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Chandrasekhar Mass Bound :M∗ > 1.46 M⊙ for dying stars that evade
the white dwarf stage.
Core collapse of such stars⇒ supernova explosion→ compact core of
degenerate neutrons

Further grav instability : ifMcore > 2M⊙ → collapse to black hole

Chandrasekhar’s Nobel Lecture December 1983 : (adapted to deg neutron
cores)

Mcore > ξ

(
~c

G

)3/2

m−2
n

Hydrost equil betweenPcore due to gravity andPdeg the Fermi pressure of
relativistic degenerate neutrons :

Solve Einstein eqGab = 8πG
c4
Tab with sph symm ansatz for perfect

barotropic fluid→ Tolman-Oppenheimer-Volkov eq
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dP

dr
= −(P + ρ)

[

4πr3P + 2m

r(r − 2m)

]

where,m(r) ≡
∫ r
0 dr

′4πr′2ρ(r′) , G = c = 1. Assuming uniformρ(r) =

ρ0 ⇒ m(r) = Mcore(r/R)3 ⇒

Pcore = P (r = 0) = ρ0c
2
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
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where,RS = 2GMcore/c
2

Degenerate neutron gas : Fermi pressure

Pdeg =

∫ pF

0
ntot(p) v(p) dp

where,ntot(pF ) ≡
∫ pF
0 n(p) dp = (8π/3~

3) p3
F
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Sp Rel :v(p) < c

Pdeg <
1

8

(
ρ0

mn

)4/3

Hydrostat equilPcore = Pdeg ⇒

Mcore < ξ

(
~c

G

)3/2

m−2
n

Reexpress
(
Mcore

MP

)

> ξ

(
λCn
lP

)2

Planck scale lP appears nonperturbatively : rhs ր as lP ց

Contrast with std QG effects∼ O(lP ) !
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Reminiscent of black hole entropy :

Sbh =
Ahor
4l2P

+ quantum corr.

• Is the mass bound linked to quantum gravity ? Derivation used GR
+ Sp Rel QM

• Are the mass bound and Sbh related ?

Does derivation use a consistent formalism ? No.

• Sp Rel QM not ok forE >> mnc
2 → SRQFT

• But Pcore computed using GR : consistency⇒ use GRQFT (semicl) to
computePdeg!

• Are QG effects guaranteed to be small ? No
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Right answer using ‘invalid’ theory:
E.g. Mitchell’s (1784) derivation of Schwarzschild radRS = 2GM/c2

before GR; or Bohr’s derivation of Bohr radiusa0 = ~
2/me2 before QM.

‘Pointers’ to the right theory : GR and QM.

What theory does Chandrasekhar’s bound point towards ?

Reexpress bound
(
Mcore

MP

)

> ξ

(
λCn
lP

)2

= ξ

(
ACn
AP

)

⇒ cond for instability wrt formation ofhorizon (null hypersurface with
sp foliations being trapped 2-surfaces)
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Suggest : existence of bound related toStability of horizon wrt Hawking
radiation (Thermal Stability)

Mhor(Ahor)

MP
>
S(Ahor)

kB

whereS(Ahor) → microcan entropy of equil (isolated) hor

• How does this thermal stability bound come about ? (heuristic)

• Link betweenAhor andACn ∼ λ2
Cn of collapsing core ? (Very prelim-

inary)

Digression : In any quantum GR theory

Ĥ = Ĥv︸︷︷︸
blk

+ Ĥb︸︷︷︸

bdy

|Ψ〉 =
∑

v,b

cvb |ψv〉︸︷︷︸

blk

|χb〉︸︷︷︸

bdy
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‘Quantum Einstein EQ’ (bulk)

Ĥv |ψv〉 = 0

Z =
∑

b




∑

v

|cvb|
2|| |ψv〉 ||

2



 〈χb| exp−βĤbdy|χb〉

≡ Z
bdy

Bulk states decouple! → Thermal holography ! (PM 2007, 2009)

Weaker version of holography cf ‘Holographic Hypothesis’’t Hooft 1993; Susskind

1995

Canonical Ensemble of (isolated) horizons (as sptm bdy) : States charac-
terized byAn ∼ n l2P , n ∈ Z (LQG)
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terized byAn ∼ n l2P , n ∈ Z (LQG)
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Hor partition fct (G = c = kB = 1) Das, Bhaduri, PM 2001; Chatterjee, PM 2003, 2005

Z(β) =
∑

n

g(M (An)) exp−βM (An)

≃ exp [S(Ahor) − βM (Ahor)] · ∆
−1/2(Ahor)

Canon entropy

Scan(Ahor) = S(Ahor) +
1

2
log ∆

Stable thermal equil

⇒ Scan > 0 ⇒ ∆ > 0

Criterion forThermal Stability PM 2007

M (Ahor)

MP
>
S(Ahor)

kB
Classical geom not used in derivation : QG origin
But S(Ahor) =?
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• Equil (Isolated) horizon ?Ashtekar et. al. 1997-2000

• Horizon deg of freedom & dynamics ?Ashtekar et. al. 1997-2000; Basu, Kaul, PM 2009,;

Kaul, PM 2010; Basu, Chatterjee, Ghosh 2010; Engel et. al. 2009-10

• Counting of horizon states ?Ashtekar et. al. 1997,2000; Kaul, PM 1998,2000; Das, Kaul, PM 2001
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• Start w/ Schwarzschild metric : choose a tetrad basis and compute spin
connection coeff and curvature comp

• Define Barbero-ImmirziSU(2) connection

• Pull back to horizon (sph fol) and compute curvature on sph

• Compute pull back of cross-product of tetrads to sph fol of horizon

• Result:
k

2π
Fab(A) = −Σab

where,k = # · (Ahor/l
2
P ) , k >> 1

• SU(2) Chern Simons gauge theory EoM

• Can gauge fix toU(1) CS with extra conditions on sources⇒ SU(2)
dynamicsBasu, Kaul, PL 2009

• Gravity-gauge theory (topol) link derived
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Eff Quantum Horizon : Loop Quantum Gravity

k−1
B S =

Ahor
4l2P

−
3

2
log

(

Ahor
4l2P

)

+ O

(

4l2P
Ahor

)

Corrections to area law (Kaul, PM 1998, 2000) are signature LQG effects

Corollary :

β = βHaw

(

1 +
6l2P
Ahor

+ . . .

)
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It from bit Wheeler 1992, ’t Hooft 1993
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• Assume each plaquette has area∼ l2P ⇒ p ≡ Ahor/l
2
P ≫ 1 for macro-

scopic black holes

• Spin 1/2 (binary) variables in each plaquette

• Count only rotationally invariant (jtot = 0) states (Das, Kaul, PM 2001)

Ω(p) =

(
p
p/2

)

︸ ︷︷ ︸
mtot=0

−

(
p

(p/2 + 1)

)

︸ ︷︷ ︸
mtot=±1

With Stirling approximation, replacingp in termsAhor, obtain identical
formula forS(Ahor).
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Assume small energy loss during collapse to black hole
⇒Mcore > Mhor = M (Ahor) ⇒

Mcore

MP
>
Ahor
4l2P

Hidden (‘Trapping’ or Dynamical) horizon of collapsing core→ dynamical
hypersurface inside core s.t. spatial foliation is outer trapping
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Core Collapse pushes energy into Hidden Horizon⇒ Ahid hor ր

Stops whenAhid hor ր Ahor ⇒ Ahor > Ahid hor

ExpectACn ∼ Ahid hor < Ahor (?)

⇒ Chandrasekhar mass bound
Mcore

MP
> ξ

(
ACn
AP

)

Scenario indep of classical metric ; horizon treated as ‘quantum’ hyper-
surface : Dof are Wilson line excitations of Chern Simons quantum topol
gauge theory coupled to point sources carrying spin from bulk spin network
geom
Does such a hypersurface actually form in stellar collapse ?Test simple
models : Oppenheimer-Snyder model of pressureless dust collapse (ongo-
ing)
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Pending Issues

• Need to establish firm relation betweenACn andAhid hor
• Need to justify scenario in detail

• Need to go beyond effective quantum horizon : what exactly isa quan-
tum horizon ?
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