- (1) Let A_n be the real $n \times n$ matrix ($n \ge 2$) whose entry in position (*i*, *j*) is i j. What is the rank of A_n as a function of *n*? **2**
- (2) Let p(x) be the polynomial left as remainder when $x^{2019} 1$ is divided by $x^6 + 1$. What is the remainder left when p(x) is divided by x - 3? 26
- (3) Let S be the set of all (unordered) pairs of distinct two digit integers (in the usual decimal notation). If a member $\{a, b\}$ of *S* is picked at random, what is the probability that a + b is even? 44/89
- (4) For *n* a positive integer, let $f_n(x)$ be the continuous function 1/(1+nx) with domain the positive real numbers. Let f(x) be the pointwise limit of the sequence $\{f_n(x)\}_{n\geq 1}$ of functions. On which of the following intervals is the convergence $f_n \rightarrow f$ uniform? Choose all the correct options: (b), (c)
 - (a) (0,1)
 - (b) (1,2)
 - (c) $(2,\infty)$
 - (d) None of the above.
- (5) Put $\theta := \pi/2019$ and let \mathbb{N} denote the set of positive integers. Which of the following subsets of the real line is compact? Choose all the correct options: (a), (c)

 - (a) $\{\frac{\sin n\theta}{n} \mid n \in \mathbb{N}\}$ (b) $\{\frac{\cos n\theta}{n} \mid n \in \mathbb{N}\}$
 - (c) $\{\frac{\tan n\theta}{n} \mid n \in \mathbb{N}\}$
 - (d) None of the above.
- (6) The smallest (positive) integer with exactly 20 divisors (including 1 and itself) is: **240** (E.g., 10 has exactly four divisors, namely, 1, 2, 5, and 10.)
- (7) How many group homomorphisms are there from $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$ to $\mathbb{Z}/18\mathbb{Z}$? 54 Here $\mathbb{Z}/n\mathbb{Z}$ denotes the cyclic group of order *n*, and *A* × *B* the cartesian product of *A* and *B*.
- (8) Let, for *t* a real number, $\lfloor t \rfloor$ denote the largest integer not larger than *t*.

Compute $\int_{0.75}^{100.5} f(t) dt$ for $f(t) := t - \lfloor t \rfloor - \frac{1}{2}$. -1/32 or -0.03125

(9) Let M denote the real 6×6 matrix all of whose off-diagonal entries are -1 and all of whose diagonal entries are 5. List out the eigenvalues of M (each eigenvalue must be written as many times as its multiplicity):

6, 6, 6, 6, 6, 0

- (10) Let S be the set of all 2×3 real matrices each of whose entries is 1, 0, or -1. (There are 3^6 matrices in S.) Recall that the column space of a matrix M in S is the subspace of \mathbb{R}^2 (the vector space of 2×1 real matrices) spanned by the three columns of M. For two elements M and M' in S, let us write $M \sim M'$ if M and M' have the same column space. Note that \sim is an equivalence relation. How many equivalence classes are there in *S*? 6
- (11) Given that f(x, y) = u(x, y) + iv(x, y) is an entire function of z = x + iy such that f(0) = -1, $\partial u/\partial x = (e^y + e^{-y})\cos x$, and $\partial u/\partial y = (e^y - e^{-y})\sin x$, what is $f(\pi/3)$? $\sqrt{3}-1$

- (12) Let $A := \mathbb{Z}/6\mathbb{Z}$ be the group of residue classes modulo 6 of integers. Let *G* be the group of bijections (as a set) of *A*, the multiplication being composition. Let *H* be the subgroup of *G* consisting of those bijections σ such that $\sigma(x+2) = \sigma(x) + 2$ for all *x* in *A*. What is the index of *H* in *G*? **40**
- (13) Let $S := \{x \text{ an integer} | 99 < x < 1000, x \equiv 8 \mod 20, \text{ and } x \equiv 3 \mod 15\}$. The sum of the elements of S is: **7920**.
- (14) Let *A* be 4×5 real matrix. Consider the system $A\mathbf{x} = \mathbf{b}$ of linear equations where \mathbf{x} is a 5×1 column matrix of indeterminates and \mathbf{b} is some fixed 4×1 column matrix with real entries. Given that
 - *A* is row equivalent to the matrix *R* below (which means that the rows of *A* are all linear combinations of the rows of *R* and vice versa), and
 - **c** and **d** below are both solutions to $A\mathbf{x} = \mathbf{b}$,

what is the value of *y*? **7**

(15) Let *n* be the least positive integer such that $\sum_{2 \le k \le n} \frac{1}{k} \ge 5$. Choose the correct option: (c)

- (a) $n \le 32$
- (b) $32 < n \le 96$
- (c) $96 < n \le 729$
- (d) 729 < n

(16) What are the maximum and minimum values in the region $\{(x, y) | x^2 + y^2 \le 1, x + y \le 0\}$ of the function $f(x, y) = x^2 + y^2$ maximum = $\boxed{(1 + \sqrt{2})/2}$ or $\frac{1}{2} + \frac{1}{\sqrt{2}}$ minimum = $\boxed{-1}$.

- (17) Let *A* be a real 2×2 matrix such that $A^6 = I$ (where *I* denotes the identity 2×2 matrix). The total number of possibilities for the characteristic polynomial of *A* is: **5**
- (18) The shortest distance from the origin in \mathbb{R}^3 to the surface $z^2 (x-1)(y-1) = 2$ is $\sqrt{24/3}$ or $\sqrt{8/3}$.
- (19) For *r* a positive real number let $f(r) := \int_{C_r} \frac{\sin z}{z} dz$, where C_r is the contour $re^{i\theta}$, $0 \le \theta \le \pi$. What is $\lim_{r\to 0} \frac{f(r)}{r}$? [-2]
- (20) A degree 3 polynomial f(x) with real coefficients satisfies f(1) = 2, f'(2) = 2, f''(2) = 2, and f'''(2) = 12, where f'(x), f''(x), and f'''(x) are the first, second, and third derivatives of f(x) respectively. What is f(2)?
- (21) Consider the function $f(z) = z + 2z^2 + 3z^3 + \dots = \sum_{n \ge 0} nz^n$ defined on the open disk $\{z \mid |z| < 1\}$. Choose the correct option: **(b)**
 - (a) f is not injective but attains every complex value at least once.
 - (b) f is injective but does not attain every complex value.
 - (c) f is injective and attains every complex value.
 - (d) None of the above.
- (22) Find the area of the region { $(x, y) | 0 \le x, 0 \le y, x^{2/3} + y^{2/3} \le 1$ }. **3** π /**32**

- (23) The number of solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, where \mathbb{Z} denotes the set of integers, of the equation $x^2 + 16 = y^2$ is **6**.
- (24) Evaluate $\lim_{n \to \infty} (1 \frac{1}{n} + \frac{1}{n^2} \frac{1}{n^3})^n$: **1/e**
- (25) Let **k** be the field with exactly 7 elements. Let \mathfrak{M} be the set of all 2×2 matrices with entries in **k**. How many elements of \mathfrak{M} are similar to the following matrix? **56**

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

(26) For the function f(x) on the real line \mathbb{R} defined below, which of the following statements about f is true? Choose all the correct options: $f(x) := \sum \frac{\sin(x/n)}{x}$ (b), (c)

$$f(x) := \sum_{n \ge 1} \frac{\sin(x/n)}{n}$$

- (a) f is continuous but not uniformly continuous on \mathbb{R} .
- (b) f is uniformly continuous on \mathbb{R} .
- (c) f is differentiable on \mathbb{R} .
- (d) f is an increasing function on \mathbb{R} .
- (27) Let f be a continuous function from the real line \mathbb{R} to the closed interval [1,3] such that:
 - $f^{-1}(1)$ and $f^{-1}(3)$ are singletons, and
 - $f^{-1}(x)$ consists of exactly two real numbers for every x in $(1,2) \cup (2,3)$.

Which of the following can be the cardinality of $f^{-1}(2)$? Choose all the correct options: (a), (d)

- (a) 1
- (b) 2
- (c) countable infinity
- (d) uncountable infinity
- (28) Which of the following functions is uniformly continuous on the given domain? Choose all the correct options:(a), (d)
 - (a) $1/x^2$ on $[1,\infty)$.
 - (b) 1/x on $(0,\infty)$.
 - (c) $x \sin x$ on the real line \mathbb{R} .
 - (d) $\tan^{-1} x$ on the real line \mathbb{R} .
- (29) $A 3 \times 3$ real symmetric matrix *M* admits (1, 2, 3)^{transpose} and (1, 1, -1)^{transpose} as eigenvectors. The transpose of which of the following is *surely* an eigenvector for *M*? Choose all the correct options: **(d)**
 - (a) (1, -1, 0)
 - (b) (-5,1,1)
 - (c) (3,2,1)
 - (d) none of the above
- (30) An insect is moving along the curve $r = |\cos \theta|$ such that $\theta = \pi t/6$, where *t* is time measured in seconds. What is the distance travelled by the insect in the time interval between t = 1 and t = 2? $\pi/6$