Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

V. Arvind and Partha Mukhopadhyay
The Institute of Mathematical Sciences India

27th August 2008

(1) Introduction

(2) Formulation of an Isolation Lemma
(3) Automata Theory

4 Noncommutative Polynomial Identity Testing
(5) Black-box derandomization
(6) Summary

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and $\mathcal{F} \subseteq 2^{U}$ be any family of subsets of U.
- Let $w: U \rightarrow \mathbb{Z}^{+}$be a weight function.
- For $T \subseteq U$, define its weight $w(T)$ as $w(T)=\sum_{u \in T} w(u)$

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and $\mathcal{F} \subseteq 2^{U}$ be any family of subsets of U.
- Let $w: U \rightarrow \mathbb{Z}^{+}$be a weight function.
- For $T \subseteq U$, define its weight $w(T)$ as $w(T)=\sum_{u \in T} w(u)$

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

- U be a set (universe) of size n and $\mathcal{F} \subseteq 2^{U}$ be any family of subsets of U.
- Let $w: U \rightarrow \mathbb{Z}^{+}$be a weight function.
- For $T \subseteq U$, define its weight $w(T)$ as $w(T)=\sum_{u \in T} w(u)$.

Isolation Lemma

- Let w be any random weight assignment $w: U \rightarrow[2 n]$.
- Isolation Lemma guarantees that with high probability (at least $1 / 2$) there will be a unique minimum weight set in \mathcal{F}.

Isolation Lemma

- Let w be any random weight assignment $w: U \rightarrow[2 n]$.
- Isolation Lemma guarantees that with high probability (at least $1 / 2$) there will be a unique minimum weight set in \mathcal{F}.

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- NL \subset UL/poly (Klaus Reinhardt and Eric Allender 2000)
- SAT is many-one reducible via randomized reductions to USAT

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- NL \subset UL/poly (Klaus Reinhardt and Eric Allender 2000).
- SAT is many-one reducible via randomized reductions to USAT.

Important applications of Isolation Lemma

- Randomized NC algorithm for computing maximum cardinality matchings for general graphs. (Mulmuley-Vazirani-Vazirani 1987)
- NL $\subset \mathrm{UL} /$ poly (Klaus Reinhardt and Eric Allender 2000).
- SAT is many-one reducible via randomized reductions to USAT.

Two outstanding open problems in complexity theory

- Is the matching problem in in deterministic NC ?
- Is $\mathrm{NL} \subseteq \mathrm{UL}$?

Both the problems will be solved if Isolation Lemma can be derandomized

Two outstanding open problems in complexity theory

- Is the matching problem in in deterministic NC ?
- Is $\mathrm{NL} \subseteq \mathrm{UL}$?

Both the problems will be solved if Isolation Lemma can be derandomized.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is $2^{n^{O(1)}}$.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some special cases of the Isolation Lemma.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is $2^{n^{O(1)}}$.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some special cases of the Isolation Lemma.

Derandomizing Isolation Lemma

- In all well known applications of Isolation Lemma number of set system is $2^{n^{O(1)}}$.
- So derandomization is plausible (Agrawal 2007, Barbados workshop on CC).
- Main Question Can we derandomize some special cases of the Isolation Lemma.

Isolation Lemma - Our setting

- The universe $U=[n]$.
- An n-input boolean circuit C and $\operatorname{size}(C)=m$.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_{S} \in\{0,1\}^{n}$.
- n-input boolean circuit C implicitly defines the set system

$$
\mathcal{F}_{C}=\left\{S \subseteq[n] \mid C\left(\chi_{S}\right)=1\right\} .
$$

- Also, there is only exponential number of set systems.

Isolation Lemma - Our setting

- The universe $U=[n]$.
- An n-input boolean circuit C and $\operatorname{size}(C)=m$.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_{S} \in\{0,1\}^{n}$
- n-input boolean circuit C implicitly defines the set system

$$
\mathcal{F}_{C}=\left\{S \subseteq[n] \mid C\left(\chi_{S}\right)=1\right\} .
$$

- Also, there is only exponential number of set systems.

Isolation Lemma - Our setting

- The universe $U=[n]$.
- An n-input boolean circuit C and $\operatorname{size}(C)=m$.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_{S} \in\{0,1\}^{n}$.
- n-input boolean circuit C implicitly defines the set system

$$
\mathcal{F}_{C}=\left\{S \subseteq[n] \mid C\left(\chi_{S}\right)=1\right\} .
$$

- Also, there is only exponential number of set systems.

Isolation Lemma - Our setting

- The universe $U=[n]$.
- An n-input boolean circuit C and $\operatorname{size}(C)=m$.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_{s} \in\{0,1\}^{n}$.
- n-input boolean circuit C implicitly defines the set system

$$
\mathcal{F}_{C}=\left\{S \subseteq[n] \mid C\left(\chi_{S}\right)=1\right\}
$$

- Also, there is only exponential number of set systems.

Isolation Lemma - Our setting

- The universe $U=[n]$.
- An n-input boolean circuit C and $\operatorname{size}(C)=m$.
- Each subset $S \subseteq U$ corresponds to its characteristic binary string $\chi_{s} \in\{0,1\}^{n}$.
- n-input boolean circuit C implicitly defines the set system

$$
\mathcal{F}_{C}=\left\{S \subseteq[n] \mid C\left(\chi_{S}\right)=1\right\} .
$$

- Also, there is only exponential number of set systems.

Our Setting

- $w: U \rightarrow[2 n]$: random weight assignment.
- Isolation Lemma:
$\operatorname{Prob}_{w}\left[\right.$ There exists a unique minimum weight set in $\left.\mathcal{F}_{C}\right] \geq \frac{1}{2}$.
- Can we derandomize?

Our Setting

- $w: U \rightarrow[2 n]$: random weight assignment.
- Isolation Lemma:
$\operatorname{Prob}_{w}\left[\right.$ There exists a unique minimum weight set in $\left.\mathcal{F}_{C}\right] \geq \frac{1}{2}$.
- Can we derandomize?

Our Setting

- $w: U \rightarrow[2 n]$: random weight assignment.
- Isolation Lemma:
$\operatorname{Prob}_{w}\left[\right.$ There exists a unique minimum weight set in $\left.\mathcal{F}_{C}\right] \geq \frac{1}{2}$.
- Can we derandomize?

A non black-box derandomization Hypothesis

- C is an n-input boolean circuit.
- A deterministic algorithm \mathcal{A}_{1} takes as input (C, n)
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$ $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{1} runs in time subexponential in $\operatorname{size}(C)$

A non black-box derandomization Hypothesis

- C is an n-input boolean circuit.
- A deterministic algorithm \mathcal{A}_{1} takes as input (C, n).
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$ $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C} - \mathcal{A}_{1} runs in time subexponential in $\operatorname{size}(C)$.

A non black-box derandomization Hypothesis

- C is an n-input boolean circuit.
- A deterministic algorithm \mathcal{A}_{1} takes as input (C, n).
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{1} runs in time subexponential in $\operatorname{size}(C)$.

A non black-box derandomization Hypothesis

- C is an n-input boolean circuit.
- A deterministic algorithm \mathcal{A}_{1} takes as input (C, n).
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{1} runs in time subexponential in $\operatorname{size}(C)$.

Black-box derandomization Hypothesis

- \mathcal{A}_{2} takes (m, n) in unary.
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$
- For each size m boolean circuit C with n inputs: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{2} runs in time polynomial in m.

Black-box derandomization Hypothesis

- \mathcal{A}_{2} takes (m, n) in unary.
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$.
- For each size m boolean circuit C with n inputs: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{2} runs in time polynomial in m.

Black-box derandomization Hypothesis

- \mathcal{A}_{2} takes (m, n) in unary.
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$.
- For each size m boolean circuit C with n inputs: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.

Black-box derandomization Hypothesis

- \mathcal{A}_{2} takes (m, n) in unary.
- \mathcal{A} outputs weight functions $w_{1}, w_{2}, \cdots, w_{t}\left(w_{i}:[n] \rightarrow[2 n]\right)$.
- For each size m boolean circuit C with n inputs: $\exists i$, s.t w_{i} assigns a unique minimum weight set in \mathcal{F}_{C}.
- \mathcal{A}_{2} runs in time polynomial in m.

Derandomization Consequences (results)

- Non black-box derandomization \Rightarrow either NEXP $\not \subset \mathrm{P} /$ poly or Perm does not have polynomial size noncommutative arithmetic circuits.
- Black-box derandomization \Rightarrow an explicit multilinear polynomial $f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ (in commuting variables) does not have commutative arithmetic circuits of size $2^{\circ(n)}$

Derandomization Consequences (results)

- Non black-box derandomization \Rightarrow either NEXP $\not \subset \mathrm{P} /$ poly or Perm does not have polynomial size noncommutative arithmetic circuits.
- Black-box derandomization \Rightarrow an explicit multilinear polynomial $f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ (in commuting variables) does not have commutative arithmetic circuits of size $2^{o(n)}$.

Non black-box derandomization : proof idea

- Using Isolation Lemma, design a randomized polynomial-time identity testing algorithm (PIT) for small degree noncommutative circuits.
- Derandomize the algorithm (subexponential time) using Hypothesis 1.

Non black-box derandomization : proof idea

- Using Isolation Lemma, design a randomized polynomial-time identity testing algorithm (PIT) for small degree noncommutative circuits.
- Derandomize the algorithm (subexponential time) using Hypothesis 1.

Idea behind the proof cont'd.

- Noncommutative version of Impagliazzo-Kabanets 2003: Derandomizing the PIT for small degree noncommutative circuit \Rightarrow either NEXP $\not \subset \mathrm{P} /$ poly or permanent has no poly-size noncommutative circuit (Arvind, Mukhopadhyay and Srinivasan 2008).

Noncommutative PIT

- A noncommutative arithmetic circuit C computes a polynomial in $\mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\left(x_{i} x_{j} \neq x_{j} x_{i}\right)$ using + and \times gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950)
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

Noncommutative PIT

- A noncommutative arithmetic circuit C computes a polynomial in $\mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\left(x_{i} x_{j} \neq x_{j} x_{i}\right)$ using + and \times gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

Noncommutative PIT

- A noncommutative arithmetic circuit C computes a polynomial in $\mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\left(x_{i} x_{j} \neq x_{j} x_{i}\right)$ using + and \times gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008)

Noncommutative PIT

- A noncommutative arithmetic circuit C computes a polynomial in $\mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}\left(x_{i} x_{j} \neq x_{j} x_{i}\right)$ using + and \times gate.
- (Bogdanov and Wee'05) Randomized poly-time PIT for noncommutative circuits of small degree (based on classic theorem of Amitsur and Levitzki 1950).
- New algorithm is based on Isolation Lemma and Automata Theory.
- Recently, using automata theory a deterministic PIT algorithm for noncommutative circuit computing sparse polynomial is given (Arvind, Mukhopadhyay and Srinivasan 2008).

Some Automata Theory Background

- A finite automaton $A=\left(Q, \Sigma=\left\{x_{1}, \cdots, x_{n}\right\}, \delta,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$.
- $\left(Q, \Sigma, \delta, q_{0}, q_{f}\right) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_{b} \in \mathbb{F}^{|Q| \times|Q|}$

Some Automata Theory Background

- A finite automaton $A=\left(Q, \Sigma=\left\{x_{1}, \cdots, x_{n}\right\}, \delta,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$.
- $\left(Q, \Sigma, \delta, q_{0}, q_{f}\right) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_{b} \in \mathbb{F}|Q| \times|Q|$

Some Automata Theory Background

- A finite automaton $A=\left(Q, \Sigma=\left\{x_{1}, \cdots, x_{n}\right\}, \delta,\left\{q_{0}\right\},\left\{q_{f}\right\}\right)$.
- $\left(Q, \Sigma, \delta, q_{0}, q_{f}\right) \rightarrow$ (alphabet, states set, transition function, initial state, final state).
- For $b \in \Sigma$, the 0-1 matrix $M_{b} \in \mathbb{F}^{|Q| \times|Q|}$:

$$
M_{b}\left(q, q^{\prime}\right)=\left\{\begin{array}{cc}
1 & \text { if } \delta_{b}(q)=q^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Some Automata Theory Background

- For any $w=w_{1} w_{2} \cdots w_{k} \in \Sigma^{*}$, the matrix $M_{w}=M_{w_{1}} M_{w_{2}} \cdots M_{w_{k}}$.
- Easy fact: $M_{w}\left(q_{0}, q_{f}\right)=1$ if and only if w is accepted by the automaton A.

Some Automata Theory Background

- For any $w=w_{1} w_{2} \cdots w_{k} \in \Sigma^{*}$, the matrix $M_{w}=M_{w_{1}} M_{w_{2}} \cdots M_{w_{k}}$.
- Easy fact: $M_{w}\left(q_{0}, q_{f}\right)=1$ if and only if w is accepted by the automaton A.

Run of an automaton over a noncommutative circuit

- C be any given noncommutative arithmetic circuit computing f.
- Output matrix $M_{\text {out }}^{A}=C\left(M_{x_{1}}, M_{x_{2}} \cdots, M_{X_{n}}\right)$

Run of an automaton over a noncommutative circuit

- C be any given noncommutative arithmetic circuit computing f.
- Output matrix $M_{\text {out }}^{A}=C\left(M_{x_{1}}, M_{x_{2}} \cdots, M_{x_{n}}\right)$.

Crucial Observation

- The output is always 0 when $f \equiv 0$.
- If A accepts precisely one monomial (m) of f then $M_{\text {out }}^{A}\left(q_{0}, q_{f}\right)=c$ (coefficient of m in f is c). - That's an identity test !!

Crucial Observation

- The output is always 0 when $f \equiv 0$.
- If A accepts precisely one monomial (m) of f then $M_{\text {out }}^{A}\left(q_{0}, q_{f}\right)=c$ (coefficient of m in f is c).

Crucial Observation

- The output is always 0 when $f \equiv 0$.
- If A accepts precisely one monomial (m) of f then $M_{\text {out }}^{A}\left(q_{0}, q_{f}\right)=c$ (coefficient of m in f is c).
- That's an identity test !!

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ given by an arithmetic circuit C of.
- d be an upper bound on the degree of f

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ given by an arithmetic circuit C of.
- d be an upper bound on the degree of f.

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ given by an arithmetic circuit C of.
- d be an upper bound on the degree of f.
- $[d]=\{1,2, \cdots, d\}$ and $[n]=\{1,2, \cdots, n\}$.
- The universe (for Isolation Lemma) $U=[d] \times[n]$

Identity Testing Algorithm based on Isolation Lemma

- Input $f \in \mathbb{F}\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ given by an arithmetic circuit C of.
- d be an upper bound on the degree of f.
- $[d]=\{1,2, \cdots, d\}$ and $[n]=\{1,2, \cdots, n\}$.
- The universe (for Isolation Lemma) $U=[d] \times[n]$.

Identity Testing Algorithm

- Let $v=x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}$ be a nonzero monomial of f.
- Identify v with $S_{v} \subset U$

$$
S_{v}=\left\{\left(1, i_{1}\right),\left(2, i_{2}\right), \cdots,\left(t, i_{t}\right)\right\}
$$

- Set system:

$$
\mathcal{F}=\left\{S_{v} \mid v \text { is a nonzero monomial in } f\right\}
$$

Identity Testing Algorithm

- Let $v=x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}$ be a nonzero monomial of f.
- Identify v with $S_{v} \subset U$:

$$
S_{v}=\left\{\left(1, i_{1}\right),\left(2, i_{2}\right), \cdots,\left(t, i_{t}\right)\right\}
$$

- Set system:

$$
\mathcal{F}=\left\{S_{v} \mid v \text { is a nonzero monomial in } f\right\}
$$

Identity Testing Algorithm

- Let $v=x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}$ be a nonzero monomial of f.
- Identify v with $S_{v} \subset U$:

$$
S_{v}=\left\{\left(1, i_{1}\right),\left(2, i_{2}\right), \cdots,\left(t, i_{t}\right)\right\}
$$

- Set system:

$$
\mathcal{F}=\left\{S_{v} \mid v \text { is a nonzero monomial in } f\right\}
$$

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least $1 / 2$, there is a unique minimum weight set in \mathcal{F}.
- Goal Construct a family of small size automatons $\left\{A_{w, t}\right\}_{w \in\left[2 n d^{2}\right], t \in[d]}$
- $A_{w, t}$ precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_{v} is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least $1 / 2$, there is a unique minimum weight set in \mathcal{F}.
- Goal Construct a family of small size automatons $\left\{A_{w, t}\right\}_{w \in\left[2 n d^{2}\right], t \in[d]}$:
- $A_{w, t}$ precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_{v} is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least $1 / 2$, there is a unique minimum weight set in \mathcal{F}.
- Goal Construct a family of small size automatons $\left\{A_{w, t}\right\}_{w \in\left[2 n d^{2}\right], t \in[d]}$:
- $A_{w, t}$ precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_{v} is w.

Intuition behind the Identity Testing Algorithm

- Assign random weights from [2dn] to the elements of U,
- (Isolation Lemma) With probability at least $1 / 2$, there is a unique minimum weight set in \mathcal{F}.
- Goal Construct a family of small size automatons $\left\{A_{w, t}\right\}_{w \in\left[2 n d^{2}\right], t \in[d]}$:
- $A_{w, t}$ precisely accepts all the strings (corresponding to the monomials) v of length t, such that the weight of S_{v} is w.

Intuition of the Identity Testing algorithm

- For each $A \in\left\{A_{w, t}\right\}$ compute the run of A on C.
- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Intuition of the Identity Testing algorithm

- For each $A \in\left\{A_{w, t}\right\}$ compute the run of A on C.
- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Intuition of the Identity Testing algorithm

- For each $A \in\left\{A_{w, t}\right\}$ compute the run of A on C.
- (Using the isolation lemma) The automata corresponding to the minimum weight will precisely accept (isolate) only one string (monomial).
- The automata family is easy to construct.

Crucial Observation

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if m is a nonzero monomial in C.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit $C($ of size poly $(\operatorname{size}(C))), \mathcal{F}_{\hat{C}}$ defines the monomials of C.

Crucial Observation

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if m is a nonzero monomial in C.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit C (of size poly $(\operatorname{size}(C))$), \mathcal{F}_{C} defines the monomials of C.

Crucial Observation

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if m is a nonzero monomial in C.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit \hat{C} (of size poly $(\operatorname{size}(C))$), $\mathcal{F}_{\hat{C}}$ defines the monomials of C.

Crucial Observation

- C be a noncommutative arithmetic circuit of small degree and m is a given monomial.
- Easy algorithm to check if m is a nonzero monomial in C.
- Construct an automaton A that accepts only m and compute run on C.
- Thus, a boolean circuit \hat{C} (of size poly $(\operatorname{size}(C))$), $\mathcal{F}_{\hat{C}}$ defines the monomials of C.

Non black-box derandomization

- Given noncommutative arithmetic circuit C.
- Compute boolean circuit C
- $\mathcal{A}_{1}(\hat{C}, n)=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$
- Identity testing using $\left\{w_{i}\right\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$

Non black-box derandomization

- Given noncommutative arithmetic circuit C.
- Compute boolean circuit \hat{C}.
- $\mathcal{A}_{1}(\hat{C}, n)=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$
- Identity testing using $\left\{w_{i}\right\}$'s.
- Run time: subexn $(\operatorname{size}(\hat{C}, n))$

Non black-box derandomization

- Given noncommutative arithmetic circuit C.
- Compute boolean circuit \hat{C}.
- $\mathcal{A}_{1}(\hat{C}, n)=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$.
- Identity testing using $\left\{w_{i}\right\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$

Non black-box derandomization

- Given noncommutative arithmetic circuit C.
- Compute boolean circuit \hat{C}.
- $\mathcal{A}_{1}(\hat{C}, n)=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$.
- Identity testing using $\left\{w_{i}\right\}$'s.
- Run time: subexp $(\operatorname{size}(C, n))$

Non black-box derandomization

- Given noncommutative arithmetic circuit C.
- Compute boolean circuit \hat{C}.
- $\mathcal{A}_{1}(\hat{C}, n)=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$.
- Identity testing using $\left\{w_{i}\right\}$'s.
- Run time: $\operatorname{subexp}(\operatorname{size}(\hat{C}, n))$.

Consequence of Hypothesis 2

- Goal To construct an explicit multilinear polynomial f in $\mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ that does not have $2^{o(n)}$ size arithmetic circuit.
- Define a multilinear polynomial:
- we need to fix c_{S} 's suitably.

Consequence of Hypothesis 2

- Goal To construct an explicit multilinear polynomial f in $\mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ that does not have $2^{o(n)}$ size arithmetic circuit.
- Define a multilinear polynomial:

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i},
$$

- we need to fix c^{\prime} 's suitably.

Consequence of Hypothesis 2

- Goal To construct an explicit multilinear polynomial f in $\mathbb{F}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ that does not have $2^{o(n)}$ size arithmetic circuit.
- Define a multilinear polynomial:

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i},
$$

- we need to fix c_{S} 's suitably.

Important Observation

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m=\prod_{i \in S} x_{i}$ is a monomial.
- A small size boolean circuit C can decide whether m is a nonzero monomial in f.
- Just substitute y for each x_{i} such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

Important Observation

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m=\prod_{i \in S} x_{i}$ is a monomial.
- A small size boolean circuit C can decide whether m is a nonzero monomial in f.
- Just substitute y for each x_{i} such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

Important Observation

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m=\prod_{i \in S} x_{i}$ is a monomial.
- A small size boolean circuit C can decide whether m is a nonzero monomial in f.
- Just substitute y for each x_{i} such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

Important Observation

- Let f be a multilinear polynomial given by a circuit \hat{C} and $m=\prod_{i \in S} x_{i}$ is a monomial.
- A small size boolean circuit C can decide whether m is a nonzero monomial in f.
- Just substitute y for each x_{i} such that $i \in S$ and 0 otherwise.
- C evaluates \hat{C} to check whether the coefficient of the maximum degree of y is nonzero.

Consequence of Hypothesis 2

- Let $w_{1}, w_{2}, \cdots, w_{t}$ are the weight functions output by \mathcal{A}_{2}, $t \leq m^{c}$ where m is the size of the boolean circuit that defines the monomial of f.
- Let $w_{i}=\left(w_{i, 1}, w_{i, 2}, \cdots, w_{i, n}\right)$.
- Goal is to fool every weight function w_{i}
- For all i, write down the equation

Consequence of Hypothesis 2

- Let $w_{1}, w_{2}, \cdots, w_{t}$ are the weight functions output by \mathcal{A}_{2}, $t \leq m^{c}$ where m is the size of the boolean circuit that defines the monomial of f.
- Let $w_{i}=\left(w_{i, 1}, w_{i, 2}, \cdots, w_{i, n}\right)$.
- Goal is to fool every weight function w_{i}
- For all i, write down the equation

Consequence of Hypothesis 2

- Let $w_{1}, w_{2}, \cdots, w_{t}$ are the weight functions output by \mathcal{A}_{2}, $t \leq m^{c}$ where m is the size of the boolean circuit that defines the monomial of f.
- Let $w_{i}=\left(w_{i, 1}, w_{i, 2}, \cdots, w_{i, n}\right)$.
- Goal is to fool every weight function w_{i}.
- For all i, write down the equation

Consequence of Hypothesis 2

- Let $w_{1}, w_{2}, \cdots, w_{t}$ are the weight functions output by \mathcal{A}_{2}, $t \leq m^{c}$ where m is the size of the boolean circuit that defines the monomial of f.
- Let $w_{i}=\left(w_{i, 1}, w_{i, 2}, \cdots, w_{i, n}\right)$.
- Goal is to fool every weight function w_{i}.
- For all i, write down the equation

$$
g_{i}(y)=f\left(y^{w_{i, 1}}, y^{w_{i, 2}}, \cdots, y^{w_{i, n}}\right)=0 .
$$

Consequence of Hypothesis 2

- The degree of $g_{i}(y)$ is $\leq 2 n^{2}$.
- Total number of linear constraints for c_{S} 's is at most $2 n^{2} m^{c}<2^{n}$ for $m=2^{o(n)}$
- There always exists a nontrivial solution for f.

Consequence of Hypothesis 2

- The degree of $g_{i}(y)$ is $\leq 2 n^{2}$.
- Total number of linear constraints for c_{S} 's is at most $2 n^{2} m^{c}<2^{n}$ for $m=2^{o(n)}$.
- There always exists a nontrivial solution for f

Consequence of Hypothesis 2

- The degree of $g_{i}(y)$ is $\leq 2 n^{2}$.
- Total number of linear constraints for c_{S} 's is at most $2 n^{2} m^{c}<2^{n}$ for $m=2^{o(n)}$.
- There always exists a nontrivial solution for f.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{\circ(n)}$ defines the monomials of f.
- Then for some weight function w_{i} there is a unique monomial $\prod_{j \in S} x_{j}$ such that $\sum_{j \in S} w_{i, j}$ takes the minimum value (by the property of \mathcal{A}_{2})
- So the polynomial $g_{i}(y) \neq 0$, a contradiction.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_{i} there is a unique monomial $\prod_{j \in S} x_{j}$ such that $\sum_{j \in S} w_{i, j}$ takes the minimum value (by the property of \mathcal{A}_{2})
- So the polynomial $g_{i}(y) \neq 0$, a contradiction.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_{i} there is a unique monomial $\prod_{j \in S} x_{j}$ such that $\sum_{j \in S} w_{i, j}$ takes the minimum value (by the property of \mathcal{A}_{2}).
- So the polynomial $g_{i}(y) \neq 0$, a contradiction.

Finishing the proof

- Let f has a arithmetic circuit of size $2^{o(n)}$,
- Then a boolean circuit C of size $2^{o(n)}$ defines the monomials of f.
- Then for some weight function w_{i} there is a unique monomial $\prod_{j \in S} x_{j}$ such that $\sum_{j \in S} w_{i, j}$ takes the minimum value (by the property of \mathcal{A}_{2}).
- So the polynomial $g_{i}(y) \neq 0$, a contradiction.

Other Result

- (Spielman and Klivans 2001) Randomized PIT for small degree (commutative) polynomial based on a more general formulation of isolation lemma.
- Observation Derandomization of the corresponding isolation lemma imply the result of Impagliazzo and Kabanets 2003.

Other Result

- (Spielman and Klivans 2001) Randomized PIT for small degree (commutative) polynomial based on a more general formulation of isolation lemma.
- Observation Derandomization of the corresponding isolation lemma imply the result of Impagliazzo and Kabanets 2003.

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the noncommutative model
- A black-box derandomization yields a circuit lower bound in usual commutative model.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the noncommutative model
- A black-box derandomization yields a circuit lower bound in usual commutative model.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003)

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the noncommutative model.
- A black-box derandomization yields a circuit lower bound in usual commutative model.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003)

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the noncommutative model.
- A black-box derandomization yields a circuit lower bound in usual commutative model.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003)

Summary

- We study the connections between derandomization of Isolation Lemma and circuit lower bounds.
- We formulate versions of Isolation Lemma based on set system defined by boolean circuits.
- A (non black-box) derandomization of above implies circuit lower bound in the noncommutative model.
- A black-box derandomization yields a circuit lower bound in usual commutative model.
- The derandomization of the Isolation Lemma used by Spielman-Klivans (2001) implies the result of Impagliazzo and Kabanets (2003).

