
Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

New results on Noncommutative and
Commutative Polynomial Identity Testing

V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan
The Institute of Mathematical Sciences

India

25th June 2008

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

1 Introduction

2 Automata Theory

3 Noncommutative Polynomial Identity Testing

4 Commutative Polynomial Identity Testing

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Arithmetic Circuit

Definition

An arithmetic circuit over a field F is a circuit with addition and
multiplication gates. The inputs to a gate is either variables,
constants from F or outputs of other gates. An arithmetic circuit
C with the inputs x1, x2, · · · , xn computes a polynomial in
F[x1, x2, · · · , xn].

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Polynomial Identity Testing Problem

Definition

Let F be a field and C be an arithmetic circuit in the input variable
x1, x2, · · · , xn over F. Can one determine whether the polynomial
computed by C is identically zero ?

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

History of the problem

It is a well known classical problem.

Randomized polynomial time algorithm is known
(Schwartz-Zippel 1978).

No deterministic polynomial time algorithm is known.

Impagliazzo and Kabanets (2003) showed that such an
algorithm will imply either NEXP 6⊂ P/poly or Permanent has
no polynomial size arithmetic circuit.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

History of the problem

It is a well known classical problem.

Randomized polynomial time algorithm is known
(Schwartz-Zippel 1978).

No deterministic polynomial time algorithm is known.

Impagliazzo and Kabanets (2003) showed that such an
algorithm will imply either NEXP 6⊂ P/poly or Permanent has
no polynomial size arithmetic circuit.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

History of the problem

It is a well known classical problem.

Randomized polynomial time algorithm is known
(Schwartz-Zippel 1978).

No deterministic polynomial time algorithm is known.

Impagliazzo and Kabanets (2003) showed that such an
algorithm will imply either NEXP 6⊂ P/poly or Permanent has
no polynomial size arithmetic circuit.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

History of the problem

It is a well known classical problem.

Randomized polynomial time algorithm is known
(Schwartz-Zippel 1978).

No deterministic polynomial time algorithm is known.

Impagliazzo and Kabanets (2003) showed that such an
algorithm will imply either NEXP 6⊂ P/poly or Permanent has
no polynomial size arithmetic circuit.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Noncommutative Model of computation

In this talk we are primarily interested in noncommutative
model, where the input variables xi , xj do not commute, i.e
xixj − xjxi 6= 0.

The output of the arithmetic circuit C is a formal expression
in the noncommutative ring F{x1, x2, · · · , xn}.

Problem is to test whether C computes an identically zero
expression.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Noncommutative Model of computation

In this talk we are primarily interested in noncommutative
model, where the input variables xi , xj do not commute, i.e
xixj − xjxi 6= 0.

The output of the arithmetic circuit C is a formal expression
in the noncommutative ring F{x1, x2, · · · , xn}.

Problem is to test whether C computes an identically zero
expression.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Noncommutative Model of computation

In this talk we are primarily interested in noncommutative
model, where the input variables xi , xj do not commute, i.e
xixj − xjxi 6= 0.

The output of the arithmetic circuit C is a formal expression
in the noncommutative ring F{x1, x2, · · · , xn}.

Problem is to test whether C computes an identically zero
expression.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Known results over Noncommutative model

Identity Testing Results

Raz and Shpilka (2005) designed deterministic polynomial
time algorithm for noncommutative formula.

Bogdanov and Wee (2005) showed a randomized polynomial
time identity testing algorithm for circuit computing
polynomial of small degree.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Known results over Noncommutative model

Identity Testing Results

Raz and Shpilka (2005) designed deterministic polynomial
time algorithm for noncommutative formula.

Bogdanov and Wee (2005) showed a randomized polynomial
time identity testing algorithm for circuit computing
polynomial of small degree.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Known results over Noncommutative model

Lower Bounds

Nisan (1991) showed exponential size lower bounds for
noncommutative formulas that compute the noncommutative
permanent or determinant polynomials.

Chien and Sinclair (2004) extended Nisan’s results over
different algebras.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Known results over Noncommutative model

Lower Bounds

Nisan (1991) showed exponential size lower bounds for
noncommutative formulas that compute the noncommutative
permanent or determinant polynomials.

Chien and Sinclair (2004) extended Nisan’s results over
different algebras.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Main Results

Given a noncommutative circuit computing a sparse
polynomial of small degree, we give a deterministic
polynomial-time identity testing algorithm.

Given a noncommutative circuit computing a sparse
polynomial of small degree, we give a deterministic
polynomial-time algorithm to reconstruct the entire
polynomial. (In the commutative case, Ben-Or and Tiwari
(1988) showed a deterministic polynomial time interpolation
algorithm for sparse multivariate polynomial)

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Main Results

Given a noncommutative circuit computing a sparse
polynomial of small degree, we give a deterministic
polynomial-time identity testing algorithm.

Given a noncommutative circuit computing a sparse
polynomial of small degree, we give a deterministic
polynomial-time algorithm to reconstruct the entire
polynomial. (In the commutative case, Ben-Or and Tiwari
(1988) showed a deterministic polynomial time interpolation
algorithm for sparse multivariate polynomial)

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Main Results

In a suitably defined black-box model, we show an efficient
reconstruction algorithm for noncommuting Algebraic
Branching Program (ABP).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

A finite automaton A = (Q,Σ, δ, q0, qf).

Input alphabet Σ = {0, 1}.
Q is the set of states.
δ : Q × {0, 1} → Q is the transition function.
q0 and qf are the initial and final states.

For b ∈ {0, 1}, define the 0-1 matrix Mb ∈ F
|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,
0 otherwise.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

For any w = w1w2 · · ·wk ∈ {0, 1}
∗, the matrix

Mw = Mw1Mw2 · · ·Mwk
.

Easy fact:

Mw (q, q′) =

{

1 if δw (q) = q′,
0 otherwise.

(1)

Mw (q0, qf) = 1 if and only if w is accepted by the automaton
A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

For any w = w1w2 · · ·wk ∈ {0, 1}
∗, the matrix

Mw = Mw1Mw2 · · ·Mwk
.

Easy fact:

Mw (q, q′) =

{

1 if δw (q) = q′,
0 otherwise.

(1)

Mw (q0, qf) = 1 if and only if w is accepted by the automaton
A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Automata Theory Background

Building blocks of our algorithm

For any w = w1w2 · · ·wk ∈ {0, 1}
∗, the matrix

Mw = Mw1Mw2 · · ·Mwk
.

Easy fact:

Mw (q, q′) =

{

1 if δw (q) = q′,
0 otherwise.

(1)

Mw (q0, qf) = 1 if and only if w is accepted by the automaton
A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Run of an automaton over a noncommutative circuit

Encode the variable xi in the alphabet {0, 1} by the string
vi = 01i0.

For given automaton A, the matrix Mvi
= M0M

i
1M0.

Let C be the given arithmetic circuit computing a polynomial
f in F{x1, x2, · · · , xn}.

Compute the output matrix MA
out = C (Mv1,Mv2 · · · ,Mvn).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Run of an automaton over a noncommutative circuit

Encode the variable xi in the alphabet {0, 1} by the string
vi = 01i0.

For given automaton A, the matrix Mvi
= M0M

i
1M0.

Let C be the given arithmetic circuit computing a polynomial
f in F{x1, x2, · · · , xn}.

Compute the output matrix MA
out = C (Mv1,Mv2 · · · ,Mvn).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Run of an automaton over a noncommutative circuit

Encode the variable xi in the alphabet {0, 1} by the string
vi = 01i0.

For given automaton A, the matrix Mvi
= M0M

i
1M0.

Let C be the given arithmetic circuit computing a polynomial
f in F{x1, x2, · · · , xn}.

Compute the output matrix MA
out = C (Mv1,Mv2 · · · ,Mvn).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Run of an automaton over a noncommutative circuit

Encode the variable xi in the alphabet {0, 1} by the string
vi = 01i0.

For given automaton A, the matrix Mvi
= M0M

i
1M0.

Let C be the given arithmetic circuit computing a polynomial
f in F{x1, x2, · · · , xn}.

Compute the output matrix MA
out = C (Mv1,Mv2 · · · ,Mvn).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Crucial Observation

f determines MA
out completely; the structure C is otherwise

irrelevant.

The output is always 0 when f ≡ 0.

If f (x1, · · · , xn) = cxj1 · · · xjk , with c ∈ F, then
MA

out = cMvj1
· · ·Mvjk

where xji → vji = 01ji 1.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Crucial Observation

f determines MA
out completely; the structure C is otherwise

irrelevant.

The output is always 0 when f ≡ 0.

If f (x1, · · · , xn) = cxj1 · · · xjk , with c ∈ F, then
MA

out = cMvj1
· · ·Mvjk

where xji → vji = 01ji 1.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Crucial Observation

f determines MA
out completely; the structure C is otherwise

irrelevant.

The output is always 0 when f ≡ 0.

If f (x1, · · · , xn) = cxj1 · · · xjk , with c ∈ F, then
MA

out = cMvj1
· · ·Mvjk

where xji → vji = 01ji 1.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Crucial Observation

The entry MA
out(q0, qf) is 0 when A rejects m = xj1 · · · xjk (i.e

it’s binary representation), and c when A accepts m.

In general, let f =
∑

i cimi , then MA
out(q0, qf) =

∑

j cj such
that mj ’s are accepted by A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Crucial Observation

The entry MA
out(q0, qf) is 0 when A rejects m = xj1 · · · xjk (i.e

it’s binary representation), and c when A accepts m.

In general, let f =
∑

i cimi , then MA
out(q0, qf) =

∑

j cj such
that mj ’s are accepted by A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Intuition for Identity Testing

Can one design a small-sized automaton A such that A

accepts precisely one monomial m (with coefficient c) of the
polynomial computed by C .

Looking at (q0, qf) entry of MA
out (which is c), we can confirm

that f 6≡ 0.

Such an automaton A is a good automaton for us.

Even designing a small family of automata with a guarantee
that the family contains a good automaton is enough.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Intuition for Identity Testing

Can one design a small-sized automaton A such that A

accepts precisely one monomial m (with coefficient c) of the
polynomial computed by C .

Looking at (q0, qf) entry of MA
out (which is c), we can confirm

that f 6≡ 0.

Such an automaton A is a good automaton for us.

Even designing a small family of automata with a guarantee
that the family contains a good automaton is enough.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Intuition for Identity Testing

Can one design a small-sized automaton A such that A

accepts precisely one monomial m (with coefficient c) of the
polynomial computed by C .

Looking at (q0, qf) entry of MA
out (which is c), we can confirm

that f 6≡ 0.

Such an automaton A is a good automaton for us.

Even designing a small family of automata with a guarantee
that the family contains a good automaton is enough.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Intuition for Identity Testing

Can one design a small-sized automaton A such that A

accepts precisely one monomial m (with coefficient c) of the
polynomial computed by C .

Looking at (q0, qf) entry of MA
out (which is c), we can confirm

that f 6≡ 0.

Such an automaton A is a good automaton for us.

Even designing a small family of automata with a guarantee
that the family contains a good automaton is enough.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

An isolating family of finite automata

Let W be any finite set of at most s binary strings of length
at most m.

Let A be a finite family of finite automata over the binary
alphabet {0, 1}.

A is a (m, s)-isolating family for W , if there is a A ∈ A such
that A accepts precisely one string from W .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

An isolating family of finite automata

Let W be any finite set of at most s binary strings of length
at most m.

Let A be a finite family of finite automata over the binary
alphabet {0, 1}.

A is a (m, s)-isolating family for W , if there is a A ∈ A such
that A accepts precisely one string from W .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

An isolating family of finite automata

Let W be any finite set of at most s binary strings of length
at most m.

Let A be a finite family of finite automata over the binary
alphabet {0, 1}.

A is a (m, s)-isolating family for W , if there is a A ∈ A such
that A accepts precisely one string from W .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Identity Testing Algorithm

C be a given arithmetic circuit computing a polynomial
f ∈ F{x1, x2, · · · , xn} of degree at most d and number of
monomials is at most t.

Monomials of f correspond to binary strings of length at most
d(n + 2).

So it is enough to construct a universal family of automata A
which is a (d(n + 2), t)-isolating family.

For identity testing we just need to run the automata A ∈ A
over C and look into the (q0, qf) entry of MA

out .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Identity Testing Algorithm

C be a given arithmetic circuit computing a polynomial
f ∈ F{x1, x2, · · · , xn} of degree at most d and number of
monomials is at most t.

Monomials of f correspond to binary strings of length at most
d(n + 2).

So it is enough to construct a universal family of automata A
which is a (d(n + 2), t)-isolating family.

For identity testing we just need to run the automata A ∈ A
over C and look into the (q0, qf) entry of MA

out .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Identity Testing Algorithm

C be a given arithmetic circuit computing a polynomial
f ∈ F{x1, x2, · · · , xn} of degree at most d and number of
monomials is at most t.

Monomials of f correspond to binary strings of length at most
d(n + 2).

So it is enough to construct a universal family of automata A
which is a (d(n + 2), t)-isolating family.

For identity testing we just need to run the automata A ∈ A
over C and look into the (q0, qf) entry of MA

out .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Identity Testing Algorithm

C be a given arithmetic circuit computing a polynomial
f ∈ F{x1, x2, · · · , xn} of degree at most d and number of
monomials is at most t.

Monomials of f correspond to binary strings of length at most
d(n + 2).

So it is enough to construct a universal family of automata A
which is a (d(n + 2), t)-isolating family.

For identity testing we just need to run the automata A ∈ A
over C and look into the (q0, qf) entry of MA

out .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

W be a set of s binary strings each of length at most m. Our
goal is to construct a (m, s)-isolating automata family.

For a string w ∈ {0, 1}∗, let nw be the positive integer
represented by the binary numeral 1w .

For a prime p and an integer i ∈ {0, · · · , p − 1}, construct an
automaton Ap,i (having exactly one accepting state) that
accepts exactly those w such that nw ≡ i (mod p).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

W be a set of s binary strings each of length at most m. Our
goal is to construct a (m, s)-isolating automata family.

For a string w ∈ {0, 1}∗, let nw be the positive integer
represented by the binary numeral 1w .

For a prime p and an integer i ∈ {0, · · · , p − 1}, construct an
automaton Ap,i (having exactly one accepting state) that
accepts exactly those w such that nw ≡ i (mod p).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

W be a set of s binary strings each of length at most m. Our
goal is to construct a (m, s)-isolating automata family.

For a string w ∈ {0, 1}∗, let nw be the positive integer
represented by the binary numeral 1w .

For a prime p and an integer i ∈ {0, · · · , p − 1}, construct an
automaton Ap,i (having exactly one accepting state) that
accepts exactly those w such that nw ≡ i (mod p).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

Ap,i isolates W if there exists j such that
nwj
− nwk

6≡ 0(mod p) for k 6= j and nwj
≡ i(mod p).

So to construct an isolating family it is enough to avoid prime
factors of P =

∏

j 6=k(nwj
− nwk

).

The number of prime factors of P is clearly bounded by
(m + 2)

(

s
2

)

.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

Ap,i isolates W if there exists j such that
nwj
− nwk

6≡ 0(mod p) for k 6= j and nwj
≡ i(mod p).

So to construct an isolating family it is enough to avoid prime
factors of P =

∏

j 6=k(nwj
− nwk

).

The number of prime factors of P is clearly bounded by
(m + 2)

(

s
2

)

.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of an isolating automata family

Ap,i isolates W if there exists j such that
nwj
− nwk

6≡ 0(mod p) for k 6= j and nwj
≡ i(mod p).

So to construct an isolating family it is enough to avoid prime
factors of P =

∏

j 6=k(nwj
− nwk

).

The number of prime factors of P is clearly bounded by
(m + 2)

(

s
2

)

.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of isolating family continued

Consider N = (m + 2)
(

s
2

)

+ 1.

Isolating automata family: {Ap,i}p,i where p runs over the
first N primes, and i ∈ {0, 1, · · · , p − 1}.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Construction of isolating family continued

Consider N = (m + 2)
(

s
2

)

+ 1.

Isolating automata family: {Ap,i}p,i where p runs over the
first N primes, and i ∈ {0, 1, · · · , p − 1}.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

The Interpolation Algorithm

Input: An arithmetic circuit C computing a polynomial
f ∈ F{x1, x2, · · · , xn}. Let d and t are the upper bounds on
the degree and number of monomials of f .

Goal: To compute the polynomial f explicitly in time
poly(|C |, n, d , t).

Idea: Prefix search based recursive algorithm.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

The Interpolation Algorithm

Input: An arithmetic circuit C computing a polynomial
f ∈ F{x1, x2, · · · , xn}. Let d and t are the upper bounds on
the degree and number of monomials of f .

Goal: To compute the polynomial f explicitly in time
poly(|C |, n, d , t).

Idea: Prefix search based recursive algorithm.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

The Interpolation Algorithm

Input: An arithmetic circuit C computing a polynomial
f ∈ F{x1, x2, · · · , xn}. Let d and t are the upper bounds on
the degree and number of monomials of f .

Goal: To compute the polynomial f explicitly in time
poly(|C |, n, d , t).

Idea: Prefix search based recursive algorithm.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Prefix search based recursion

Given C and a monomial u, Interpolate(C, u) finds all the
monomials of f (along with their coefficients) which contain u

as prefix. So to compute entire polynomial we invoke
Interpolate(C, ǫ).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Some Notations

For a string u (think of as encoded in binary), Au is the
standard automaton that accepts only u.

For an automaton A, let [A]u is the automaton that accepts
precisely those strings accepted by A which contain u as a
prefix.

For a family of automata A, [A]u = {[A]u | A ∈ A}.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Some Notations

For a string u (think of as encoded in binary), Au is the
standard automaton that accepts only u.

For an automaton A, let [A]u is the automaton that accepts
precisely those strings accepted by A which contain u as a
prefix.

For a family of automata A, [A]u = {[A]u | A ∈ A}.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Some Notations

For a string u (think of as encoded in binary), Au is the
standard automaton that accepts only u.

For an automaton A, let [A]u is the automaton that accepts
precisely those strings accepted by A which contain u as a
prefix.

For a family of automata A, [A]u = {[A]u | A ∈ A}.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Isolating Automata Family

Fix a (m, s)-Isolating automata family A, with m = d(n + 2)
and s = t.

There exists a good prime p such that for every monomial w

of f the following is true: There exists i ∈ [p − 1], such that
Ap,i ∈ A accepts w (i.e it’s binary representation) and rejects
all other monomials of f .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Isolating Automata Family

Fix a (m, s)-Isolating automata family A, with m = d(n + 2)
and s = t.

There exists a good prime p such that for every monomial w

of f the following is true: There exists i ∈ [p − 1], such that
Ap,i ∈ A accepts w (i.e it’s binary representation) and rejects
all other monomials of f .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Building blocks of the Interpolation Algorithm

Given a monomial u, it is easy to check whether u is a
nonzero monomial in f : Compute the run of Au on C . The
(qo , qf) entry of MAu

out is the coefficient of u in f .

If u is the prefix of some monomial v in f , some automaton in
A ∈ [A]u will accept u.

To check whether u appears as a prefix of any monomial in f :
Compute the run of A ∈ [A]u on C . Check whether the
(q0, qf) entry of MA

out is nonzero for some A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Building blocks of the Interpolation Algorithm

Given a monomial u, it is easy to check whether u is a
nonzero monomial in f : Compute the run of Au on C . The
(qo , qf) entry of MAu

out is the coefficient of u in f .

If u is the prefix of some monomial v in f , some automaton in
A ∈ [A]u will accept u.

To check whether u appears as a prefix of any monomial in f :
Compute the run of A ∈ [A]u on C . Check whether the
(q0, qf) entry of MA

out is nonzero for some A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Building blocks of the Interpolation Algorithm

Given a monomial u, it is easy to check whether u is a
nonzero monomial in f : Compute the run of Au on C . The
(qo , qf) entry of MAu

out is the coefficient of u in f .

If u is the prefix of some monomial v in f , some automaton in
A ∈ [A]u will accept u.

To check whether u appears as a prefix of any monomial in f :
Compute the run of A ∈ [A]u on C . Check whether the
(q0, qf) entry of MA

out is nonzero for some A.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation Algorithm

Interpolate(C,u)

Compute the coefficient of u in f .

Check whether u0 is a prefix of any monomial in f . If so,
Interpolate(C ,u0).

Check whether u1 is a prefix of any monomial in f . If so,
Interpolate(C ,u1).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation Algorithm

Interpolate(C,u)

Compute the coefficient of u in f .

Check whether u0 is a prefix of any monomial in f . If so,
Interpolate(C ,u0).

Check whether u1 is a prefix of any monomial in f . If so,
Interpolate(C ,u1).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation Algorithm

Interpolate(C,u)

Compute the coefficient of u in f .

Check whether u0 is a prefix of any monomial in f . If so,
Interpolate(C ,u0).

Check whether u1 is a prefix of any monomial in f . If so,
Interpolate(C ,u1).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Running time of the algorithm

The algorithm calls Interpolate on u only if u is the prefix
of some string corresponding to a monomial in f .

At most d(n + 2) prefixes are possible for a string representing
a monomial.

Hence, the algorithm invokes Interpolate for at most
O(td(n + 2)) times.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Running time of the algorithm

The algorithm calls Interpolate on u only if u is the prefix
of some string corresponding to a monomial in f .

At most d(n + 2) prefixes are possible for a string representing
a monomial.

Hence, the algorithm invokes Interpolate for at most
O(td(n + 2)) times.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Running time of the algorithm

The algorithm calls Interpolate on u only if u is the prefix
of some string corresponding to a monomial in f .

At most d(n + 2) prefixes are possible for a string representing
a monomial.

Hence, the algorithm invokes Interpolate for at most
O(td(n + 2)) times.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation of Algebraic Branching Programs

Definition (Nisan 1991, Raz-Shpilka 2005)

An Algebraic Branching Program (ABP) is a directed acyclic
graph with one vertex of in-degree zero, called the source, and
a vertex of out-degree zero, called the sink.

The vertices of the graph are partitioned into levels numbered
0, 1, · · · , d . Edges may only go from level i to level i + 1 for
i ∈ {0, · · · , d − 1}.

The source is the only vertex at level 0 and the sink is the
only vertex at level d .

Each edge is labelled with a homogeneous linear form in the
input variables. The size of the ABP is the number of vertices.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation of Algebraic Branching Programs

Definition (Nisan 1991, Raz-Shpilka 2005)

An Algebraic Branching Program (ABP) is a directed acyclic
graph with one vertex of in-degree zero, called the source, and
a vertex of out-degree zero, called the sink.

The vertices of the graph are partitioned into levels numbered
0, 1, · · · , d . Edges may only go from level i to level i + 1 for
i ∈ {0, · · · , d − 1}.

The source is the only vertex at level 0 and the sink is the
only vertex at level d .

Each edge is labelled with a homogeneous linear form in the
input variables. The size of the ABP is the number of vertices.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation of Algebraic Branching Programs

Definition (Nisan 1991, Raz-Shpilka 2005)

An Algebraic Branching Program (ABP) is a directed acyclic
graph with one vertex of in-degree zero, called the source, and
a vertex of out-degree zero, called the sink.

The vertices of the graph are partitioned into levels numbered
0, 1, · · · , d . Edges may only go from level i to level i + 1 for
i ∈ {0, · · · , d − 1}.

The source is the only vertex at level 0 and the sink is the
only vertex at level d .

Each edge is labelled with a homogeneous linear form in the
input variables. The size of the ABP is the number of vertices.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Interpolation of Algebraic Branching Programs

Definition (Nisan 1991, Raz-Shpilka 2005)

An Algebraic Branching Program (ABP) is a directed acyclic
graph with one vertex of in-degree zero, called the source, and
a vertex of out-degree zero, called the sink.

The vertices of the graph are partitioned into levels numbered
0, 1, · · · , d . Edges may only go from level i to level i + 1 for
i ∈ {0, · · · , d − 1}.

The source is the only vertex at level 0 and the sink is the
only vertex at level d .

Each edge is labelled with a homogeneous linear form in the
input variables. The size of the ABP is the number of vertices.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Algebraic Branching Program, (Nisan 1991, Raz-Shpilka

2005)

Each of the directed paths from source to sink computes a
product of linear forms. The polynomial computed by the
ABP is the sum of all such product of linear forms.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Problem

We are given as input an ABP P in the black-box setting.

Our task is to output an ABP P ′ that computes the same
polynomial as P .

We assume that we are allowed to evaluate P at any of its
intermediate gates.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Problem

We are given as input an ABP P in the black-box setting.

Our task is to output an ABP P ′ that computes the same
polynomial as P .

We assume that we are allowed to evaluate P at any of its
intermediate gates.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Problem

We are given as input an ABP P in the black-box setting.

Our task is to output an ABP P ′ that computes the same
polynomial as P .

We assume that we are allowed to evaluate P at any of its
intermediate gates.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

The Result

We show a polynomial time interpolation algorithm for ABPs.

Our algorithm is motivated by Raz-Shpilka’s noncommutative
identity testing algorithm for formulas (and for ABP’s).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

The Result

We show a polynomial time interpolation algorithm for ABPs.

Our algorithm is motivated by Raz-Shpilka’s noncommutative
identity testing algorithm for formulas (and for ABP’s).

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

Our idea is to construct the output ABP P ′ layer by layer
such that every gate of P ′ computes the same polynomial as
the corresponding gate in P .

This task is trivial at level 0.

Inductively, we assume that we have constructed P ′ up to
layer i .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

Our idea is to construct the output ABP P ′ layer by layer
such that every gate of P ′ computes the same polynomial as
the corresponding gate in P .

This task is trivial at level 0.

Inductively, we assume that we have constructed P ′ up to
layer i .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

Our idea is to construct the output ABP P ′ layer by layer
such that every gate of P ′ computes the same polynomial as
the corresponding gate in P .

This task is trivial at level 0.

Inductively, we assume that we have constructed P ′ up to
layer i .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

To interpolate P ′ up to layer i + 1, we need to compute linear
forms between layer i and i + 1.

In general we can compute the linear forms by solving
exponential number of linear constraints.

Setting up the linear constraints crucially use the fact that we
can evaluate any intermediate gates of P .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

To interpolate P ′ up to layer i + 1, we need to compute linear
forms between layer i and i + 1.

In general we can compute the linear forms by solving
exponential number of linear constraints.

Setting up the linear constraints crucially use the fact that we
can evaluate any intermediate gates of P .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

To interpolate P ′ up to layer i + 1, we need to compute linear
forms between layer i and i + 1.

In general we can compute the linear forms by solving
exponential number of linear constraints.

Setting up the linear constraints crucially use the fact that we
can evaluate any intermediate gates of P .

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of the Algorithm

A suitable application of Raz-Shpilka’s idea provides us only a
polynomial number of linear constraints that to be solved for
identifying the linear forms.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Derandomizing the noncommutative identity Testing

Bogdanov and Wee (2005) showed a randomized
polynomial-time identity testing algorithm for
noncommutative circuit computing small degree polynomial.

Can one give a deterministic polynomial-time identity testing
algorithm for noncommutative circuits computing small
degree polynomial?

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Derandomizing the noncommutative identity Testing

Bogdanov and Wee (2005) showed a randomized
polynomial-time identity testing algorithm for
noncommutative circuit computing small degree polynomial.

Can one give a deterministic polynomial-time identity testing
algorithm for noncommutative circuits computing small
degree polynomial?

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Connection to circuit lower bound

Analogous to the commutative case (Impagliazzo and
Kabanets 2003), we observe that such an algorithm will imply
either NEXP 6⊂ P/poly or the noncommutative Permanent
function does not have polynomial-size noncommutative
circuits.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Commutative PIT over ring

Definition

Let R be a finite commutative ring with unity and C be an
arithmetic circuit in the input variable x1, x2, · · · , xn over R . C

computes a polynomial f in R [x1, x2, · · · , xn]. Suppose the
operations over R can be done efficiently. Can one determine
whether the polynomial computed by C is identically zero ?

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Known results for PIT over rings

Agrawal-Biswas (2003) showed a randomized polynomial-time
algorithm for the identity testing over Zn.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Our Main Result

A randomized polynomial-time identity testing algorithm over
any finite commutative ring with unity where ring operations
can be done efficiently.

Conceptually and technically our result is a generalization of
Agrawal-Biswas idea over arbitrary commutative ring with
unity.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

(Univariate substitution, Agrawal-Biswas 2003) For each

xi ← x(d+1)i−1
(d be an upper bound on the degree of f).

g(x)← C (x , x(d+1), · · · , x(d+1)n−1
).

D ← d(d + 1)n−1.

Choose a monic polynomial q(x) (whose coefficients are
multiple of unity) of degree ⌈log 24D⌉ uniformly at random.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

(Univariate substitution, Agrawal-Biswas 2003) For each

xi ← x(d+1)i−1
(d be an upper bound on the degree of f).

g(x)← C (x , x(d+1), · · · , x(d+1)n−1
).

D ← d(d + 1)n−1.

Choose a monic polynomial q(x) (whose coefficients are
multiple of unity) of degree ⌈log 24D⌉ uniformly at random.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

(Univariate substitution, Agrawal-Biswas 2003) For each

xi ← x(d+1)i−1
(d be an upper bound on the degree of f).

g(x)← C (x , x(d+1), · · · , x(d+1)n−1
).

D ← d(d + 1)n−1.

Choose a monic polynomial q(x) (whose coefficients are
multiple of unity) of degree ⌈log 24D⌉ uniformly at random.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

(Univariate substitution, Agrawal-Biswas 2003) For each

xi ← x(d+1)i−1
(d be an upper bound on the degree of f).

g(x)← C (x , x(d+1), · · · , x(d+1)n−1
).

D ← d(d + 1)n−1.

Choose a monic polynomial q(x) (whose coefficients are
multiple of unity) of degree ⌈log 24D⌉ uniformly at random.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

Divide g(x) by q(x) and compute the remainder r(x).

If r(x) = 0, C computes a zero polynomial.

Else C computes a nonzero polynomial.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

Divide g(x) by q(x) and compute the remainder r(x).

If r(x) = 0, C computes a zero polynomial.

Else C computes a nonzero polynomial.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Outline of our algorithm

Divide g(x) by q(x) and compute the remainder r(x).

If r(x) = 0, C computes a zero polynomial.

Else C computes a nonzero polynomial.

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

Outline
Introduction

Automata Theory
Noncommutative Polynomial Identity Testing

Commutative Polynomial Identity Testing

Thank You

V. Arvind, Partha Mukhopadhyay, Srikanth Srinivasan Noncommutative and Commutative PIT

	Outline
	Introduction
	Automata Theory
	Noncommutative Polynomial Identity Testing
	Commutative Polynomial Identity Testing

