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Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

U be a set (universe) of size n and F ⊆ 2U be any family of
subsets of U.

Let w : U → Z
+ be a weight function.

For T ⊆ U, define its weight w(T ) as w(T ) =
∑

u∈T w(u).
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Isolation Lemma

Let w be any random weight assignment w : U → [2n].

Isolation Lemma guarantees that with high probability (at
least 1/2) there will be a unique minimum weight set in F .
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Important applications of Isolation Lemma

Randomized NC algorithm for computing maximum
cardinality matchings for general graphs.
(Mulmuley-Vazirani-Vazirani 1987)

NL ⊂ UL/poly (Klaus Reinhardt and Eric Allender 2000).

SAT is many-one reducible via randomized reductions to
USAT.
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Two outstanding open problems in complexity theory

Is the matching problem in in deterministic NC ?

Is NL ⊆ UL ?

Both the problems will be solved if Isolation Lemma can be
derandomized.
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Derandomizing Isolation Lemma

In all well known applications of Isolation Lemma number of
set system is 2nO(1)

.

So derandomization is plausible (Agrawal 2007, Barbados
workshop on CC).

Main Question Can we derandomize some special cases of the
Isolation Lemma.
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Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binary
string χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.
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Our Setting

w : U → [2n] : random weight assignment.

Isolation Lemma:

Probw [ There exists a unique minimum weight set in FC ] ≥
1

2
.

Can we derandomize?
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A non black-box derandomization Hypothesis

C is an n-input boolean circuit.

A deterministic algorithm A1 takes as input (C , n).

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]) :
∃i , s.t wi assigns a unique minimum weight set in FC .

A1 runs in time subexponential in size(C ).
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Black-box derandomization Hypothesis

A2 takes (m, n) in unary.

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]).

For each size m boolean circuit C with n inputs: ∃i , s.t wi

assigns a unique minimum weight set in FC .

A2 runs in time polynomial in m.
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Derandomization Consequences (results)

Non black-box derandomization ⇒ either NEXP 6⊂ P/poly or
Perm does not have polynomial size noncommutative

arithmetic circuits.

Black-box derandomization ⇒ an explicit multilinear
polynomial fn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] (in
commuting variables) does not have commutative arithmetic
circuits of size 2o(n).
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Non black-box derandomization : proof idea

Using Isolation Lemma, design a randomized polynomial-time
identity testing algorithm (PIT) for small degree
noncommutative circuits.

Derandomize the algorithm (subexponential time) using
Hypothesis 1.
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Idea behind the proof cont’d.

Noncommutative version of Impagliazzo-Kabanets 2003:
Derandomizing the PIT for small degree noncommutative
circuit ⇒ either NEXP 6⊂ P/poly or permanent has no
poly-size noncommutative circuit (Arvind, Mukhopadhyay and
Srinivasan 2008).
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Noncommutative PIT

A noncommutative arithmetic circuit C computes a
polynomial in F{x1, x2, · · · , xn} (xixj 6= xjxi ) using + and ×
gate.

(Bogdanov and Wee’05) Randomized poly-time PIT for
noncommutative circuits of small degree (based on classic
theorem of Amitsur and Levitzki 1950).

New algorithm is based on Isolation Lemma and Automata
Theory.

Recently, using automata theory a deterministic PIT algorithm
for noncommutative circuit computing sparse polynomial is
given (Arvind, Mukhopadhyay and Srinivasan 2008).
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Some Automata Theory Background

A finite automaton A = (Q,Σ = {x1, · · · , xn}, δ, {q0}, {qf }).

(Q,Σ, δ, q0, qf )→ (alphabet, states set, transition function,
initial state, final state).

For b ∈ Σ, the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay Isolation Lemma
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Some Automata Theory Background

For any w = w1w2 · · ·wk ∈ Σ∗, the matrix
Mw = Mw1Mw2 · · ·Mwk

.

Easy fact: Mw (q0, qf ) = 1 if and only if w is accepted by the
automaton A.
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Run of an automaton over a noncommutative circuit

C be any given noncommutative arithmetic circuit computing
f .

Output matrix MA
out = C (Mx1 ,Mx2 · · · ,Mxn).
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Crucial Observation

The output is always 0 when f ≡ 0.

If A accepts precisely one monomial (m) of f then
MA

out(q0, qf ) = c (coefficient of m in f is c).

That’s an identity test !!
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Identity Testing Algorithm based on Isolation Lemma

Input f ∈ F{x1, x2, · · · , xn} given by an arithmetic circuit C

of.

d be an upper bound on the degree of f .

[d ] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}.

The universe (for Isolation Lemma) U = [d ] × [n].
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Identity Testing Algorithm

Let v = xi1xi2 · · · xit be a nonzero monomial of f .

Identify v with Sv ⊂ U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Set system:

F = {Sv | v is a nonzero monomial in f }
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Intuition behind the Identity Testing Algorithm

Assign random weights from [2dn] to the elements of U,

(Isolation Lemma) With probability at least 1/2, there is a
unique minimum weight set in F .

Goal Construct a family of small size automatons
{Aw ,t}w∈[2nd2 ],t∈[d]:

Aw ,t precisely accepts all the strings (corresponding to the
monomials) v of length t, such that the weight of Sv is w .
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Intuition of the Identity Testing algorithm

For each A ∈ {Aw ,t} compute the run of A on C .

(Using the isolation lemma) The automata corresponding to
the minimum weight will precisely accept (isolate) only one
string (monomial).

The automata family is easy to construct.
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Crucial Observation

C be a noncommutative arithmetic circuit of small degree and
m is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and compute
run on C .

Thus, a boolean circuit Ĉ (of size poly(size(C ))), F
Ĉ

defines
the monomials of C .
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Ĉ

defines
the monomials of C .

V. Arvind, Partha Mukhopadhyay Isolation Lemma



Outline
Introduction

Formulation of an Isolation Lemma
Automata Theory

Noncommutative Polynomial Identity Testing
Black-box derandomization

Summary

Crucial Observation

C be a noncommutative arithmetic circuit of small degree and
m is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and compute
run on C .
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Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit Ĉ .

A1(Ĉ , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(Ĉ , n)) .
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Consequence of Hypothesis 2

Goal To construct an explicit multilinear polynomial f in
F[x1, x2, · · · , xn] that does not have 2o(n) size arithmetic
circuit.

Define a multilinear polynomial:

f (x1, x2, · · · , xn) =
∑

S⊆[n]

cS

∏

i∈S

xi ,

we need to fix cS ’s suitably.
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Important Observation

Let f be a multilinear polynomial given by a circuit Ĉ and
m =

∏

i∈S xi is a monomial.

A small size boolean circuit C can decide whether m is a
nonzero monomial in f .

Just substitute y for each xi such that i ∈ S and 0 otherwise.

C evaluates Ĉ to check whether the coefficient of the
maximum degree of y is nonzero.

V. Arvind, Partha Mukhopadhyay Isolation Lemma
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Consequence of Hypothesis 2

Let w1,w2, · · · ,wt are the weight functions output by A2,
t ≤ mc where m is the size of the boolean circuit that defines
the monomial of f .

Let wi = (wi ,1,wi ,2, · · · ,wi ,n).

Goal is to fool every weight function wi .

For all i , write down the equation

gi (y) = f (ywi,1 , ywi,2, · · · , ywi,n) = 0.

.
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Consequence of Hypothesis 2

The degree of gi (y) is ≤ 2n2.

Total number of linear constraints for cS ’s is at most
2n2mc < 2n for m = 2o(n).

There always exists a nontrivial solution for f .
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Finishing the proof

Let f has a arithmetic circuit of size 2o(n),

Then a boolean circuit C of size 2o(n) defines the monomials
of f .

Then for some weight function wi there is a unique monomial
∏

j∈S xj such that
∑

j∈S wi ,j takes the minimum value (by the
property of A2).

So the polynomial gi (y) 6= 0, a contradiction.
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Other Result

(Spielman and Klivans 2001) Randomized PIT for small
degree (commutative) polynomial based on a more general
formulation of isolation lemma.

Observation Derandomization of the corresponding isolation
lemma imply the result of Impagliazzo and Kabanets 2003.
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Summary

We study the connections between derandomization of
Isolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on set
system defined by boolean circuits.

A (non black-box) derandomization of above implies circuit
lower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound in
usual commutative model.

The derandomization of the Isolation Lemma used by
Spielman-Klivans (2001) implies the result of Impagliazzo and
Kabanets (2003).
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