_{x_2} \cdots, M_{x_n}).$

Run of an automaton over a noncommutative circuit

• *C* be any given *noncommutative* arithmetic circuit computing *f*.

• Output matrix $M_{out}^A = C(M_{x_1}, M_{x_2} \cdots, M_{x_n}).$

Crucial Observation

• The output is always 0 when $f \equiv 0$.

- If A accepts precisely one monomial (m) of f then $M^{A}_{out}(q_0, q_f) = c$ (coefficient of m in f is c).
- That's an identity test !!

Crucial Observation

- The output is always 0 when $f \equiv 0$.
- If A accepts precisely one monomial (m) of f then $M^{A}_{out}(q_0, q_f) = c$ (coefficient of m in f is c).
- That's an identity test !!

A 1

Crucial Observation

- The output is always 0 when $f \equiv 0$.
- If A accepts precisely one monomial (m) of f then $M^{A}_{out}(q_0, q_f) = c$ (coefficient of m in f is c).
- That's an identity test !!

Identity Testing Algorithm based on Isolation Lemma

• Input $f \in \mathbb{F}\{x_1, x_2, \cdots, x_n\}$ given by an arithmetic circuit C of.

- *d* be an upper bound on the degree of *f*.
- $[d] = \{1, 2, \cdots, d\}$ and $[n] = \{1, 2, \cdots, n\}.$
- The universe (for Isolation Lemma) $U = [d] \times [n]$.

(日本) (日本)

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\{x_1, x_2, \cdots, x_n\}$ given by an arithmetic circuit C of.
- *d* be an upper bound on the degree of *f*.
- $[d] = \{1, 2, \cdots, d\}$ and $[n] = \{1, 2, \cdots, n\}$.
- The universe (for Isolation Lemma) $U = [d] \times [n]$.

A □ > A □ > A

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\{x_1, x_2, \cdots, x_n\}$ given by an arithmetic circuit C of.
- *d* be an upper bound on the degree of *f*.
- $[d] = \{1, 2, \cdots, d\}$ and $[n] = \{1, 2, \cdots, n\}.$
- The universe (for Isolation Lemma) $U = [d] \times [n]$.

< 🗇 > < 🖻 > <

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\{x_1, x_2, \cdots, x_n\}$ given by an arithmetic circuit C of.
- *d* be an upper bound on the degree of *f*.
- $[d] = \{1, 2, \cdots, d\}$ and $[n] = \{1, 2, \cdots, n\}.$
- The universe (for Isolation Lemma) $U = [d] \times [n]$.

A □ > A □ > A

Identity Testing Algorithm

Let v = x_{i1}x_{i2} ··· x_{it} be a nonzero monomial of f.
Identify v with S_v ⊂ U :

$$S_{v} = \{(1, i_{1}), (2, i_{2}), \cdots, (t, i_{t})\}$$

• Set system:

 $\mathcal{F} = \{S_v \mid v \text{ is a nonzero monomial in } f\}$

▲□ ► < □ ► </p>

Identity Testing Algorithm

- Let $v = x_{i_1}x_{i_2}\cdots x_{i_t}$ be a nonzero monomial of f.
- Identify v with $S_v \subset U$:

$$S_v = \{(1, i_1), (2, i_2), \cdots, (t, i_t)\}$$

• Set system:

 $\mathcal{F} = \{S_v \mid v \text{ is a nonzero monomial in } f\}$

▲□ ► < □ ► </p>

Identity Testing Algorithm

- Let $v = x_{i_1}x_{i_2}\cdots x_{i_t}$ be a nonzero monomial of f.
- Identify v with $S_v \subset U$:

$$S_v = \{(1, i_1), (2, i_2), \cdots, (t, i_t)\}$$

• Set system:

$$\mathcal{F} = \{S_v \mid v \text{ is a nonzero monomial in } f\}$$

э

A (1) > A (2) > A

Intuition behind the Identity Testing Algorithm

• Assign random weights from [2dn] to the elements of U,

- (Isolation Lemma) With probability at least 1/2, there is a unique minimum weight set in \mathcal{F} .
- Goal Construct a family of small size automatons {A_{w,t}}_{w∈[2nd²],t∈[d]}:
- A_{w,t} precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_v is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least 1/2, there is a unique minimum weight set in \mathcal{F} .
- Goal Construct a family of small size automatons {A_w,t}_{w∈[2nd²],t∈[d]}:
- A_{w,t} precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_v is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least 1/2, there is a unique minimum weight set in \mathcal{F} .
- Goal Construct a family of small size automatons {A_{w,t}}_{w∈[2nd²],t∈[d]}:
- A_{w,t} precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_v is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least 1/2, there is a unique minimum weight set in \mathcal{F} .
- Goal Construct a family of small size automatons {A_{w,t}}_{w∈[2nd²],t∈[d]}:
- A_{w,t} precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_v is w.

Intuition of the Identity Testing algorithm

• For each $A \in \{A_{w,t}\}$ compute the run of A on C.

- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Intuition of the Identity Testing algorithm

- For each $A \in \{A_{w,t}\}$ compute the run of A on C.
- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Intuition of the Identity Testing algorithm

- For each $A \in \{A_{w,t}\}$ compute the run of A on C.
- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Crucial Observation

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if *m* is a nonzero monomial in *C*.
- Construct an automaton A that accepts only *m* and compute run on *C*.
- Thus, a boolean circuit C (of size poly(size(C))), F_C defines the monomials of C.

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if *m* is a nonzero monomial in *C*.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit \hat{C} (of size poly(size(C))), $\mathcal{F}_{\hat{C}}$ defines the monomials of C.

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if *m* is a nonzero monomial in *C*.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit \hat{C} (of size poly(size(C))), $\mathcal{F}_{\hat{C}}$ defines the monomials of C.

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if *m* is a nonzero monomial in *C*.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit \hat{C} (of size poly(size(C))), $\mathcal{F}_{\hat{C}}$ defines the monomials of C.

Non black-box derandomization

• Given noncommutative arithmetic circuit C.

- Compute boolean circuit \hat{C} .
- $\mathcal{A}_1(\hat{C}, n) = \{w_1, w_2, \cdots, w_n\}.$
- Identity testing using $\{w_i\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$.

Non black-box derandomization

- Given noncommutative arithmetic circuit *C*.
- Compute boolean circuit \hat{C} .
- $\mathcal{A}_1(\hat{C}, n) = \{w_1, w_2, \cdots, w_n\}.$
- Identity testing using $\{w_i\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$.

Non black-box derandomization

- Given noncommutative arithmetic circuit *C*.
- Compute boolean circuit \hat{C} .

•
$$\mathcal{A}_1(\hat{\mathcal{C}},n) = \{w_1, w_2, \cdots, w_n\}.$$

- Identity testing using $\{w_i\}$'s.
- Run time: $subexp(size(\hat{C}, n))$.

Non black-box derandomization

- Given noncommutative arithmetic circuit *C*.
- Compute boolean circuit \hat{C} .
- $\mathcal{A}_1(\hat{\mathcal{C}},n) = \{w_1, w_2, \cdots, w_n\}.$
- Identity testing using $\{w_i\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$.

Non black-box derandomization

- Given noncommutative arithmetic circuit *C*.
- Compute boolean circuit \hat{C} .
- $\mathcal{A}_1(\hat{\mathcal{C}},n) = \{w_1, w_2, \cdots, w_n\}.$
- Identity testing using $\{w_i\}$'s.
- Run time: $subexp(size(\hat{C}, n))$.

Consequence of Hypothesis 2

• Define a multilinear polynomial:

$$f(x_1, x_2, \cdots, x_n) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i,$$

• we need to fix c_S 's suitably.

Consequence of Hypothesis 2

- Define a multilinear polynomial:

$$f(x_1, x_2, \cdots, x_n) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i,$$

• we need to fix c_S 's suitably.

Consequence of Hypothesis 2

- Define a multilinear polynomial:

$$f(x_1, x_2, \cdots, x_n) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i,$$

• we need to fix c_S 's suitably.

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m = \prod_{i \in S} x_i$ is a monomial.
- A small size boolean circuit *C* can decide whether *m* is a nonzero monomial in *f*.
- Just substitute y for each x_i such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m = \prod_{i \in S} x_i$ is a monomial.
- A small size boolean circuit *C* can decide whether *m* is a nonzero monomial in *f*.
- Just substitute y for each x_i such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m = \prod_{i \in S} x_i$ is a monomial.
- A small size boolean circuit *C* can decide whether *m* is a nonzero monomial in *f*.
- Just substitute y for each x_i such that $i \in S$ and 0 otherwise.
- C evaluates C to check whether the coefficient of the maximum degree of y is nonzero.

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m = \prod_{i \in S} x_i$ is a monomial.
- A small size boolean circuit *C* can decide whether *m* is a nonzero monomial in *f*.
- Just substitute y for each x_i such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

Consequence of Hypothesis 2

 Let w₁, w₂, · · · , w_t are the weight functions output by A₂, t ≤ m^c where m is the size of the boolean circuit that defines the monomial of f.

• Let
$$w_i = (w_{i,1}, w_{i,2}, \cdots, w_{i,n}).$$

• Goal is to fool every weight function w_i .

• For all *i*, write down the equation

$$g_i(y) = f(y^{w_{i,1}}, y^{w_{i,2}}, \cdots, y^{w_{i,n}}) = 0.$$

Consequence of Hypothesis 2

 Let w₁, w₂, · · · , w_t are the weight functions output by A₂, t ≤ m^c where m is the size of the boolean circuit that defines the monomial of f.

• Let
$$w_i = (w_{i,1}, w_{i,2}, \cdots, w_{i,n}).$$

- Goal is to fool every weight function w_i .
- For all *i*, write down the equation

$$g_i(y) = f(y^{w_{i,1}}, y^{w_{i,2}}, \cdots, y^{w_{i,n}}) = 0.$$

Consequence of Hypothesis 2

- Let w₁, w₂, · · · , w_t are the weight functions output by A₂, t ≤ m^c where m is the size of the boolean circuit that defines the monomial of f.
- Let $w_i = (w_{i,1}, w_{i,2}, \cdots, w_{i,n}).$
- Goal is to fool every weight function w_i.

• For all *i*, write down the equation

$$g_i(y) = f(y^{w_{i,1}}, y^{w_{i,2}}, \cdots, y^{w_{i,n}}) = 0.$$

< (17) > < (17) > <

Consequence of Hypothesis 2

 Let w₁, w₂, · · · , w_t are the weight functions output by A₂, t ≤ m^c where m is the size of the boolean circuit that defines the monomial of f.

• Let
$$w_i = (w_{i,1}, w_{i,2}, \cdots, w_{i,n}).$$

- Goal is to fool every weight function w_i.
- For all *i*, write down the equation

$$g_i(y) = f(y^{w_{i,1}}, y^{w_{i,2}}, \cdots, y^{w_{i,n}}) = 0.$$

Consequence of Hypothesis 2

• The degree of $g_i(y)$ is $\leq 2n^2$.

- Total number of linear constraints for c_S 's is at most $2n^2m^c < 2^n$ for $m = 2^{o(n)}$.
- There always exists a nontrivial solution for f.

Consequence of Hypothesis 2

- The degree of $g_i(y)$ is $\leq 2n^2$.
- Total number of linear constraints for c_S 's is at most $2n^2m^c < 2^n$ for $m = 2^{o(n)}$.
- There always exists a nontrivial solution for f.

Consequence of Hypothesis 2

- The degree of $g_i(y)$ is $\leq 2n^2$.
- Total number of linear constraints for c_S 's is at most $2n^2m^c < 2^n$ for $m = 2^{o(n)}$.
- There always exists a nontrivial solution for f.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_i there is a unique monomial $\prod_{j \in S} x_j$ such that $\sum_{j \in S} w_{i,j}$ takes the minimum value (by the property of A_2).
- So the polynomial $g_i(y) \neq 0$, a contradiction.

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_i there is a unique monomial $\prod_{j \in S} x_j$ such that $\sum_{j \in S} w_{i,j}$ takes the minimum value (by the property of A_2).
- So the polynomial $g_i(y) \neq 0$, a contradiction.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_i there is a unique monomial $\prod_{j \in S} x_j$ such that $\sum_{j \in S} w_{i,j}$ takes the minimum value (by the property of A_2).

< A > < > >

• So the polynomial $g_i(y) \neq 0$, a contradiction.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_i there is a unique monomial $\prod_{j \in S} x_j$ such that $\sum_{j \in S} w_{i,j}$ takes the minimum value (by the property of A_2).
- So the polynomial $g_i(y) \neq 0$, a contradiction.

Other Result

- (Spielman and Klivans 2001) Randomized PIT for small degree (commutative) polynomial based on a more general formulation of isolation lemma.
- Observation Derandomization of the corresponding isolation lemma imply the result of Impagliazzo and Kabanets 2003.

- Outline Introduction Formulation of an Isolation Lemma Automata Theory Noncommutative Polynomial Identity Testing Black-box derandomization Summary
- Other Result

- (Spielman and Klivans 2001) Randomized PIT for small degree (commutative) polynomial based on a more general formulation of isolation lemma.
- Observation Derandomization of the corresponding isolation lemma imply the result of Impagliazzo and Kabanets 2003.

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the *noncommutative* model.
- A black-box derandomization yields a circuit lower bound in usual *commutative model*.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

Outline Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	
Summary	

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the *noncommutative* model.
- A black-box derandomization yields a circuit lower bound in usual *commutative model*.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

Outline Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	
Summary	

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the *noncommutative* model.
- A black-box derandomization yields a circuit lower bound in usual *commutative model*.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

Outline Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	
Summary	

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the *noncommutative* model.
- A black-box derandomization yields a circuit lower bound in usual *commutative model*.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

Outline Introduction	
Formulation of an Isolation Lemma	
Automata Theory	
Noncommutative Polynomial Identity Testing	
Black-box derandomization	
Summary	
Summary	

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the *noncommutative* model.
- A black-box derandomization yields a circuit lower bound in usual *commutative model*.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).